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Abstract

Most of the existing blind image Super-Resolution (SR)
methods assume that the blur kernels are space-invariant.
However, the blur involved in real applications are usu-
ally space-variant due to object motion, out-of-focus, etc.,
resulting in severe performance drop of the advanced SR
methods. To address this problem, we firstly introduce two
new datasets with out-of-focus blur, i.e., NYUv2-BSR and
Cityscapes-BSR, to support further researches of blind SR
with space-variant blur. Based on the datasets, we design a
novel Cross-MOdal fuSion network (CMOS) that estimate
both blur and semantics simultaneously, which leads to im-
proved SR results. It involves a feature Grouping Interac-
tive Attention (GIA) module to make the two modalities in-
teract more effectively and avoid inconsistency. GIA can
also be used for the interaction of other features because
of the universality of its structure. Qualitative and quanti-
tative experiments compared with state-of-the-art methods
on above datasets and real-world images demonstrate the
superiority of our method, e.g., obtaining PSNR/SSIM by
+1.91↑/+0.0048↑ on NYUv2-BSR than MANet1.

1. Introduction
Blind image SR, with the aim of reconstructing High-

Resolution (HR) images from Low-Resolution (LR) images
with unknown degradations, has attracted great attention
due to its significance for practical use [2,5,6,12,15,22–24,
29]. Two degradation models, bicubic downsampling [35]
and traditional degradation [26,32], are usually used to gen-
erate LR images from HR images. The latter can be mod-
eled by:

y = (x
⊗

k) ↓s +n. (1)

It assumes the LR image y is obtained by first convolving
the HR image x with a blur kernel k, followed by a down-

*Equal contribution.
†Corresponding author.
1https://github.com/ByChelsea/CMOS.git
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Figure 1. SR results of KernelGAN [1], DCLS [28] and the pro-
posed CMOS on a space-variant blurred LR image. For Kernel-
GAN and DCLS, patches are blurry in the first row and have arti-
facts in the second row, while CMOS performs well in both cases.

sampling operation with scale factor s and an addition of
noise n. On top of that, some works [38, 48] propose more
complex and realistic degradation models, which also as-
sume that blur is space-invariant. However, in real-world
applications, blur usually changes spatially due to factors
such as out-of-focus and object motion, so that the mis-
matches will greatly degrade the performance of existing
SR methods. Fig. 1 gives an example when the LR image
suffers from space-variant blur. Since both KernelGAN [1]
and DCLS [28] estimate only one blur kernel for an image,
there are a lot of mismatches. In the first row of Fig. 1,
where the kernel estimated by the two methods are sharper
than the real one of the patch, SR results are over smoothing
and high frequency textures are significantly blurred. In the
second row, where the kernels estimated are smoother than
the correct one, SR results show ringing artifacts caused by
over-enhancing high-frequency edges. This phenomenon il-
lustrates that mismatch of blur will significantly affect SR
results, leading to unnatural outputs. In this paper, we fo-
cus on the space-variant blur estimation to ensure that the
estimated kernel is correct for each pixel in the images.

A few recent works [15,23,43] have taken space-variant
blur into account. Among them, MANet [23] is the most
representative model, which assumes that blur is space-
invariant within a small patch. Based on this, MANet uses a
moderate receptive field to keep the locality of degradations.
However, there are still two critical issues. 1) Because there
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Figure 2. A condition in which blur and semantic information are
inconsistent. This image comes from our dataset NYUv2-BSR.

is no available dataset containing space-variant blur in SR
field, MANet is trained on space-invariant images, resulting
in blur deviation of the training and testing phase. 2) Even
limiting the size of the receptive field, the estimation results
are still poor at the boundaries of different kernels, leading
to mean value prediction of space-variant blur.

To address the aforementioned challenges, we first in-
troduce a new degradation method and propose two corre-
sponding datasets, i.e., NYUv2-BSR and Cityscapes-BSR
to support relevant researches of space-variant blur in the
SR domain. As a preliminary exploration, out-of-focus blur
is studied as an example in this paper and it is generated
according to the depth of the objects using the method pro-
posed in [19]. Besides, we also add some space-invariant
blur into the datasets so that the models trained on them can
cope with both spatially variant and invariant situations.

Furthermore, to improve the performance at the bound-
aries of different blur regions, we present a novel model
named Cross-MOdal fuSion network (CMOS). Our intu-
ition is that the sharp semantic edges are usually aligned
with out-of-focus blur boundaries and it can help to distin-
guish different blur amounts. This raises a critical concern
that how to effectively introduce semantics into the process.
Specifically, we firstly predict blur and semantics simulta-
neously instead of using the semantics as an extra input,
which not only avoids using extra information during test
phase, but also enables non-blind SR methods to recover
finer textures with the two modalities. Secondly, to enhance
accuracy at the blur boundaries, we conduct interaction be-
tween the semantic and blur features for complementary in-
formation learning inspired by multi-task learning [36, 42].
However, in some cases these two modalities are inconsis-
tent. As shown in Fig. 2, the wall and the picture on it are
completely different in the semantic map, with clear bound-
aries. But the depth of them are almost the same, so the blur
amounts depending on depth are also very similar. In this
case, not only can the two modalities fail to use common
features, but they can also negatively influence each other.
Besides, since we add some space-invariant blurred images
with uniform blur maps in the datasets, it will also greatly
increase the inconsistency.

Motivated by these observations, we propose a feature
Grouping Interactive Attention (GIA) module to help the
interaction of the two modalities. GIA has two parallel

streams: one operating along the spatial dimension and the
other along the channel dimension. Both streams employ
group interactions to process the input features and make
adjustments. Moreover, GIA has an upsampling layer based
on the flow field [21] to support inputs of different resolu-
tions. Its universal structure allows it to be used for more
than just interactions between the two modalities.

The main contributions of this work are as follows:

• To support researches on space-variant blur in the
field of SR, we introduce a new degradation model of
out-of-focus blur and propose two new datasets, i.e.,
NYUv2-BSR and Cityscapes-BSR.

• We design a novel model called CMOS for estimating
space-variant blur, which leverages extra semantic in-
formation to improve the accuracy of blur prediction.
The proposed GIA module is used to make the two
modalities interact effectively. Note that GIA is uni-
versal and can be used between any two features.

• Combined with existing non-blind SR models, CMOS
can estimate both space-variant and space-invariant
blur and achieve SOTA SR performance in both cases.

2. Related Work
2.1. Degradation Model

SR methods give rise to poor performance if the as-
sumed degradation deviates from those in reality. Many
works [4, 45, 49] use the traditional model (Eq. 1) to gen-
erate their training data. Compared to bicubic downsam-
pling [40, 50], although traditional model has taken more
factors into account, it is still too simple to simulate real
degradation. Consequently, Real-ESRGAN [38] proposes
a flexible high-order degradation model by applying tradi-
tional model repeatedly, while BSRGAN [48] adjusts the
degradation order of the traditional model and use randomly
shuffled blur, downsampling and noise. Liang et al. [23]
go a step further to simulate space-variant blur by dividing
images into patches and applying different kernels. Unfor-
tunately, it cannot well simulate the real situations. As a
result, to support relevant researches, we introduce space-
variant out-of-focus blur into SR, and propose two corre-
sponding datasets, i.e., NYUv2-BSR and Cityscapes-BSR.

2.2. Kernel Estimation

One of the mainstream methods of blind SR is to esti-
mate degradation first and then use it as prior information
for non-blind SR. KernelGAN [1] proposes to learn a ker-
nel from the internal distribution of image patches, while
IKC [6] uses an iterative correction scheme to learn the PCA
features of kernels. Luo et al. [28] transfer blur estimation
into LR space and learn kernel weights instead of kernel it-
self. However, these methods only estimate a unique kernel,
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Figure 3. Original RGB images, the generated out-of-focus images and blur maps. The changes from dark to light in blur maps indicate
that the corresponding out-of-focus image changes from clear to blur. The first three columns are images from NYUv2-BSR, and the last
three columns are images from Cityscapes-BSR.

thus the performance will be significantly reduced on space-
variant situations. Accordingly, KOALAnet [15] proposes
to learn specific kernels for each pixel, and MANet [23] de-
signs a network with moderate receptive field to adapt to
the locality of degradation. However, they still have limi-
tations, such as the moderate receptive field might limit the
capacity of the model. By contrast, with the help of seman-
tic information, our CMOS can predict space-variant blur
effectively and accurately.

2.3. Non-blind SR

Non-blind SR aims to restore images with known degra-
dations. Early non-blind SR methods [13, 14, 18, 25] are
based on bicubic downsampling, which struggle to general-
ize to images with more complex degradations. To address
this problem, SRMD [49] first proposes to stretch the blur
and noise to the size of LR images, and take the concate-
nated images and degradation maps as input to restore the
HR counterparts. Following SRMD, SFTMD [6] uses SFT
layer [39] to combine the stretching degradation maps in-
stead of simply concatenation, while UDVD [44] employs
per-pixel dynamic convolution to more effectively deal with
variational degradations across images. Besides, zero-shot
methods [11, 32, 34] have also been investigated in non-
blind SR with multiple degradations. What is noteworthy is
that our CMOS can be easily combined with most non-blind
SR methods to achieve excellent blind SR performance.

3. The Proposed Datasets
To support researches on space-variant blur, we pro-

pose two novel datasets, NYUv2-BSR and Cityscapes-
BSR, where BSR stands for Blind image SR. To the best
of our knowledge, we are the first to introduce out-of-focus,
one of the most common space-variant blur in real world,
into blind image SR. Out-of-focus is caused by differences
in depth. Every point that is not in the plane of focus corre-

Dataset
NYUv2-BSR Cityscapes-BSR

VA IVA Total VA IVA Total
Train 636 159 795 2380 595 2975
Val - - - 400 100 500
Test 524 130 654 1220 305 1525

Table 1. Details of NYUv2-BSR and Cityscapes-BSR. VA and
IVA represents the number of images with space-variant out-of-
focus blur and space-invariant blur respectively.

sponds to a Circle Of Confusion (COC) in image plane. The
blur can be simulated by isotropic Gaussian kernels with
standard deviation σ related to the diameters of COCs [17],
which can be calculated using thin lens model [30]. We em-
ploy the method proposed in [19] to blur the images and the
ground truth blur map is constructed by σ of each pixel.

As mentioned above, we need depth-color image pairs
to generate images with out-of-focus blur. Thus, we se-
lect NYUv2 [33] and Cityscapes [3] as original datasets.
NYUv2 is an indoor dataset. It contains 1449 pairs of RGB
and depth images, in which 795 pairs are used for train-
ing and the rest 654 for testing. Cityscapes is an outdoor
dataset and the fine-annotated part consists of training, vali-
dation and test sets containing 2975, 500, and 1525 images,
respectively. Since the depth maps in Cityscapes contain in-
valid measurements, which are not conducive to the genera-
tion of out-of-focus images, we use CREStereo [20], a deep
learning-based stereo matching method, to generate dispar-
ity maps and calculate the corresponding depth maps based
on the camera parameters. Fig. 3 shows the original RGB
images of NYUv2 and Cityscapes, as well as the generated
out-of-focus images and corresponding blur maps.

In terms of parameters of the isotropic Gaussian kernels,
the kernel width range is set to [0.0, 5.0] and [0.0, 15.0] for
NYUv2 and Cityscapes, respectively. The kernel size is
fixed to 21 × 21 and 61 × 61, and the downsampling scale
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(a) Overview of the proposed CMOS (b) Sturcture of GIA module

Figure 4. Architecture of CMOS and GIA. (a) Given an LR image, CMOS outputs the estimated blur map B and semantic map S
simultaneously in the HR space. (b) GIA has two parallel streams to effectively interact features in both spatial and channel dimensions.
It includes a flow-based upsample module to support inputs with different resolutions. If the input resolutions are the same, a feature
alignment will also be performed through the learned flow field.

factor is set to 4. Besides, 1/4 of the images are blurred
by space-invariant kernels, so that the models trained on
the datasets are not limited by the space-variant situations.
Tab. 1 shows the details. In addition, to ensure the adequacy
and fairness of experiments, we created five test groups for
each dataset, in which each group had a different 1/4 of the
images blurred by space-invariant kernels.

4. Method
As stated before, sharp semantic edges can increase the

accuracy of space-variant blur estimation near the bound-
aries. Motivated by this, we propose a Cross-MOdal fuSion
network (CMOS) to predict both blur and semantic maps
simultaneously by mutual supervision of them.

4.1. Overview

Inspired by [36], CMOS is a multi-scale network, which
consists of three main stages, as shown in Fig. 4. In the
first stage, a fully convolutional encoder capable of gener-
ating multi-scale features is used to extract deep features{
F 0,F 1, · · · ,F n

}
. In the next stage, for each scale i, we

apply two task-specific heads, headib and headi
s, to predict

initial blur and semantic features F i
blur and F i

seg . Then, we
use a proposed GIAi

m module to achieve effective informa-
tion interaction between the two modalities to obtain more
accurate features F̂

i

blur and F̂
i

seg in a mutually supervised
manner, formulated as:

F i
blur = headib(F

i
b), (2)

F i
seg = headis(F

i
s), (3)

F̂
i

blur, F̂
i

seg = GIAi
m(F i

blur,F
i
seg), (4)

where F i
b and F i

s denotes the input of the task-specific
heads. To make better use of the multi-scale information,

we use GIAi
b and GIAi

s to fuse the adjacent low-scale fea-
tures, so the input of the heads can be written as:

F 0
b = F 0

s = F 0, (5)

F i
b = Sum(GIAi

b(F
i, F̂

i−1

blur)), (6)

F i
s = Sum(GIAi

s(F
i, F̂

i−1

seg )), (7)

where Sum(·) represents for adding outputs of the modules.
At the highest resolution n, the task-specific features are fed
into two convolution layers to generate auxiliary blur and
semantic maps for additional supervision, which is benefi-
cial to further improve the accuracy of the final prediction.

The last stage consists n + 1 GIAi
l modules to get the

final features F i
B and F i

S of each scale as:

F i
B ,F

i
S = GIAi

l(F
i
blur,F

i
seg). (8)

These features are then concated and convolved to obtain
the prediction of blur and semantic maps. In this way, we
can build a shorter way for each scale to the supervision and
further facilitate the interaction between blur and semantics.
Besides, since blur is done in the HR space, we upsample
the outputs using bi-linear interpolation by scale factor s.

4.2. Grouping Interactive Attention Module

GIA is designed to help blur and semantics interact more
effectively and avoid inconsistency. Besides, it can also be
used for other features because of the universal structure.
GIA involves two parallel streams operating on spatial and
channel dimensions, and it can handle inputs of different
resolutions by using a flow-based upsample module [21].
Spatial Grouping Feature Interaction. The input features
may be similar on most patches, but different on some. As
shown in Fig. 2, the picture hanging on the wall brings dif-
ference between the blur and semantic maps. As a result,
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we propose to adjust the spatial weight map in the general
spatial attention [7, 46, 47] mechanism to take advantage of
similar information and avoid inconsistencies.

In the top half of Fig. 4 (b), each input is first passed
through a convolution layer and divided into windows de-
noted by F j

w. These windows are then further processed by
another convolution layer before being fed into the feature
interaction module (last part of Sec. 4.2). The spatial ad-
justing weight map M j

a ∈ R1×H×W can be obtained by a
1 × 1 convolution layer after the interaction. Additionally,
each input has its own spatial weight map M j

o ∈ R1×H×W

extracted from the windows by another 1 × 1 convolution
layer directly. Thus, the outputs F j corresponding to the
two inputs can be expressed as:

F j = Mul(F j
w,Add(M j

o, αM
j
a)), j = 1, 2, (9)

where α is a learnable parameter. Finally, windows are re-
stored as features and final output is obtained by smoothing
out possible seams with a layer of 3× 3 convolution.
Channel Grouping Feature Interaction. As spatial fea-
ture interaction concentrates on local details, we further
introduce channel grouping feature interaction to calibrate
global information inspired by [8]. Firstly, we transfer the
input F j

in to channel-wised attention vector Aj
o ∈ RC by

applying global average pooling and an MLP layer. Then,
the vectors are fed into a feature interaction module, and
two adjusting attention vectors Aj

a ∈ RC integrating the
two features are obtained through another MLP layer. Sim-
ilar to the spatial one, the final outputs can be obtained by:

F j = Mul(F j
in,Add(Aj

o, βA
j
a)), j = 1, 2 (10)

where β is a learnable parameter. Since global information
is important for both blur [31] and semantic estimation [27],
feature interaction of channel dimension is also essential.
Feature Group Interaction. This module is designed to
interact spatial or channel features in groups. For spatial
interaction, the input size is C × H × W . We regard
the features of each pixel as a group, and the size of the
grouped features is N × D, where N = HW , D = C.
For channel interaction, the input size is C. It will be di-
vided into N groups with length D, where C = ND. In
this way, both spatial and channel inputs can be represented
as Gi ∈ RN×D, i = 1, 2 after grouping, where i represents
two different inputs. Then, we use inner product for feature
interaction and get the interactive feature F fuse ∈ RN×N ,

F fuse = G1G2
T . (11)

After that, for spatial interaction, one of the output can be
obtained by reshaping F fuse to H ×W ×N , and the other
can be obtained by reshaping F fuse to N × H ×W . For
channel interaction, the two final outputs are the same and
can be both obtained by simply flatten F fuse.

4.3. Loss Function

We use the mean absolute error (MAE) for blur estima-
tion and the cross-entropy (CE) loss for semantic segmen-
tation. As shown in Fig. 4 (a), the auxiliary loss L1 and loss
L3 are both MAE, while the auxiliary loss L2 and loss L4

are both CE, specifically:

L1 = L3 =
1

H ×W

H∑
i=1

W∑
j=1

‖Bi,j − B̂i,j‖1 (12)

L2 = L4 = − 1

H ×W

H∑
i=1

W∑
j=1

C∑
c=1

Sc
i,j log(Ŝ

c

i,j) (13)

where B̂i,j and Bi,j denote the estimated blur map and
the corresponding ground-truth at position (i, j). Similarly,
Ŝ

c

ij and Sc
ij represent the estimated semantic map and the

ground-truth at position (i, j) of the c-th category. C is the
number of object categories, and H,W are the height and
width of the maps. We do not adopt a particular loss weigh-
ing strategy, but simply sum the losses together,

L = L1 + L2 + L3 + L4 (14)

5. Experiments
5.1. Experimental Setup

Settings of CMOS. We select HRNet [37] as our backbone
and change the stride of the first two convolutions to 1. This
translates to 4 scales of the input LR images (1, 1/4, 1/8,
1/16). The task-specific heads are implemented as two basic
residual blocks [9]. As for semantic segmentation, we use
the official 40 classes for NYUv2-BSR and 19 classes for
Cityscapes-BSR. All our experiments are conducted with
the pre-trained ImageNet weights.
Settings of Non-Blind SR. For non-blind SR, we use
RRDB-SFT proposed in [23]. To feed both blur and se-
mantics into it, we use a GIA module. Finally, we fine-
tune RRDB-SFT on blur and semantic maps estimated by
CMOS. The loss between SR and HR images is also MAE.
Implementation Details. The image sizes are selected as
640× 480 for both NYUv2-BSR and Cityscapes-BSR. We
augment the training data by scaling with a randomly se-
lected ratio in {1, 1.2, 1.5} and the blur values are divided
by the ratio. We also flip the training samples with a pos-
sibility of 0.5. Adam optimizer [16] with β1 = 0.9 and
β2 = 0.99 is used to train the model for 700 epochs, with
a batch size of 8. The learning rate is initialized as 0.0001
and a cosine learning rate schedule with 10 warm-up epochs
is adopted. Implemented with PyTorch, it takes about 28
hours to train CMOS on an RTX 3090 GPU.
Evaluation Metrics. For blur estimation, we use PSNR
and SSIM [41]. For semantic segmentation, we use mIoU.
For the final SR images generated by RRDB-SFT with the
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Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [1] 23.10/0.7430 23.13/0.7439 23.18/0.7449 23.16/0.7449 23.18/0.7461 23.15/0.7446
KOALAnet [15] 27.69/0.8773 27.73/0.8768 27.60/0.8734 27.73/0.8754 27.74/0.8760 27.70/0.8758
DCLS [28] 27.89/0.8799 27.94/0.8798 27.82/0.8760 27.91/0.8768 27.89/0.8781 27.89/0.8781
DAN [10] 27.90/0.8809 27.98/0.8808 27.83/0.8771 27.91/0.8775 27.88/0.8791 27.90/0.8791
MANet [23] 30.16/0.9117 30.20/0.9111 30.07/0.9095 30.07/0.9099 30.10/0.9107 30.12/0.9106
CMOS(ours) 32.09/0.9168 32.08/0.9159 31.99/0.9145 31.96/0.9147 32.01/0.9153 32.03/0.9154
Upper Bound 33.80/0.9309 33.78/0.9303 33.69/0.9290 33.73/0.9301 33.74/0.9298 33.75/0.9300

Table 2. Average PSNR/SSIM of different methods for spatially variant blind SR on NYUv2-BSR. Avg. represents the average results on
the 5 test groups. The best and second best results are highlighted in red and blue colors, respectively.

Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [1] 28.96/0.8461 29.02/0.8475 28.88/0.8464 28.96/0.8468 28.99/0.8477 28.96/0.8469
KOALAnet [15] 32.40/0.9173 32.45/0.9177 32.29/0.9149 32.38/0.9166 32.40/0.9166 32.38/0.9166
DCLS [28] 32.41/0.9174 32.46/0.9176 32.28/0.9151 32.44/0.9168 32.38/0.9166 32.39/0.9167
DAN [10] 32.33/0.9162 32.38/0.9165 32.21/0.9140 32.36/0.9156 32.30/0.9155 32.32/0.9156
MANet [23] 34.24/0.9293 34.29/0.9294 34.16/0.9273 34.27/0.9288 34.27/0.9285 34.25/0.9287
CMOS(ours) 35.58/0.9388 35.61/0.9389 35.50/0.9373 35.60/0.9385 35.60/0.9381 35.58/0.9383

Table 3. Average PSNR/SSIM of different methods for spatially variant blind SR on Cityscapes-BSR. Avg. represents the average results
on the 5 test groups. Note that, there is no official ground truth semantic maps for the test sets of Cityscapes [3], so the upper bound is not
available here. The best and second best results are highlighted in red and blue colors, respectively.

Datasets PSNR ↑ SSIM ↑
IVA 19.50 0.6840
NYUv2-BSR 30.12 0.9106

Table 4. Importance of using space-variant blur for training. IVA
stands for the NYUv2 dataset with only space-invariant blur.

blur and semantic maps estimated by CMOS, we compare
PSNR/SSIM on the Y channel of YCbCr space.

5.2. Comparison with the State-of-the-Arts

We compare CMOS with existing blind SR models:
KernelGAN [1], KOALAnet [15], DCLS [28], DAN [10],
MANet [23] and the upper bound model (RRDB-SFT given
ground-truth blur and semantic maps). We retrained all the
comparison methods on NYUv2-BSR and Cityscapes-BSR
using their official implementations and settings. Kernel-
GAN is an unsupervised method which trained solely on
the LR image at test time. DCLS and DAN are end-to-
end methods for space-invariant blur, while KOALAnet and
MANet are two-stage methods for space-variant blur. Since
we use the non-blind SR model proposed in MANet (i.e.
RRDB-SFT), we apply same settings to ensure the fairness.
Quantitative comparison. As shown in Tab. 2 and Tab. 3,
CMOS leads to the best performance for different test
groups in both the two proposed datasets. Notably, methods
that estimate only one blur kernel for an image (i.e., Kernel-

GAN, DCLS, and DAN) all suffer from severe performance
drop when the real kernels are spatially variant. Although
KOALAnet estimates different kernels for different image
pixels, it does not include any special handling for space-
variant properties and also produces unfavorable results.
MANet takes the locality of blur into account, so it performs
relatively better. By contrast, the proposed model CMOS
effectively utilizes semantic information to help with spa-
tially variant blur estimation and non-blind SR, outperform-
ing MANet by large margins.
Qualitative comparison. We present several representative
visual samples in Fig. 5. It can be observed that our CMOS
outperforms previous approaches in both removing blur and
avoiding artifacts. Other methods may either produce ring-
ing artifacts (especially KernelGAN), or fail to restore tex-
ture details, leading the patches still blurry.

5.3. Ablation Study

All the experiments in this section use NYUv2-BSR for
training, and the metrics (i.e. PSNR, SSIM and mIoU) refer
to the mean value across the 5 test sets (Sec. 3).
Importance of Using Space-Variant Blur for Training.
According to [23], because of the moderate receptive field,
MANet can handle spatially variant cases even if it is
trained on spatially invariant blurred images. But we be-
lieve that it is necessary to use the images containing space-
variant blur for training. To prove it, we trained two MANet
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The whole image LR KernelGAN DAN DCLS KOALAnet MANet Ours GT

Figure 5. Qualitative comparisons between different SR methods on spatially variant blur (out-of-focus). The first two pictures are from
NYUv2-BSR and the last two are from Cityscapes-BSR. (Please zoom in for better view.)

Method PSNR ↑ SSIM ↑ mIoU ↑
Ours w/o GIA 23.21 0.8312 32.15
Ours w/ F 23.42 0.8314 33.04
Ours w/ F+C 24.24 0.8336 36.25
Ours w/ F+C+S (GIA) 24.52 0.8340 35.61

Table 5. Effectiveness of GIA. Note that these are the intermediate
results, and PSNR/SSIM refer to the blur maps rather than the final
SR mages. mIoU evaluates the effect of semantic estimation.

models: one on the proposed NYUv2-BSR dataset, and the
other on the space-invariant blurred images generated from
the NYUv2 dataset. The comparison results are shown in
the Tab. 4. Apparently, training on spatially variant blurred
images can increase PSNR and SSIM of SR images dra-
matically by 10.62 dB ↑ and 0.2266 ↑, respectively. This
indicates that maintaining consistency in image blur types
during the training and testing phases is crucial.

Effectiveness of GIA Module. We take out the compo-
nents, i.e., flow-based upsampling (F), channel interaction

(C) and spatial interaction (S), of GIA to verify validity.
We record the best PSNR and mIoU models individually.
As shown in Tab. 5, using only flow-based upsampling im-
proves the results slightly, and when combined with channel
interaction, the performance can be significantly enhanced.
Furthermore, utilizing all three components, i.e., the com-
plete GIA module, can yield even greater improvements.

Effectiveness of Semantic Information in SR. In order to
illustrate that the semantic information is conducive to SR,
we ablate it and only input blur maps into RRDB-SFT. It
is worth noting that we use the ground truth blur and se-
mantic maps here. As shown in Tab. 6, adding semantic
maps improves the PSNR (+0.34 dB ↑) and SSIM (+0.0022
↑) of the final SR results. We hold the opinion that seman-
tic information may allow the network to take advantage of
textural features of related objects it has learned about, and
sharp semantic edges may also be helpful in SR.

Effectiveness of Multi-task Learning (MTL). To demon-
strate the effectiveness of MTL, firstly, we make separate
predictions for blur and semantic maps and compared them

7
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Figure 6. Visual results on real-world images for scale factor 4. The first picture of the indoor scene uses the model trained on NYUv2-BSR,
and the second picture of the outdoor scene uses the model trained on Cityscapes-BSR. (Please zoom in for better view.)

Method PSNR ↑ SSIM ↑
RRDB-SFT w/o semseg 33.41 0.9278
RRDB-SFT w/ semseg 33.75 0.9300

Table 6. Importance of using semantic information in SR. The
ground-truth blur and semantic maps are used in this experiment.

Method
Intermediate Results SR Results

PSNR/SSIM ↑ mIoU ↑ PSNR/SSIM ↑

Single Task 24.58/0.8393 33.95 30.75/0.9134
CMOS (Ours) 24.52/0.8340 35.61 32.03/0.9154

Table 7. Effectiveness of MTL. PSNR/SSIM and mIoU of the
intermediate results refer to the blur maps and the semantic maps.

with the CMOS results. Secondly, We compare the SR re-
sults achieved by solely utilizing the estimated blur maps
versus employing both the estimated blur and semantic
maps. As shown in Tab. 7, joint estimation improves the re-
sults of semantic segmentation (mIoU +1.66↑), albeit with
a slight decrease in the performance of blur estimation. But
in general, MTL can improve the PSNR/SSIM of the final
SR results by +1.28↑/+0.002↑, which proves that semantics
is useful to the overall SR process.
Importance of the Auxiliary Supervision. We ablate the
auxiliary supervision in CMOS to see if it is necessary for
our framework. As shown in Tab. 8, without the auxiliary
supervision in the multi-scale structure, although there is a
slightly increase in SSIM, PSNR and mIoU droped by 0.38
↓ and 0.24% ↓, respectively. Therefore, auxiliary supervi-

Methods PSNR ↑ SSIM ↑ mIoU ↑
CMOS w/o AS 24.14 0.8347 35.37
CMOS w/ AS 24.52 0.8340 35.61

Table 8. Importance of the auxiliary supervision (AS) in CMOS.

sion can improve the performance of CMOS on the whole.

5.4. Experiments on Real-Wrold SR

As there is no ground-truth for real images, we only
compare visual results of different methods. As shown in
Fig. 6, similar to the results on our datasets, KernelGAN
still generate ringing artifacts, especially in the ourdoor
scene. DAN, DCLS and KOALAnet all produce blurry re-
sults, while MANet performs slightly better. In compari-
sion, CMOS can produce realistic and natural textures, and
the results are the clearest.

6. Conclusion

In this paper, we introduce out-of-focus blur to SR and
propose two new datasets: NYUv2-BSR and Cityscapes-
BSR. Besides, we further propose a novel model CMOS to
estimate the blur and semantic maps simultaneously. By
incorporating semantics, we can restore finer SR results.
GIA modules is used to achieve effective feature interaction
in both spatial and channel dimensions. Extensive experi-
ments on proposed datasets and real-world images demon-
strate that our model can achieve SOTA performance in
blind SR when integrated with existing non-blind models.
Acknowledgments: This work is supported by the National
Natural Science Foundation of China (61836015).
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