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Abstract

Transformer architectures have achieved SOTA perfor-
mance on the human mesh recovery (HMR) from monocu-
lar images. However, the performance gain has come at the
cost of substantial memory and computational overhead. A
lightweight and efficient model to reconstruct accurate hu-
man mesh is needed for real-world applications. In this
paper, we propose a pure transformer architecture named
POoling aTtention TransformER (POTTER) for the HMR
task from single images. Observing that the conventional
attention module is memory and computationally expensive,
we propose an efficient pooling attention module, which sig-
nificantly reduces the memory and computational cost with-
out sacrificing performance. Furthermore, we design a new
transformer architecture by integrating a High-Resolution
(HR) stream for the HMR task. The high-resolution local
and global features from the HR stream can be utilized for
recovering more accurate human mesh. Our POTTER out-
performs the SOTA method METRO by only requiring 7%
of total parameters and 14% of the Multiply-Accumulate
Operations on the Human3.6M (PA-MPJPE metric) and
3DPW (all three metrics) datasets. The project webpage
is https://zczcwh.github.io/potter_page/.

1. Introduction

With the blooming of deep learning techniques in the
computer vision community, rapid progress has been made
in understanding humans from monocular images such as
human pose estimation (HPE). No longer satisfied with de-
tecting 2D or 3D human joints from monocular images, hu-
man mesh recovery (HMR) which can estimate 3D human
pose and shape of the entire human body has drawn increas-
ing attention. Various real-world applications such as gam-

*Work conducted during an internship at OPPO Seattle Research Cen-
ter, USA.

Figure 1. HMR performance comparison with Params and MACs
on 3DPW dataset. We outperform SOTA methods METRO [18]
and FastMETRO [3] with much fewer Params and MACs. PA-
MPJPE is the Procrustes Alignment Mean Per Joint Position Error.

ing, human-computer interaction, and virtual reality (VR)
can be facilitated by HMR with rich human body informa-
tion. However, HMR from single images is extremely chal-
lenging due to complex human body articulation, occlusion,
and depth ambiguity.

Recently, motivated by the evolution of the transformer
architecture in natural language processing, Vision Trans-
former (ViT) [5] successfully introduced transformer archi-
tecture to the field of computer vision. The attention mecha-
nism in transformer architecture demonstrates a strong abil-
ity to model global dependencies in comparison to the Con-
volutional Neural Network (CNN) architecture. With this
trend, the transformer-based models have sparked a vari-
ety of computer vision tasks, including object detection
[24, 27], semantic segmentation [2, 39], and video under-
standing [23, 32] with promising results. For HMR, the
SOTA methods [3, 18] all utilize the transformer architec-
ture to exploit non-local relations among different human
body parts for achieving impressive performance.

However, one significant limitation of these SOTA HMR
methods is model efficiency. Although transformer-based
methods [18, 19] lead to great improvement in terms of ac-
curacy, the performance gain comes at the cost of a substan-
tial computational and memory overhead. The large CNN
backbones are needed for [18, 19] to extract features first.
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Then, computational and memory expensive transformer
architectures are applied to process the extracted features
for the mesh reconstruction. Mainly pursuing higher accu-
racy is not an optimal solution for deploying HMR models
in real-world applications such as human-computer interac-
tion, animated avatars, and VR gaming (for instance, SOTA
method METRO [18] requires 229M Params and 56.6G
MACs as shown in Fig. 1). Therefore, it is important to also
consider the memory footprint and computational complex-
ity when evaluating an HMR model.
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Figure 2. Transformer blocks of different models. We suppose the
number of patches (N) and the embedding dimension (D) for each
block are the same when comparing the Params and MACs.

To bridge this gap, we aim to design a lightweight end-
to-end transformer-based network for efficient HMR. Ob-
serving that the transformer blocks (attention-based ap-
proaches in Fig. 2 (a) and MLP-based approaches in Fig.
2 (b)) are usually computational and memory consuming,
we propose a Pooling Attention Transformer (PAT) block as
shown in Fig. 2 (c) to achieve model efficiency. After patch
embedding, the image input becomes X = [D, Hp ,

W
p ],

where D is the embedding dimension and the number of
patches is N = H

p ×
W
p when patch size is p × p. The in-

put for transformer block is often written as Xin = [N,D].
To reduce the memory and computational costs, we design
a Pooling Attention (PoolAttn) module in our PAT block.
The PoolAttn consists of patch-wise pooling attention and
embed-wise pooling attention. For the patch-wise pooling
attention block, we preserve the patches’ spatial structure
based on the input Xin = [D, Hp ,

W
p ], then apply patch-

wise pooling attention to capture the correlation of all the
patches. For the embed-wise pooling attention block, we
maintain the 2D spatial structure of each patch (without flat-
tening to 1D embedded features). The input is reshaped to
Xin = [N,Dh, Dw], where Dh × Dw = D is the embed-
ding dimension. The embed-wise pooling attention is ap-
plied to model the dependencies of the embedding dimen-
sions in each patch. A detailed explanation is provided in
Section 3.2. The Params and MACs comparison between
the PoolAttn and conventional attention module or MLP-
based module is shown in Fig. 2 (d). Thus, PAT can reduce
the Params and MACs significantly while maintaining high
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Figure 3. The illustration in terms of patches during each stage in
transformer architectures.

performance, which can be utilized for efficient HMR.

Equipped with PAT as our transformer block, the next
step for building an efficient and powerful transformer-
based HMR model is to design an overall architecture. The
naive approach is to apply a Vision Transformer [5] (ViT)
architecture as shown in Fig. 3 (a). The image is first
split into patches. After patch embedding, a sequence of
patches is treated as tokens for transformer blocks. But in
ViT, patches are always within a fixed scale in transformer
blocks, producing low-resolution features. For the HMR
task, high-resolution features are needed because human
body parts can vary substantially in scale. Moreover, ViT
architecture focuses on capturing the global correlation, but
the local relations can not be well modeled. Recently, Swin
[22] introduced a hierarchical transformer-based architec-
ture as shown in Fig. 3 (b). It has the flexibility to model
the patches at various scales, the global correlation can be
enhanced during hierarchical blocks. However, it also pro-
duces low-resolution features after the final stage. To obtain
high-resolution features, additional CNN networks such as
Feature Pyramid Network [20] (FPN) are required to aggre-
gate hierarchical feature maps for HMR. Thus, we propose
our end-to-end architecture as shown in Fig. 3 (c), the hier-
archical patch representation ensures the self-attention can
be modeled globally through transformer blocks with patch
merge. To overcome the issue that high-resolution represen-
tation becomes low-resolution after patch merge, we pro-
pose a High-Resolution (HR) stream that can maintain high-
resolution representation through patch split by leveraging
the local and global features from the basic stream. Finally,
the high-resolution local and global features are used for re-
constructing accurate human mesh. The entire framework
is also lightweight and efficient by applying our PAT block
as the transformer block.

Our contributions are summarized as follows:
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• We propose a Pooling Transformer Block (PAT) which
is composed of the Pooling Attention (PoolAttn) module
to reduce the memory and computational burden without
sacrificing performance.

• We design a new transformer architecture for HMR by
integrating a High-Resolution (HR) stream. Considering
the patch’s merging and split properties in transformer,
the HR stream returns high-resolution local and global
features for reconstructing accurate human mesh.

• Extensive experiments demonstrate the effectiveness and
efficiency of our method – POTTER. In the HMR task,
POTTER surpasses the transformer-based SOTA method
METRO [18] on Human3.6M (PA-MPJPE metric) and
3DPW (all three metrics) datasets with only 7 % of
Params and 14 % MACs.

2. Related Work

Since the HMR is one of the fundamental tasks in com-
puter vision with a long history, here we focus on the more
recent and relevant approaches. Readers can explore more
detailed information about HMR in a recent and compre-
hensive HMR survey [30].

HMR from a single image. HMR has attracted increas-
ing attention in recent years. Most of the HMR methods
[9, 10, 40, 42, 44] utilize a parametric human model such as
SMPL [25] to reconstruct human mesh by estimating the
pose and shape parameters of the parametric model. Kolo-
touros et al. [15] present a graph convolution neural net-
work to learn the vertex-vertex relations. They regress the
3D mesh vertices directly instead of the SMPL model pa-
rameters. SPIN [14] combines the regression and opti-
mization process in a loop. The regressed output served
as better initialization for optimization (SMPLify). Sim-
ilarly, PyMAF [44] propose a pyramidal mesh alignment
feedback where the mesh-aligned evidence is exploited to
correct parametric errors. ProHMR [16] is a probabilistic
model that outputs a conditional probability distribution us-
ing conditional normalizing flow. Dwivedi et al. [6] propose
a differentiable semantic rendering loss to exploit richer im-
age information about clothed people.

Transformers in HMR. Transformers are first proposed
by [35] in the field of NLP. Inspired by the success of trans-
former’s attention mechanism when dealing with token in-
put, many researchers apply the transformer in various vi-
sion tasks such as object detection [1, 49], image classi-
fication [5, 22], segmentation [48], human pose estima-
tion [45, 47], etc. METRO [18] is the first transformer-
based method for HMR. After extracting the image features
by CNN backbone, a transformer encoder is proposed to
model vertex-vertex and vertex-joint interaction. Although
METRO outperforms the previous SOTA methods by a
large margin (more than 10 MPJPE on Human3.6M and

3DPW datasets), METRO requires substantial memory and
computational costs to achieve this impressive performance.
As an extended version of METRO, MeshGraphormer [19]
further combines the graph convolutional network (GCN)
with a transformer to model local and global interactions
among mesh vertices and joints. It still incurs substantial
memory and computational overhead. Zeng et al. [43] pro-
pose a Token Clustering Transformer (TCFormer) to merge
tokens from different locations by progressive clustering
procedure. However, the performance of TCFormer can not
beat METRO and MeshGraphormer.

Efficient models for HMR. As mentioned above, [18,
19] pursue higher accuracy by sacrificing computational
and memory efficiency. For real-world applications, model
efficiency is also a key metric when evaluating HMR mod-
els, while less studied before. Although FastMETRO [3]
reduces the computational and memory costs for the trans-
former part, it still relies on the heavy CNN backbone to
achieve impressive performance. Another attempt is to re-
construct human mesh from a 2D human pose, which is pro-
posed by GTRS [46]. A lightweight transformer model em-
ploying a lightweight 2D pose detector can reduce compu-
tational and memory costs significantly. However, the per-
formance of GTRS is not comparable to the SOTA methods
since it only uses the 2D pose as input, some information
such as human shape is missing.

3. Methodology
3.1. Overall Architecture

We propose an end-to-end transformer network named
POTTER for the HMR task as shown in Fig. 4. Follow-
ing the general hierarchical transformer architecture (such
as Swin [22]), there are four hierarchical stages of trans-
former blocks. After the patch embedding, the input im-
age Ximg ∈ R3×H×W is embedded to the input features
of “stage 1” Xin1 ∈ RD1×H

4 ×
W
4 , where D1 is the embed-

ding dimension of “stage 1”, H and W are the height and
width of the input image, respectively. The total number of
patches is H

4 ×
W
4 = HW

16 and the resolution of the fea-
tures is [H4 ,

W
4 ]. After the transformer blocks modeling the

attention, the output Xout1 keeps the same size as the input
Xin1 ∈ RD1×H

4 ×
W
4 .

In the basic stream, we follow the Swin [22] style hi-
erarchical architecture, a patch merging block is applied
between two adjacent stages to build hierarchical feature
maps, which reduces the number of patches between two
adjacent stages. Thus, the output of “stage 2” becomes
Xbasic

out2 ∈ RD2×H
8 ×

W
8 , the total number of patches is re-

duced to H
8 ×

W
8 = HW

64 , and the resolution of the features is
decreased to [H8 ,

W
8 ]. This procedure is the same for “stage

3” and “stage 4”, where the output is Xbasic
out3 ∈ RD3×H

16×
W
16

and Xbasic
out4 ∈ RD4×H

32×
W
32 , respectively.
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Figure 4. The overall architecture of our POTTER. PAT is our proposed Pooling Attention Transformer block. The basic stream of
POTTER adopts hierarchical architecture with 4 stages [22], where the number of patches is gradually reduced for capturing more global
information with low-resolution features ( H

32
×W

32
). Our proposed HR stream maintains the high-resolution (H

4
×W

4
) feature representation

at each stage. The global features from the basic stream are fused with the local features by patch split blocks in the HR stream. Thus, the
high-resolution local and global features are utilized for the HMR task.

In the High-Resolution (HR) stream, a patch split
block is applied between the basic stream and the HR
steam, which splits the merged patches to maintain a high-
resolution feature representation. Thus, the output for
“stage 3” and “stage 4” are XHR

out3 ∈ RD1×H
4 ×

W
4 and

XHR
out4 ∈ RD1×H

4 ×
W
4 , respectively. The total number of

patches during the HR stream is kept as H
4 ×

W
4 = HW

16 and
the resolution of the features is maintained as [H4 ,

W
4 ].

3.2. The Design of Pooling Attention
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Figure 5. The Pooling Attention Transformer (PAT) block

Following the conventional transformer models, our
Pooling Attention Transformer (PAT) block has a similar
structure as shown in Fig. 2. Among various transformer-
based architecture, PoolFormer block [41] is one of the
closely related works to our PoolAtten block. In Pool-
Former [41], a simple spatial pooling layer is used to replace
the attention for patch mixing. Specifically, given the input
Xin ∈ RD×h×w where D is the embedding dimension and
h × w is the number of patches, an average 2D pooling
layer (pool size = 3 × 3, stride = 1, padding = 1) is

applied as patch mixer. The output Xout ∈ RD×h×w keeps
the same size as the input. Surprisingly, the performance of
PoolFormer surpasses many complicated transformer-based
models with much less computational and memory com-
plexity.

Different from PoolFormer, we apply the pooling atten-
tion module to model the patch-wise attention and embed-
wise attention while reducing computational and memory
costs. The detailed structure of our PAT block is shown
in Fig. 5. The Pooling Attention (PoolAttn) consists of
patch-wise pooling attention and embedding dimension-
wise pooling attention (embed-wise for short). Given the
input Xin ∈ RD×h×w, where D is the embedding dimen-
sion and h × w is the number of patches, we first apply a
Layer Normalization (LN) operation to normalize the input
Xin as X0, then, a PoolAttn module is used for calculating
the attention based on the squeezed 2D features.

A graphical illustration of the procedures of the patch-
wise pooling attention and the embed-wise pooling atten-
tion is presented in Fig. 6. We suppose the number of
patches is h × w = 2 × 2 and the embedding dimension
for each patch is D = 3 × 3 = 9 in this simple illustra-
tion. Unlike the conventional attention block that all the
patches are reordered as a sequence and the embedded fea-
tures of each patch are flattened, we preserve the patch’s
spatial structure before applying the patch-wise pooling at-
tention. Similarly, for each patch, we maintain the 2D spa-
tial embedded features representation (without flattening to
1D features) before applying embed-wise pooling attention.

For the patch-wise pooling attention, we squeeze the
X0 along the h−axis andw−axis by two average pooling
layers (Pool1 and Pool2), returning the XPh ∈ RD×h×1

and the XPw ∈ RD×1×w. The matrix multiplication (Mat-
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Figure 6. The illustration of the patch-wise pooling attention and the embed-wise pooling attention. The conventional attention blocks not
only reorder all the patches as a sequence, but also flatten the embedded features of each patch to 1D features. For patch-wise attention, we
preserve the patch’s spatial structure, then apply pooling attention to capture the correlations between all the patches. For the embed-wise
attention, we maintain the spatial structure of 2D embedded features for each patch, then apply pooling attention to model the correlations
between the embedding dimensions.

Mul) results of these 2D featuresXPh andXPw is the patch
attention, named X1 ∈ RD×h×w.

XPh = Pool1(X0), XPh ∈ RD×h×1 (1)

XPw = Pool2(X0), XPw ∈ RD×1×w (2)
X1 =MatMul(Xph, Xpw) (3)

Previous transformer-based methods only model the at-
tention given the number of patches. We further exploit
the correlation given the embedding dimensions. For the
embed-wise pooling attention, we reshape the X0 ∈
RD×h×w as the X ′0 ∈ RN×Dh×Dw , where N = h × w
and D = Dh × Dw. Similarly, we squeeze the X ′0 along
the Dh − axis and Dw − axis by two average pool-
ing layers (Pool3 and Pool4). The squeezed 2D features
XPDh ∈ RN×Dh×1 and the XPDw ∈ RN×1×Dw are used
for compute the embedding attention X2 ∈ RN×Dh×Dw by
the matrix multiplication.

XPDh = Pool3(X
′
0), XPDh ∈ RN×Dh×1 (4)

XPDw = Pool4(X
′
0), XPDw ∈ RN×1×Dw (5)

X2 =MatMul(XPDh, XPDw) (6)

Next, the embedding attention X2 is reshaped back
to X3 ∈ RD×h×w. A projection layer (implemented
by a CONV layer, same as in [41]) projects the sum of
patch attention X1 and the embedding attention X3 as the
PoolAttn’s output.

X
′

3 = Proj3(Proj1(X1) + Proj2(X3)) (7)

Thus, the patch-wise pooling attention preserves the
patch’s spatial locations when capturing the correlations be-
tween all the patches. In the meantime, the embed-wise
pooling attention maintains the spatial embedded features
representation for each patch when modeling the correspon-
dences of embedded features. Compared with the simple
pooling module in PoolFormer [41], the PoolAttn module
boosts the performance by a large margin without increas-
ing memory and computational cost which is verified in
Section 4.3.

With the PoolAttn module, one PAT block returns the
output Xout given the block’s input Xin, and can be ex-
pressed as:

Xattn = PoolAttn(LN(Xin)) +Xin (8)
Xout =MLP (LN(Xattn)) +Xattn (9)
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Our PoolAttn operation significantly reduces the computa-
tional and memory costs of the PAT. The detailed param-
eters and MACs comparison of one PoolAttn module is
shown in the Supplementary C. For instance, the input is
with the shape of [512, 16, 16] where the embedding dimen-
sion is 512 and the number of patches is 16 × 16 = 196.
One attention block such as in ViT or Swin requires 1.1M
params and 180M MACs, while our PoolAttn only requires
0.02M params (2%) and 4M MACs (2%) without down-
grading the performance.

3.3. High-Resolution Stream

Different from the general hierarchical transformer ar-
chitecture, the output of “stage 1” Xout1 is also used by the
HR streams as shown in Fig .4. For the HR stream, we aim
to maintain the high-resolution features which are critical
for the HMR task. Thus, we do not need a patch merg-
ing layer to merge the patches, which downgrades the high-
resolution representation to the low-resolution representa-
tion. Instead, we aggregate the information from the basic
stream to the HR stream. The patch split layer can con-
vert the merged patches Xbasic

out2 back to the high-resolution
patches.

During the basic stream (which is the architecture
of Swin [22] equipped with our PAT block), the high-
resolution and local features gradually become the low-
resolution and global features. Thus, it is served as the
general vision backbone (usually for the classification task).
To reconstruct human mesh, global features from the ba-
sic stream are aggregated with the local features in the HR
stream, returning high-resolution local and global features.
The input of the transformer block of each stage during the
HR stream can be expressed as:

XHR
out i+1 = PatchSplit(Xbasic

out i ) +XHR
out i (10)

Thus, the output for the i stage is XHR
out i ∈ RD1×H

4 ×
W
4 ,

where the total number of patches is always H
4 ×

W
4 = HW

16 .
Finally, the high-resolution features containing both local
and global information are utilized for HMR.

4. Experiments
First, we evaluate the effectiveness of our PAT block

for the vision transformer backbone, which means we train
POTTER without the HR stream for the classification task
on ImageNet. The pretrained weights on ImageNet can be
used as a good initialization for downstream tasks such as
HMR. Next, we train the entire POTTER (with HR stream,
as shown in Fig. 4) for reconstructing human mesh.

4.1. Image Classification

The framework of POTTER without HR stream for the
image classification (named POTTER cls) is shown in Fig.
7 where PAT is utilized as the transformer block.

Dataset and Implementation Details: ImageNet-1k is
one of the most commonly used datasets for computer vi-
sion tasks, which consists of 1.3M training images and 50K
validation images within 1k classes.

We follow the same training scheme as [34, 41]. Our
models are trained for 300 epochs with peak learning rate
lr = 2e−3 and batch size of 1024. AdamW [12] optimizer
with cosine learning rate schedule is adopted. We use the
same Layer Normalization as implemented in [34]. More
details are provided in the Supplementary D.

Table 1. Performance of different types of models on ImageNet-
1k classification task. All these models are only trained on the
ImageNet1k training set. The top-1 accuracy on the validation set
is reported in this table. More results comparisons are provided in
the Supplementary D.

Image Size Params (M) MACs (G) Top-1 Acc ↑
ViT-L/16 [5] 224 307 190.7 76.5

RSB-ResNet-18 [38] 224 12 1.8 70.6
RSB-ResNet-34 [38] 224 22 3.7 75.5

PVT-Tiny [37] 224 13 1.9 75.1
MLP-Mixer-B/16 [31] 224 59 12.7 76.4

ResMLP-S12 [33] 224 15 3.0 76.6
PoolFormer-S12 [41] 224 12 1.8 77.2

POTTER cls 224 12 1.8 79.0
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Figure 7. The framework for image classification.

Results: The performance of POTTER cls on ImageNet
is reported in Table 1. As a small network focusing on ef-
ficiency, POTTER cls achieves superior performance with
only 12M parameters and 1.8G MACs compared with the
commonly-used CNN and transformer-based models. The
CNN model RSB-ResNet-34 [38] (ResNet [7] trained with
improved training procedure for 300 epochs) only achieves
75.5 % of the top-1 accuracy. The transformer-based meth-
ods with small params and MACs such as PVT-tiny [37],
MLP-Mixer-S12 [31], and PoolFormer-S12 [41] obtain the
top-1 accuracy around 75.1 % - 77.2 %. Our POTTER cls
outperforms them by achieving 79.0 % of top-1 accuracy
with fewer Params and MACs. PoolFormer [41] demon-
strates that using an extremely simple pooling layer with-
out attention design as a patch mixer can still achieve
highly competitive performance. We claim that an effi-
cient pooling-based attention mechanism can further boost
performance. With our PoolAttn design, POTTER cls out-
performs PoolFormer-S12 by 1.8% without increasing the
memory and computational costs. Thus, POTTER has the
potential to enhance other tasks, including HMR.

4.2. HMR

After pretaining on the ImageNet with POTTER cls, we
load the pretrained weight and train the entire network POT-
TER with the architecture illustrated in Fig. 4 for the HMR
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Table 2. 3D Pose and Mesh performance comparison with SOTA methods on Human3.6M [8] and 3DPW [36] datasets. The “*” indicates
that HybrIK [17] uses ResNet34 as the backbone and with predicted camera parameters. The comparison with [42] is provided in the
Supplementary D.

Human3.6M 3DPW
Model Year Params(M) MACs(G) MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓ MPVE ↓

CNN-based

HMR [10] CVPR 2018 - - 88.0 56.8 130.0 76.7 -
GraphCMR [15] CVPR 2019 - - - 50.1 - 70.2 -

SPIN [14] ICCV 2019 - - 62.5 41.1 96.9 59.2 116.4
VIBE [13] CVPR 2020 - - 65.6 41.4 82.9 51.9 99.1

I2LMeshNet [28] ECCV 2020 140.5 36.6 55.7 41.1 93.2 57.7 -
HybrIK* [17] CVPR2021 27.6 12.7 57.3 36.2 75.3 45.2 87.9
ProHMR [16] ICCV 2021 - - - 41.2 - 59.8 -
PyMAF [44] ICCV 2021 45.2 10.6 57.7 40.5 92.8 58.9 110.1

DSR [6] ICCV 2021 - - 60.9 40.3 85.7 51.7 99.5
OCHMR [11] CVPR 2022 - - - - 89.7 58.3 107.1

Transformer
-based

METRO [18] CVPR 2021 229.2 56.6 54.0 36.7 77.1 47.9 88.2
GTRS [46] ACM MM 2022 71.5 3.8 64.3 45.4 88.5 58.9 106.2

TCFormer [43] CVPR 2022 - - 62.9 42.8 80.6 49.3 -
FastMETRO-S [3] ECCV 2022 32.7 8.9 57.7 39.4 79.6 49.3 91.9
FastMETRO-L [3] ECCV 2022 48.5 11.8 53.9 37.3 77.9 48.3 90.6

POTTER 16.3 7.8 56.5 35.1 75.0 44.8 87.4

task. An HMR head HybrIK [17] is applied for generating
the final human mesh.

Dataset and Implementation Details: Human3.6M [8]
is one of the commonly used datasets with the indoor set-
ting which consists of 3.6M video frames performed by
11 actors. Following [14, 18, 28, 43], there are 5 subjects
(S1, S5, S6, S7, S8) used for training and 2 subjects (S9,
S11) used for testing. 3DPW [36] a widely used outdoor
dataset that contains 60 video sequences with 51k frames.
Unlike Human3.6M which only provides the annotation of
key joints, accurate 3D mesh annotation is available for the
3DPW. Thus, we evaluate the Mean Per Joint Position Error
(MPJPE) [30] and MPJPE after Procrustes Alignment (PA-
MPJPE) [30] on Human3.6M. For 3DPW, we report the
MPJPE, PA-MPJPE, and e Mean Per Vertex Error (MPVE).
Following previous work [3, 17–19], Human3.6M, MPI-
INF-3DHP [26], COCO [21], and 3DPW are used for mixed
training. We train our POTTER with the architecture illus-
trated in Fig. 4. The Adam [12] optimizer is utilized for
training where the learning rate is 1 × 10−3 with a batch
size of 32. All experiments are conducted on four NVIDIA
RTX5000 GPUs with Pytorch [29] implementation. The
3D joint loss and vertex loss are applied during the training.
More implementation details are provided in the Supple-
mentary D.

Results: Table 2 compares POTTER with previous
SOTA methods for the HMR task on Human3.6M and
3DPW datasets. As a pure transformer architecture, POT-
TER outperforms the previous transformer-based SOTA
method METRO [18] (a hybrid CNN+transformer architec-
ture) by showing significant computational and memory re-
duction. To be more specific, POTTER only requires 16.3
M Params and 7.8 G MACs (7% of Params and 14%
MACs compared with METRO) to achieve the new SOTA
performance. Although FastMETRO [3] reduces the com-
putational and memory costs of METRO, it is still much

more expensive than our POTTER with worse performance.
Without bells and whistles, POTTER demonstrates its ex-
ceptional performance both in terms of mesh recovery ac-
curacy and model efficiency.

Input Image Mesh Different views

Figure 8. Mesh visualizations of POTTER. Images are taken from
Human3.6M, 3DPW, and COCO datasets.

Mesh visualization: We show qualitative results of
POTTER on Human3.6M, 3DPW, and COCO dataset in
Fig. 8. POTTER can estimate reliable human poses and
meshes given various input images. More qualitative results
are presented in the Supplementary B.

4.3. Ablation Study

Effectiveness of Pooling Attention Design: First, we
verify the effectiveness of the PoolAttn module proposed in
Section 3.2. We report the top-1 accuracy using the differ-
ent block combinations on the ImageNet classification task.
“Pooling” denotes that only a pooling layer is used without
any pooling attention design (which is the exact architecture
of the PoolFormer [41]). The top-1 accuracy is 77.2 % with
11.9 M Params and 1.79 G MACs. When only applying

7



patch-wise pooling attention, the performance is improved
by 1.5 % with almost the same Params and MACs. Sim-
ilarly, when only applying embed-wise pooling attention,
the performance is also improved by 1.3 % with a slight in-
crease in the Params and MACs. For our PoolAttn module
which integrates two types of pooling attention, the perfor-
mance is further boosted by 1.8 %, which demonstrates the
effectiveness of the PoolAttn in the backbone.

Table 3. Ablation study of different modules in the transformer
block on ImageNet classification.

Module Params(M) MACs(G) Top-1 Acc ↑
Pooling 11.9 1.79 77.2

Patch-Wise Pooling Attention 12.0 1.82 78.7
Embed-Wise Pooling Attention 12.2 1.83 78.5

PoolAttn (Patch-Wise and Embed-Wise) 12.4 1.84 79.0

Table 4. Ablation study of different modules in the transformer
block on 3DPW dataset for HMR.

3DPW
Module Params(M) MACs(G) MPJPE ↓ PA-MPJPE ↓ MPVE ↓
Pooling 15.9 7.7 77.3 47.4 89.9
PoolAttn 16.3 7.8 75.0 44.8 87.4

Next, we evaluate the effectiveness of the PoolAttn on
the HMR task. As shown in Table 4, replacing the pooling
block (PoolFormer’s architecture) by our PoolAttn, the per-
formance of all metrics (MPJPE, PA-MPJPE, and MPVE)
on 3DPW dataset can be improved. The increase in memory
and computational cost can be neglected. Thus, PoolAttn
design is critical for efficient HMR with high accuracy.

with Pooling with PoolAttnInput Image

Figure 9. The visual comparison between applying the Pooling
layer and PoolAttn layer. The red circles highlight locations where
PoolAttn is more accurate than Pooling.

We also show the visualization of using the Pooling layer
compared with using PoolAttn layer in Fig. 9. The ar-
eas highlighted by red circles indicate that PoolAttn outputs
more accurate meshes than Pooling.

Effectiveness of HR stream: We investigate the use of
the HR stream in Table 5. If we use the Pooling block
in transformer (PoolFormer’s architecture [41]), the results
can be improved by a large margin (3.8 of MPJPE, 2.1 of
PA-MPJPE, and 3.6 of MPVE) when adding the HR stream.

If we apply our PoolAttn module in transformer (our PAT
design), the HR stream can also boost the performance no-
tably (2.8 of MPJPE, 0.8 of PA-MPJPE, and 2.4 of MPVE).

without HR Stream with HR StreamInput Image

Figure 10. The visual comparison between with HR stream and
without HR stream. The red circles highlight locations where
POTTER with HR stream is more accurate.

We further compare the mesh visualization of POTTER
(with HR stream) and without HR stream as shown in Fig.
10. The areas highlighted by red circles indicate that the HR
stream can improve the quality of the reconstructed mesh.

Table 5. Ablation study of the HR stream in the transformer archi-
tecture on 3DPW dataset for HMR.

3DPW
Block Architecture MPJPE ↓ PA-MPJPE ↓ MPVE ↓

Pooling Without HR-stream 81.1 49.5 93.5
With HR-stream 77.3 47.4 89.9

PoolAttn Without HR-stream 77.8 45.6 89.8
With HR-stream 75.0 44.8 87.4

5. Conclusion
In this paper, we present POTTER, a pure transformer-

based architecture for efficient HMR. A Pooling Attention
Transformer block is proposed to reduce the memory and
computational cost without sacrificing performance. More-
over, an HR stream in the transformer architecture is pro-
posed to return high-resolution local and global features for
the HMR task. Extensive experiments show that POTTER
achieves SOTA performance on challenging HMR datasets
while significantly reducing the computational cost.

As an image-based method, one limitation is that POT-
TER can not fully exploit the temporal information given
video sequences input. We will extend POTTER to a video-
based version that can output smooth 3D motion with better
temporal consistency.

Acknowledgement: This work is supported by gift
funding from OPPO Research.
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Supplementary Material
In this supplementary material, we provide the following

sections:

• Section A: Broader Impact and Limitations.

• Section B: Human Mesh Visualization on in-the-wild
data.

• Section C: Memory and Computational Costs of One
PAT Block.

• Section D: More Experiments (image classification
and HMR) and Implementation Details.

• Section E: Generalization to 3D Hand Reconstruction

A. Broader Impact and Limitations
We anticipate that our POTTER can be used for

widespread applications such as motion capture in anima-
tion and movies, virtual AI assistants, and VR/AR content.
Currently, motion capture devices are mandatory for these
applications, which are usually expensive, time-consuming,
and complicated to set up. In contrast, one of the biggest
advantages of our method is that POTTER can reconstruct
3D human mesh directly from 2D images/videos without
extra devices. With the reliable reconstructing quality as
depicted in Section B, POTTER shows a promising impact
as a lightweight model for real-world applications.

There are also a few limitations of POTTER. Although
POTTER can estimate reliable human mesh for in-the-wild
scenarios, the performance would be downgraded when a
severe occlusion exists. Another challenge is POTTER may
fail for the rare and complicated pose scenarios due to lim-
ited training data. We will tackle these issues in future work.

B. Human Mesh Visualization on in-the-wild
data

POTTER achieves superior performance on Human3.6M
[8] and 3DPW [36] datasets as described in the main paper.
However, it is critical to evaluate the actual performance
of our POTTER on in-the-wild data. Reconstructing accu-
rate human mesh on in-the-wild data is an extremely chal-
lenging task due to the different human shapes, scales, pose
variations, and backgrounds from the training data.

In Fig. 11, we show the qualitative comparison with
SOTA transformer-based method METRO [18] in this
challenging scenarios (images are taken from in-the-wild
dataset COCO [21]). Following METRO, we use the SMPL
gender-neutral model [25] for all visualization. Our POT-
TER clearly outperforms METRO in many challenging
cases, where the red circles highlight the area where POT-
TER is more accurate than METRO.

As an image-based method, POTTER can also recon-
struct human mesh sequences given the input videos. In
Fig. 12, we select several frames of the reconstructed hu-
man mesh to illustrate the performance of POTTER. We
also provide the video demo of the entire reconstructed se-
quence in the supplementary material, which demonstrates
the effectiveness of POTTER given the in-the-wild videos.

Since POTTER is a data-driven approach, the perfor-
mance can not be guaranteed if the image is very different
from the training data (i.e. data distribution shift), such as
complicated pose and heavy occlusion (see Fig. 13 for an
example). How to tackle these issues would be our future
work. One potential solution is to use the domain adapta-
tion method to make the trained model adapt to the target
domain for better mesh recovery.

Table 6. Total parameters and MACs of one PAT block.
Layer Params MACs

PAT

PoolAttn

Patch-wise

Pooling1

10D 9DN
Pooling2

MatMul

Proj1

Embed-wise

Pooling3

10D 9DN
Pooling4

MatMul

Proj2

Projection Proj3 10D 9DN

FFN
MLP1 4D2 4D2N

MLP2 4D2 4D2N

C. Memory and Computational Costs of One
PAT Block

To achieve model efficiency, one PAT block in the pro-
posed method consists of one PoolAttn module with a Feed-
forward Network (FFN). For the layers such as pooling,
layer normalization, and matrix multiplication operations
for the squeezed features, the required memory and compu-
tational costs can be ignored when compared with the pro-
jection or FFN layer. Thus, The total parameters and MACs
of one PAT block given the input [D,h,w] can be estimated
as in Table 6, where the number of patches N = h× w. To
save the memory and computational costs, we utilize depth-
wise convolution [4] served as the “Proj1”, “Proj2”, and
“Proj3”. The PoolAttn only requires 10D params and 9DN
MACs. Compared with the conventional attention module
which requires (4D2 + 4D) params and (4DN2 + 2D2N)
MACs, our PoolAttn significantly reduce the complexity
from O(D2) to O(D).
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Image POTTER(ours) METRO

back side

Image POTTER(ours) METRO

Figure 11. Qualitative comparison with SOTA transformer-based method METRO [18]. The red circles highlight regions where our
POTTER generates more accurate mesh recoveries than METRO. Images are taken from the in-the-wild COCO [21] dataset.

D. More Experiments and Implementation De-
tails

D.1. Image Classification

For the image classification task, we follow the same
training scheme as PoolFormer [41]. Our model POT-
TER cls is trained for 300 epochs with a cosine learning
rate schedule (The number of warm-up epochs is 5). The
AdamW optimizer [12] is used with weight decay 0.05 and
peak learning rate lr = 1e−3 and batch size 1024. The in-
put image is with the size of [224, 224]. For POTTER cls,
the number of blocks for each stage is [2,2,6,2], which is
the same as PoolFormer-S12. POTTER cls outperforms
PoolFormer-S12 by 1.8 % without increasing the memory

and computational costs.
To further verify that our pooling attention design can

significantly reduce the memory and computational cost
without sacrificing performance, we increase the num-
ber of blocks for each stage as [4,4,12,4], named POT-
TER cls S24. The result is shown in Table 7. With the same
hierarchical architecture, POTTER cls S24 (with PoolAttn)
surpasses Swin-Tiny (with conventional attention) by re-
quiring 72% of Params and 78% of MACs.

D.2. Human Mesh Recovery

For HMR task, the SMPL model [25] is utilized for re-
constructing human mesh. Given the predicted pose param-
eters θ and the shape parameters β, the SMPL model can
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Figure 12. Qualitative results of using POTTER to reconstruct human mesh from an in-the-wild video. Although POTTER is an image-
based method, the frame-by-frame reconstruction still works well. Please refer to our video demo for the reconstructed mesh sequences.

Image Failure Mesh Image Failure Mesh

Figure 13. Failure cases. POTTER may not perform well due to
severe occlusion.

Table 7. Performance of different types of models on ImageNet-
1K classification task. All these models are only trained on the
ImageNet1K training set. The top-1 accuracy on the validation set
is reported in this table.

Image Size Params (M) MACs (G) Top-1 Acc ↑
RSB-ResNet-50 [38] 224 26 4.1 79.8

DeiT-S [38] 224 22 4.6 79.8
MLP-Mixer-B/16 [31] 224 59 12.7 76.4

PVT-Small [37] 224 25 3.8 79.8
ResMLP-S24 [41] 224 30 6.0 79.4

PoolFormer-S24 [41] 224 21 3.4 80.3
Swin-Mixer-T/D6 [22] 224 23 4.0 79.7

Swin-Tiny [22] 224 29 4.5 81.3
POTTER cls S24 224 21 3.5 81.4

return the body mesh M ∈ RN×3 with N = 6890 ver-
tices by the function M = SMPL(θ, β). After obtain-
ing the body mesh M , the body joints J can be regressed

by the predefined joint regression matrix W , which means
J ∈ Rk×3 = W ·M , where k is the number of joints. The
overall loss during the HMR task can be defined as:

LHMR = w1‖β − β∗‖+ w2‖θ − θ∗‖+ w3‖J − J∗‖
(11)

where * denote the ground-truth value. In our experiments,
we set w1 = 0.01, w2 = 0.01, and w3 = 1.

Our POTTER is trained for 80 epochs with a step learn-
ing rate schedule with lr = 5e − 4 and lrdecay = 0.1. The
Adam [12] optimizer is utilized for training and the batch
size is 32. The input image is resized to 256 × 256. We
show more qualitative results for POTTER on images from
Human3.6M and 3DPW datasets in Fig. 15.

Specifically, we compare our POTTER with THUNDR
[42] in Table 8. Since the code of THUNDR is not released,
we are unable to compute the MACs. POTTER achieves
on-par results compared with THUNDR with 65 % of to-
tal parameters as shown in table 8. We also notice that
THUNDR uses the more recent GHUM Model for the hu-
man mesh regression, while our POTTER and other meth-
ods such as SPIN [14], DSR [6], and TCFormer [43] use
the SMPL Model for human mesh regression. This might
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Figure 14. Qualitative results of our POTTER for reconstructing hand mesh.

be the reason that THUNDR achieves better performance.

Table 8. 3D Pose and Mesh performance comparison with SOTA
methods on Human3.6M and 3DPW datasets.

Human3.6M 3DPW
Params (M) MACs (G) MPJPE PA-MPJPE MPJPE PA-MPJPE MPVE

METRO 229.2 56.6 54.0 36.7 77.1 47.9 88.2
THUNDR 25 - 48.0 34.9 74.8 51.5 88.0
POTTER 16.3 7.8 56.5 35.1 75.0 44.8 87.4

E. Generalization to 3D Hand Reconstruction

POTTER can be also generalized for other mesh recon-
struction tasks such as 3D hand reconstruction. To demon-
strate this capability, we conduct the experiment on the hand
mesh dataset FreiHand [50]. Without involving extra train-
ing data, POTTER can reconstruct reliable hand mesh. Un-
fortunately, due to the FreiHand online evaluation server be-
ing closed (The CodaLab website announced that the server
is no longer accepting new challenges not new submissions
to old challenges), we are not able to report the test results.
Here we provide the hand mesh visualization of POTTER
in Fig. 14, which demonstrate that POTTER can generalize
well for other tasks such as hand mesh reconstruction.

Input Image Human Mesh Input Image Human Mesh

Figure 15. More qualitative results of our POTTER for HMR.
Images are taken from Human3.6M and 3DPW datasets
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