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Figure 1. Motivation and superiority. (a) The enhancement results (bottom row) without semantic priors show color deviations (e.g., the
black car turns gray). (b) Our SKF provides remarkable performance boost on LOL/LOL-v2 datasets in terms of PSNR/SSIM.

Abstract
Low-light image enhancement (LLIE) investigates how

to improve illumination and produce normal-light images.
The majority of existing methods improve low-light images
via a global and uniform manner, without taking into ac-
count the semantic information of different regions. With-
out semantic priors, a network may easily deviate from a
region’s original color. To address this issue, we propose a
novel semantic-aware knowledge-guided framework (SKF)
that can assist a low-light enhancement model in learning
rich and diverse priors encapsulated in a semantic segmen-
tation model. We concentrate on incorporating semantic
knowledge from three key aspects: a semantic-aware em-
bedding module that wisely integrates semantic priors in
feature representation space, a semantic-guided color his-
togram loss that preserves color consistency of various in-
stances, and a semantic-guided adversarial loss that pro-
duces more natural textures by semantic priors. Our SKF
is appealing in acting as a general framework in LLIE
task. Extensive experiments show that models equipped
with the SKF significantly outperform the baselines on mul-
tiple datasets and our SKF generalizes to different models
and scenes well. The code is available at Semantic-Aware-
Low-Light-Image-Enhancement

1. Introduction
In real world, low-light imaging is fairly common due to

unavoidable environmental or technical constraints such as

insufficient illumination and limited exposure time. Low-
light images not only have poor visibility for human per-
ception, but also are unsuitable for subsequent multime-
dia computing and downstream vision tasks designed for
high-quality images [4, 9, 36]. Thus, low-light image en-
hancement (LLIE) is proposed to reveal buried details in
low-light images and avoid degraded performance in sub-
sequent vision tasks. Mainstream traditional methods for
LLIE include Histogram Equalization-based methods [2]
and Retinex model-based methods [18].

Recently, many deep learning-based LLIE methods have
proposed, such as end-to-end frameworks [5,7,34,45,46,48]
and Retinex-based frameworks [29, 41, 43, 44, 49, 53, 54].
Benefiting from their ability in modeling the mapping be-
tween the low-light and high-quality image, deep LLIE
methods commonly achieve better results than traditional
approaches. However, existing methods typically improve
low-light images globally and uniformly, without taking
into account the semantic information of different regions,
which is crucial for enhancement. As shown in Fig. 1(a),
a network that lacks the utilization of semantic priors can
easily deviate from a region’s original hue [22]. Further-
more, studies have demonstrated the significance of incor-
porating semantic priors into low-light enhancement. Fan et
al. [8] utilize semantic map as prior and incorporated it into
the feature representation space, thereby enhancing image
quality. Rather than relying on optimizing intermediate fea-
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tures, Zheng et al. [58] adopt a novel loss to guarantee the
semantic consistency of the enhanced images. These meth-
ods successfully combine the semantic priors with LLIE
task, demonstrating the superiority of semantic constraints
and guidance. However, their methods fail to fully ex-
ploit the knowledge that semantic segmentation networks
can provide, limiting the performance gain by semantic pri-
ors. Furthermore, the interaction between segmentation and
enhancement is designed for specific methods, limiting the
possibility of incorporating semantic guidance into LLIE
task. Hence, we wonder two questions: 1. How can we
obtain various and available semantic knowledge? 2. How
does semantic knowledge contribute to image quality im-
provement in LLIE task?

We attempt to answer the first question. First, a semantic
segmentation network pre-trained on large-scale datasets is
introduced as a semantic knowledge bank (SKB). The SKB
can provide richer and more diverse semantic priors to im-
prove the capability of enhancement networks. Second, ac-
cording to previous works [8, 19, 58], the available priors
provided by the SKB primarily consist of intermediate fea-
tures and semantic maps. Once training a LLIE model, the
SKB yields above semantic priors and guides the enhance-
ment process. The priors can not only refine image fea-
tures by employing techniques like affinity matrices, spatial
feature transformations [40], and attention mechanisms, but
also guide the design of objective functions by explicitly
incorporating regional information into LLIE task [26].

Then we try to answer the second question. We design
a series of novel methods to integrate semantic knowledge
into LLIE task based on the above answers, formulating
in a novel semantic-aware knowledge-guided framework
(SKF). First, we use the High-Resolution Network [38]
(HRNet) pre-trained on the PASCAL-Context dataset [35]
as the previously mentioned SKB. In order to make use of
intermediate features, we develop a semantic-aware embed-
ding (SE) module. It computes the similarity between the
reference and target features and employs cross-modal in-
teractions between heterogeneous representations. As a re-
sult, we quantify the semantic awareness of image features
as a form of attention and embed semantic consistency in
enhancement network.

Second, some methods [20, 55] propose to optimize im-
age enhancement using color histogram in order to preserve
the color consistency of the image rather than simply en-
hancing the brightness globally. The color histogram, on
the other hand, is still a global statistical feature that cannot
guarantee local consistency. Hence, we propose a semantic-
guided color histogram (SCH) loss to refine color consis-
tency. Here, we intend to make use of local geometric
information derived from the scene semantics and global
color information derived from the content. In addition to
guarantee original color of the enhanced image, it can also

add spatial information to the color histogram, performing
a more nuanced color recovery.

Third, existing loss functions are not well aligned with
human perception and fail to capture an image’s intrinsic
signal structure, resulting in unpleasing visual results. To
improve visual quality, EnlightenGAN [16] employs global
and local image-content consistency and randomly chooses
the local patch. However, the discriminator do not know
where the regions are likely to be ‘fake’. Thus, we propose
a semantic-guided adversarial (SA) loss. Specifically, the
ability of the discriminator is improved by using segmen-
tation map to determine the fake areas, which can improve
the image quality further.

The main contributions of our work are as follows:
• We propose a semantic-aware knowledge-guided

framework (SKF) to boost the performance of exist-
ing methods by jointly maintaining color consistency
and improving image quality.

• We propose three key techniques to take full advantage
of semantic priors provided by semantic knowledge
bank (SKB): semantic-aware embedding (SE) mod-
ule, semantic-guided color histogram (SCH) loss, and
semantic-guided adversarial (SA) loss.

• We conduct experiments on LOL/LOL-v2 datasets and
unpaired datasets. The experimental results demon-
strate large performance improvements by our SKF,
verifying its effectiveness in resolving the LLIE task.

2. Related Work
2.1. Low-light Image Enhancement

Traditional methods. Traditional methods for low-light
enhancement include Histogram Equalization-based meth-
ods [2] and Retinex model-based methods [18]. The former
improve low-light images by extending the dynamic range.
The latter decompose a low-light image into reflection and
illumination maps and the reflection component is treated
as the enhanced image. Such model-based methods require
explicit priors to fit data well, but designing proper priors
for various scenes is difficult [44].

Learning-based methods. Recent deep learning-based
methods show promising results [15, 29, 43, 44, 53, 54, 56].
We can further divide existing designs into Retinex-based
methods and end-to-end methods. Retinex-based meth-
ods use deep network to decompose and enhance an im-
age. Wei et al. proposed a two-stage Retinex-based method
called Retinex-Net [43]. Inspired by Retinex-Net, Zhang
et al. proposed two refined methods, called KinD [54] and
KinD++ [53]. Recently, Wu et al. [44] proposed a novel
deep unfolding Retinex-based network to further integrate
the strengths of model-based and learning-based methods.

In comparison to Retinex-based method, end-to-end
methods directly learning an enhanced result [5–7, 27, 32,
34, 37, 41, 45, 46, 51, 57, 59]. Lore et al. [30] made the
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Figure 2. Overview of our Semantic-aware Knowledge-guided Framework (SKF). With a pre-trained Segmentation Net, our SKF utilizes
semantic priors to improve the enhancement process in two aspects: (a) In feature-level, the multi-scale semantic-aware embedding mod-
ules enable cross-modal interactions between semantic features and image features in representation space. (b) In loss-level, the semantic
segmentation result is introduced into the computation of color histogram loss and adversarial loss as a guidance.

first attempt by proposing a deep autoencoder named Low-
Light Net (LLNet). Later on, various end-to-end meth-
ods are proposed. Physics-based concepts, e.g. Laplacian
pyramid [27], local parametric filter [34], Lagrange multi-
plier [57], De-Bayer-Filter [5], normalization flow [41] and
wavelet transform [7], are proposed to improve model in-
terpretability and lead to visually pleasing results. In [16,
17, 48], adversarial learning is introduced to capture the vi-
sual properties. In [11], the light enhancement is creatively
formulated as a task of image-specific curve estimation us-
ing zero-shot learning. In [20, 47, 55], 3D lookup table and
color histogram are utilized to preserve the color consis-
tency. However, existing designs focus on optimizing en-
hancement process, while ignoring the semantic informa-
tion of different regions. In contrast, we design a SKF with
three key techniques to explore the potential of semantic
priors and thus produce visually pleasing enhanced results.

2.2. Semantic-Guided Methods
Recently, semantic-guided methods prove the reliability

of semantic priors. These methods could be divided into
two kinds: loss-level semantic-guided methods and feature-
level semantic-guided methods.

Loss-level semantic-guided methods. In order to make
use of semantic priors, some works focus on utilizing
semantic-aware losses as extra objective functions of the
original vision tasks. In image denoising [28], image
super-resolution [1], low-light image enhancement [58], re-
searchers directly utilized semantic segmentation loss as an
extra constrain to guide the training process. Furthermore,

Liang et al. [26] better maintained the details of the images
by using a semantic brightness consistency loss.

Feature-level semantic-guided methods. In compar-
ison to loss-level semantic-guided methods, feature-level
semantic-guided methods concentrate on extracting inter-
mediate features from semantic segmentation network and
introduce semantic priors in feature representation space
to combine with image features. Similar works have been
done on image restoration [23], image deraining [24], im-
age super-resolution [40], low-light image enhancement [8],
depth estimation [10, 19].

Existing semantic-guided methods are limited by the in-
sufficient interaction between semantic priors and original
tasks. Hence, we propose a semantic-aware framework to
fully exploit semantic information both on loss-level and
feature-level, including two semantic-guided losses and a
semantic-aware embedding module. Specifically, compar-
ing to semantic-guided methods in LLIE task [8, 26, 58],
our SKF is appealing in acting as a general framework.

3. Method
3.1. Motivation and Overview

Illumination enhancement is the process of making an
underexposed image look better by adjusting the lighting,
eliminating noise, and restoring lost details. Semantic pri-
ors can provide a wealth of information for improving the
enhancement performance. Specifically, semantic priors
can help reformulate the existing LLIE methods as a region-
aware enhancement framework. In particular, the novel
model will blur noises on smooth regions in a simple way,



such as skies, whereas being careful on regions with rich
details, such as indoor scene. Furthermore, combining with
semantic prior, the color consistency of enhanced image
will be carefully preserved. A network that lacks access to
semantic priors can easily deviate from a region’s original
hue [22]. Existing low-light enhancement methods, how-
ever, ignore the importance of semantic information and
thus have limited capability.

In this paper, we propose a novel SKF, jointly optimizing
image features, maintaining regional color consistency and
improving image quality. As shown in Fig. 2, semantic pri-
ors are provided by SKB and integrated into LLIE task by
three key components: SE module, SCH loss and SA loss.

Problem definition of semantic-aware LLIE. Given a
low-light image Il ∈ RW×H×3 with width W and height
H . Combining with semantic segmentation, the LLIE pro-
cess can be modeled as two functions, first:

M = Fsegment(Il; θs), (1)

where M is the semantic prior, including segmentation
result and intermediate features with multi-scale dimen-
sions. Fsegment represents the pre-trained semantic seg-
mentation network, acting as the SKB, and θs is frozen in
training stage. Then M is used as input:

Îh = Fenhance(Il,M ; θe), (2)

where Îh ∈ RW×H×3 is the enhanced result and
Fenhance represents the enhancement network. During
training stage, θe will be updated by minimizing the ob-
jective function with the guidance of M while θs is fixed:

θ̂e = argminL(Îh, Ih,M), (3)

where Ih ∈ RW×H×3 is the ground truth, L(Îh, Ih,M)
is the objective function of semantic-aware LLIE.

3.2. Semantic-Aware Embedding Module
When refining image features with the help of semantic

priors, another challenge should be particularly considered
is the discrepancy between the two sources. To alleviate
this issue, we propose the SE module to refine the image
feature maps, as illustrated in Fig. 3. The SE modules are
like bridges between Segmentation Net and Enhancement
Net (see Fig. 2), establishing connections between two het-
erogeneous tasks.

In our framework, we choose HRNet [38] as the SKB
due to its exceptional performance and make some task-
specific modifications. Besides the semantic map, we uti-
lize output features before the representation head as multi-
scale semantic priors. For further illustration, three SE
modules are shown in Fig. 2, thus we take three seman-
tic/image features (Fb

s/Fb
i , b = 0, 1, 2) with three spatial

resolutions (H/24−b,W/24−b), where H and W are the
height and width of the input image. The SE module per-
forms a pixel-wise interaction between Fb

s and Fb
i , and gives

Semantic-Aware  
Map

Figure 3. Architecture of the semantic-aware embedding (SE)
module. At the bth decoder layer, SE module transforms the im-
age feature map Fb

i with the semantic feature map Fb
s and produces

the refined output feature Fb
o.

the final refined feature map Fb
o. Details of the learning pro-

cess are provided below.
The SE module computes the semantic awareness of the

image features through cross-modal similarity and produces
a semantic-aware map. We first apply convolution layers
to transform Fb

s and Fb
i to the same dimension. Next, in-

spired by Restormer [50], we adopt a transposed-attention
mechanism to compute the attention map with a low com-
putational cost. Hence, the semantic-aware attention map is
described as follows:

Ab = Softmax
(
Wk(Fb

i )×Wq(Fb
s)/

√
C
)
, (4)

where Wk(·) and Wq(·) are convolution layers, LN is
layer normalization, C is channel of features. Here, Ab ∈
RC×C indicates the semantic-aware attention map, which
represents the interrelationship between Fb

i and Fb
s. Then

we use Ab to fabricate image feature Fb
i as follows:

Fb
o = FN(Wv(Fb

i )×Ab + Fb
i ), (5)

where FN denotes feed-forward network, Fb
o is the final

refined feature map of bth SE module and becomes the input
of (b+1)

th layer of the Enhancement Net decoder.

3.3. Semantic-Guided Color Histogram Loss

Color histogram carries crucial underlying image statis-
tics and is profitable for learning color representations.
DCC-Net [55] uses PCE modules with affinity matrix to
match the color histogram and content in feature-level,
therefore retaining color consistency of enhanced image.
However, color histogram describes a global statistic in-
formation, differences in color characteristics between vari-
ous instances are eliminated. Thus, we propose an intuitive
way to achieve local color adjustment, i.e., semantic-guided
color histogram (SCH) loss, as shown in Fig. 2. It focuses
on adjusting color histogram of each instance, thereby re-
taining more detailed color information.

The semantic map is firstly used to divide enhanced re-
sult into image patches with different instance labels. Each
patch includes a single instance with the same label. Hence,
the process of producing patches are defined as follows:



P = {P 0, P 1, . . . , P class}, P c = Iout ⊙ Icseg, (6)

where ⊙ is the dot product, Iout denotes the enhanced re-
sult, Icseg denotes the cth channel of the one-hot semantic
map, P c ∈ RW×H×3 denotes the cth image patch, P de-
notes the group of all the patches.

Due to the discrete nature of color histogram, we approx-
imate the differentiable version inspired by Kernel Density
Estimation [3] for model training. Considering the predic-
tion error of the semantic result, pixels that are close to the
boundary are not considered. We refine the patch group P
to P ′ without edge pixels, mitigating effects of misclassi-
fication. In the case of R channel of the cth image patch
P c′(R), the estimation process is defined as follows:

xh
ij = xj −

i− 0.5

255
, xl

ij = xj −
i+ 0.5

255
, (7)

where xj denotes jth pixel in P c′(R), i ∈ [0, 255] de-
notes pixel intensity. xh

ij and xl
ij represent higher anchor

and lower anchor respectively, which are key variables to
estimate histogram as follows:

Hc
i=

∑
j

(
Sigmoid(α · xh

ij)−Sigmoid(α · xl
ij)

)
, (8)

Hc = {i,Hc
i }

255
i=0, (9)

where Hc denotes the differentiable histogram of P c′(R),
Hc

i denotes estimated number of pixels with intensity value
i. α is a scaling factor, we experimentally set it to 400 for
better estimation. The difference between results of two
Sigmoid(·) denotes the contribution of xj to the number of
pixels with intensity value i. Specifically, when xj exactly
equal to i, the difference is 1, i.e., xj adds 1 to Hc

i .
Finally, we apply l1 loss to constrain the estimated dif-

ferentiable histogram. Therefore, the SCH loss can be de-
scribed as follows:

LSCH =
∑
c

∥ Hc(Îh)−Hc(Ih) ∥1, (10)

where Îh and Ih denote output and groundtruth respectively,
Hc(·) denotes the process of histogram estimation.

3.4. Semantic-Guided Adversarial Loss
Global and local discriminator is used to encourage more

realistic results in image inpainting tasks [14, 25]. Enlight-
enGAN [16] employs this idea as well, but the local patches
are selected randomly instead of focusing on fake regions.
Therefore we introduce semantic information to guide the
discriminator to focus on intriguing regions. To achieve
this, we further refine the global and local adversarial loss
function respectively by the segmentation map Iseg and im-
age patches P ′ mentioned in Sec. 3.3. Finally, we propose
the semantic-guided adversarial (SA) loss.

For the local adversarial loss, we first use refined patch
group P ′ as candidate fake patches of the output Iout. Then,
we compare the discriminating result of image patches

among P ′, the worst patch is most likely to be ‘fake’ and
can be chosen to update parameters of both discriminator
and generator. Hence, the discriminator plausibly uses the
semantic priors to find the target fake region xf∼pfake by
itself. While the real patches xr∼preal are still randomly
cropped from real images each time. The local adversarial
loss function is defined as:

Llocal =min
G

max
D

Exr∼preal
MSE(D(xr), 0)

+ Exf∼pfake
MSE(D(xf ), 1),

(11)

xf = P t, D(P t) = min(D(P 0), . . . , D(P class)), (12)
where MSE(·) denotes the mean squared error and P t

denotes the target fake patch.
For the global adversarial loss, we adopt a simple design

to achieve semantic-aware guidance when discriminating a
fake sample. We concatenate Iout and I ′seg , which is the
output feature before Softmax, as a new xf . The images
xr with real distribution are randomly sampled. Finally, the
global adversarial loss function is defined as:

Lglobal =min
G

max
D

Exr∼preal
MSE(D(xr), 0)

+ Exf∼pfake
MSE(D(xf , I

′
seg), 1),

(13)

Therefore, the SA loss can be defined as:
LSA = Lglobal + Llocal, (14)

We define the original loss function of Enhancement Net
as Lrecon, which may be l1 loss, MSE loss, SSIM loss,
etc., or their combination according to original setting of
each selected method. Thus, the overall loss function of our
SKF can be formulated as follows:

Lall = Lrecon + λSCHLSCH + λSALSA, (15)
where λs are weights to balance the loss terms.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate the proposed framework on sev-
eral datasets from various scenes, including LOL [43],
LOL-v2 [49], MEF [31], LIME [12], NPE [39] and
DICM [21]. The LOL dataset [43] is a real captured dataset
including 485 low/normal light image pairs for training and
15 pairs for testing. The LOL-v2 dataset [49] is the real part
of LOL-v2, which is larger and more diverse than LOL,
including 689 low/normal light pairs for training and 100
pairs for testing. The MEF (17 images), LIME (10 images),
NPE (85 images) and DICM (64 images) are real captured
datasets including unpaired images.

Metrics. To evaluate the performance of different LLIE
methods with and without our SKF, we use both full-
reference and non-reference image quality evaluation met-
rics. For LOL/LOL-v2 datasets, peak signal-to-noise ra-
tio (PSNR), structural similarity (SSIM) [42], learned per-
ceptual image patch similarity (LPIPS) [52], natural image



Table 1. Quantitative comparison on the LOL [43] and LOL-v2 [49] datasets. ↑ (↓) denotes that, larger (smaller) values lead to better
quality. + (-) denotes the improvement (reduction) of performance, corresponding to ↑ (↓). The bold denotes the best.

Method
LOL LOL-v2

Param(M)
PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓

LIME [13] TIP’16 16.760 0.560 0.350 - 15.240 0.470 - - -
Zero-DCE [11] CVPR’20 14.861 0.562 0.335 7.767 18.059 0.580 0.313 8.058 0.33
EnlightGAN [16] TIP’21 17.483 0.652 0.322 4.684 18.640 0.677 0.309 5.089 8.64

ISSR [8] MM’20 18.846 0.788 0.243 5.249 16.994 0.798 0.206 5.179 12.12
MIRNet [51] PAMI’22 24.140 0.842 0.131 4.203 20.357 0.782 0.317 5.094 5.90

RetinexNet [43] BMVC’18 16.770 0.462 0.474 8.873 18.371 0.723 0.365 5.849 0.62
RetinexNet-SKF(Ours) 20.418 (+3.648) 0.711 (+0.249) 0.216 (+0.258) 4.211 (+4.662) 19.849 (+1.478) 0.719 (-0.004) 0.255 (+0.110) 4.233 (+1.616) 0.66

KinD [54] MM’19 20.870 0.799 0.207 5.189 17.544 0.669 0.375 6.849 8.03
KinD-SKF(Ours) 21.913 (+1.043) 0.835 (+0.036) 0.143 (+0.064) 5.031 (+0.158) 19.821 (+2.277) 0.833 (+0.164) 0.201 (+0.174) 4.778 (+2.071) 8.50

DRBN [48] CVPR’20 19.860 0.834 0.155 4.793 20.130 0.830 0.147 4.961 2.21
DRBN-SKF(Ours) 22.837 (+2.977) 0.841 (+0.007) 0.138 (+0.017) 4.464 (+0.329) 22.441 (+2.311) 0.871 (+0.041) 0.132 (+0.015) 4.460 (+0.501) 2.43

KinD++ [53] IJCV’20 18.970 0.804 0.175 4.760 19.087 0.817 0.180 5.086 9.63
KinD++-SKF(Ours) 20.363 (+1.393) 0.805 (+0.001) 0.201 (-0.026) 4.142 (+0.618) 19.779 (+0.692) 0.837 (+0.020) 0.178 (+0.002) 4.179 (+0.907) 10.21

HWMNet [7] ICIP’22 24.240 0.852 0.114 5.141 20.928 0.798 0.359 5.970 66.56
HWMNet-SKF(Ours) 25.086 (+0.846) 0.860 (+0.008) 0.108 (+0.006) 4.346 (+0.795) 22.490 (+1.562) 0.836 (+0.038) 0.175 (+0.184) 4.683 (+1.288) 69.98

SNR-LLIE-Net [46] CVPR’22 24.608 0.840 0.151 5.179 21.479 0.848 0.157 4.623 39.13
SNR-LLIE-Net-SKF(Ours) 25.031 (+0.552) 0.855 (+0.015) 0.113 (+0.038) 4.722 (+0.457) 21.927 (+0.448) 0.842 (-0.006) 0.160 (-0.003) 3.963 (+0.660) 39.44

LLFlow-S [41] AAAI’22 24.060 0.860 0.136 5.412 25.922 0.860 0.173 6.150 4.97
LLFlow-S-SKF(Ours) 25.942 (+1.882) 0.865 (+0.005) 0.125 (+0.011) 5.606 (-0.194) 28.107 (+2.185) 0.884 (+0.024) 0.133 (+0.040) 5.415 (+0.735) 5.26

LLFlow-L [41] AAAI’22 24.999 0.870 0.117 5.582 26.200 0.888 0.137 5.406 37.68
LLFlow-L-SKF(Ours) 26.798 (+1.799) 0.879 (+0.009) 0.105 (+0.012) 5.589 (-0.007) 28.451 (+2.251) 0.905 (+0.017) 0.112 (+0.025) 5.725 (-0.319) 39.91

quality evaluator (NIQE) [33] are employed. For the MEF,
LIME, NPE and DICM datasets without paired data, only
NIQE is used, as there is no ground-truth.

Compared Methods. To verify the effectiveness of
our designs, we compare our method with a rich collec-
tion of SOTA methods for LLIE, including LIME [13],
RetinexNet [43], KinD [54], DRBN [48], KinD++ [53],
Zero-DCE [11], ISSR [8], EnlightGAN [16], MIRNet [51],
HWMNet [7], SNR-LLIE-Net [46], LLFlow [41]. To
demonstrate the superiority of our method faithfully, we
reasonably select several methods as the baseline networks.
Specifically, both the most representative methods includ-
ing RetinexNet, KinD and KinD++, and three latest meth-
ods including HWMNet, SNR-LLIE-Net and LLFlow are
selected. Thus, our methods are denoted as RetinexNet-
SKF, KinD-SKF, DRBN-SKF, KinD++-SKF, HWMNet-
SKF, SNR-LLIE-Net-SKF, LLFlow-S-SKF and LLFlow-L-
SKF (small and large version of LLFlow respectively).

Implementation Details. We conduct our experiments
on NVIDIA 3090 GPU and NVIDIA A100 GPU, which are
based on the released code of the baseline networks with the
same training settings. Specifically, only the last subnets of
Retinex-SKF, KinD-SKF and KinD++-SKF are trained with
SCH loss and SA loss, while the other subnets are trained
with the original loss functions. Furthermore, we do not ap-
ply SA loss to LLFlow because there is no enhanced output
in training stage. Additionally, SE modules are reasonably
located in decoders of all the baseline networks.

4.2. Quantitative Evaluation

Quantitative results on LOL and LOL-v2 datasets.
The evaluation results are shown in Table 1. We can
observe that our SKF achieves consistent and significant
performance gain over each baseline method. Specifi-
cally, our SKF provides an average improvement of 1.750
dB/1.611 dB on LOL/LOL-v2 datasets respectively and this
is achieved by introducing the capability of suppressing
noise and artifacts and preserving color consistency. No-
tably, our LLFlow-L-SKF earns PSNR values of 26.798
dB/28.451 dB on LOL/LOL-v2 datasets, establishing a new
SOTA. Furthermore, SSIM values achieve similar perfor-
mance as well. Our SKF yields better SSIM values by an
average of 0.041/0.037 on LOL/LOL-v2 datasets, which il-
lustrates that our SKF helps baseline methods restore the
luminance and contrast and preserve the structural informa-
tion with details. Besides, the substantial gain of LPIPS
and NIQE provided by our SKF reasonably indicates that
human intuition is more closely matched by introducing se-
mantic priors from our designs.

Quantitative results on MEF, LIME, NPE and DICM
datasets. The evaluation results on the MEF, LIME, NPE
and DICM datasets are described in Table 2. In general,
each method with SKF obtain better NIQE results than
baseline on all six datasets except three worse cases of
DRBN-SKF and HWMNet-SKF. The RetinexNet-SKF per-
forms the best with NIQE of 3.632 on MEF dataset, while
the KinD++-SKF achieves the best performance on other
five datasets. Overall, it is notable that our SKF yields an
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Figure 4. Visual comparison of baseline methods with and without SKF on LOL dataset. Our SKF enables baseline methods produce
images with less noise, more color information and realistic details.

(a) Input (b) RetinexNet (c) RetinexNet-SKF (d) KinD (e) KinD-SKF (f) DRBN (g) DRBN-SKF (h) KinD++ (i) KinD++-SKF (j) HWMNet (k) HWMNet-SKF

Figure 5. Visual comparison of baseline methods with and without SKF on LIME dataset.

Table 2. Quantitative comparison on the LOL [43], LOL-v2 [49],
MEF [31], LIME [12], NPE [39] and DICM [21] datasets in terms
of NIQE, where smaller values lead to better quality.

Method LOL LOL-v2 MEF LIME NPE DICM

Input 6.7488 6.7911 4.2650 4.4380 4.3124 4.2550

RetinexNet [43] BMVC’18 6.8731 5.8488 4.1490 4.4200 4.5008 4.5912
RetinexNet-SKF(Ours) 4.2118 4.2331 3.6321 4.0779 4.0152 3.6945

KinD [54] MM’19 5.1891 6.8490 4.1344 4.6418 4.6896 3.9371
KinD-SKF(Ours) 5.0306 4.7783 3.9460 4.3607 3.8721 3.7909

DRBN [48] CVPR’20 4.7930 4.9612 4.0956 4.4019 3.9205 4.0433
DRBN-SKF(Ours) 4.4636 4.4599 4.0894 4.3392 4.0192 3.8541

KinD++ [53] IJCV’20 4.7602 5.0856 3.7498 4.3756 3.9848 3.7076
KinD++-SKF(Ours) 4.1415 4.1785 3.7645 3.9892 3.8201 3.5382

HWMNet [7] ICIP’22 5.1407 5.9702 4.2175 4.3549 4.0683 3.9196
HWMNet-SKF(Ours) 4.3460 4.6826 4.0312 4.3699 3.9942 4.0760

average gain of 0.519 on NIQE across all the methods and
datasets. The better NIQE shows that the methods with our
SKF can produce images with more natural textures and be-
come more effective for restoring low-light images.

4.3. Qualitative Evaluation
The qualitative evaluations on LOL and LIME datasets

are shown in Figs. 4 and 5 respectively. As indicated
by Fig. 4, our SKF can improve the enhancement capa-
bility of baseline methods and generate images with more
pleasing perceptual quality. Specifically, the results of
RetinexNet are unreal due to the obvious color gap and seri-
ous noise, which can be mitigated by our SKF. Compared to
results of KinD and KinD++, KinD-SKF and KinD++-SKF
resolve the issue of inconsistent lighting and strange white
artifacts. For other results, more consistent color and natu-

ral details recovery for desk, wall and clothes are achieved
by our SKF.

We further exhibit the visual enhancement results on the
LIME dataset in Fig. 5. It can be observed that the methods
with our SKF suppress the unnatural halo around the lamp
and restore naturalistic color and details. Hence, methods
with our SKF yield more visually pleasing results as com-
pared to baselines, supporting our method’s excellent per-
formance in quantitative evaluation. More visualization re-
sults are provided in the supplementary material.

4.4. Ablation Study
We conduct ablation studies on LOL dataset to prove the

effectiveness of our SKF from various aspects.
SCH loss, SA loss and SE module. As shown in Ta-

ble 3, we conduct experiments of KinD++-SKF, DRBN-
SKF and HWMNet-SKF. The addition of SCH loss and SE
module improve the PSNR by an average of 0.243 dB and
0.841 dB over the baseline respectively. Simultaneously ap-
plying SCH loss and SE module further improves the base-
line method by yielding an average gain of 1.741 dB over
the baseline. This verifies that more beneficial semantic-
aware priors are integrated into enhancement process. De-
spite that adding SA loss causes minor drops in some full-
reference metrics, average gain of 0.292 with NIQE are ob-
tained across all the cases. Therefore, the baseline meth-
ods are refined through semantic-aware knowledge by each
component, and the total framework leads to a significant
performance boost. Additionally, results in Fig. 6 demon-
strate that model with SCH loss and SE module can pre-
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Figure 6. Visual comparison of DRBN-SKF for investigating the contribution of key techniques of our SKF.

Table 3. Ablation study of KinD++-SKF, DRBN-SKF and HWMNet-SKF for investigating the contribution of key techniques of our SKF.

SCH loss SA loss SE module
KinD++-SKF DRBN-SKF HWMNet-SKF

PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓
18.970 0.804 0.175 4.760 19.860 0.834 0.155 4.793 24.240 0.852 0.114 5.141

✓ 19.170 0.806 0.170 4.759 20.040 0.835 0.154 4.793 24.590 0.859 0.112 5.023
✓ 19.385 0.800 0.189 4.392 20.070 0.834 0.149 4.701 24.305 0.853 0.111 4.712

✓ 19.781 0.808 0.181 4.712 21.334 0.837 0.143 4.678 24.477 0.859 0.111 4.988
✓ ✓ 20.620 0.815 0.176 4.536 22.550 0.836 0.150 4.581 25.123 0.860 0.111 4.711
✓ ✓ ✓ 20.363 0.805 0.201 4.142 22.837 0.841 0.138 4.464 25.086 0.860 0.108 4.346

Table 4. Ablation study of HWMNet-SKF for investigating the
effect of semantic priors in the loss function.

LSCH LSA PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓w/o S w/ S w/o SA w/o S w/ S

24.240 0.852 0.114 5.141
✓ ✓ 24.477 0.859 0.111 4.988
✓ ✓ 24.568 0.857 0.113 4.613
✓ ✓ 24.668 0.859 0.111 4.567

✓ ✓ 25.123 0.860 0.108 4.711
✓ ✓ 25.040 0.859 0.111 4.546
✓ ✓ 25.086 0.860 0.108 4.311

Table 5. Ablation study for investigating whether the performance
improvement comes from semantic priors or more parameters.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Param(M)

HWMNet
Baseline 24.240 0.852 0.114 66.56

Large 24.445 0.853 0.115 69.99
w/ SKF 25.086 0.860 0.108 69.98

LLFlow-S
Baseline 24.060 0.860 0.136 4.97

Large 24.167 0.858 0.137 5.38
w/ SKF 25.942 0.865 0.125 5.26

LLFlow-L
Baseline 24.999 0.870 0.117 37.68

Large 25.292 0.873 0.113 40.55
w/ SKF 26.798 0.879 0.105 39.91

serve color consistency and details and the SA loss reduces
fake regions by producing more natural textures.

Semantic-guided losses. Table 4 lists the results of dif-
ferent settings of losses. The w/o S and w/ S denote cal-
culating the global histogram and our semantic-guided his-
togram respectively. For SA loss, the w/o SA, w/o S and
w/ S denote without SA loss, classic global and local ad-
versarial loss like EnlightGAN [16] and our SA loss. First,
the HWMNet-SKF with SCH loss presents better perfor-
mance, achieving average margin of 0.512 dB improvement
on PSNR, indicating the significant capability of SCH loss
in preserving color consistency. Furthermore, the average
gain of 0.271 on NIQE by adding classic adversarial loss
can be attributed to the capability of discriminator to im-
prove visual quality. Finally, our SA loss provides favor-
able gain of 0.411 on NIQE over the baseline and faithfully
demonstrates that the semantic priors help find out fake re-
gions and thus produce more natural images.

Superiority of semantic priors. We choose HWMNet-

SKF, LLFlow-S-SKF and LLFlow-L-SKF to investigate
whether the improvement of performance benefits from se-
mantic priors provided by our SKF or the more parameters
of our SE modules. As shown in Table 5, Baseline, Large
and w/ SKF denote the original model, original model with
more layers or channels and original model with our SKF.
Our methods achieve significant improvement by average
margin of 1.272 dB on PSNR comparing to large versions
with similar number of parameters. Hence, we prove the su-
periority of the semantic priors instead of extra parameters.

5. Conclusion
This work has proposed a novel framework for semantic-

aware image enhancement, named SKF. The SKF incor-
porates semantic priors into Enhancement Net to preserve
color consistency and visual details by SE module, SCH
loss and SA loss. SE module allows image features to per-
ceive rich and spatial information by semantic feature rep-
resentations. SCH loss offers effective semantic-aware re-
gional constrain for preserving color consistency. SA loss
combines global and local adversarial loss and semantic pri-
ors to seek target fake region and generates natural results.
Extensive experiments show that our SKF achieves superior
performance in the case of all six baseline methods, and the
LLFlow-L-SKF outperforms all the competitors. However,
the improvement is limited when dealing with unknown cat-
egory, inducing more possibility when improving the ca-
pability of identifying unknown instance by SKB. Further-
more, we will also explore the potential of our SKF in other
low-level vision tasks.
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