
Masked Image Training for Generalizable Deep Image Denoising

Haoyu Chen1∗, Jinjin Gu2,3*, Yihao Liu2,4,5, Salma Abdel Magid6,
Chao Dong2,4, Qiong Wang4, Hanspeter Pfister6, Lei Zhu1,7†

1The Hong Kong University of Science and Technology (Guangzhou) 2Shanghai AI Lab 3The University of Sydney
4Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 5University of Chinese Academy of Sciences

6Harvard University 7The Hong Kong University of Science and Technology

Project page: https://github.com/haoyuc/MaskedDenoising

Abstract

When capturing and storing images, devices inevitably
introduce noise. Reducing this noise is a critical task called
image denoising. Deep learning has become the de facto
method for image denoising, especially with the emergence
of Transformer-based models that have achieved notable
state-of-the-art results on various image tasks. However,
deep learning-based methods often suffer from a lack of
generalization ability. For example, deep models trained on
Gaussian noise may perform poorly when tested on other
noise distributions. To address this issue, we present a
novel approach to enhance the generalization performance
of denoising networks, known as masked training. Our
method involves masking random pixels of the input image
and reconstructing the missing information during training.
We also mask out the features in the self-attention layers
to avoid the impact of training-testing inconsistency. Our
approach exhibits better generalization ability than other
deep learning models and is directly applicable to real-
world scenarios. Additionally, our interpretability analysis
demonstrates the superiority of our method.

1. Introduction
Image denoising is a crucial research area that aims to

recover clean images from noisy observations. Due to the
rapid advancements in deep learning, many promising im-
age denoising networks have been developed. These net-
works are typically trained using images synthesized from
a pre-defined noise distribution and can achieve remarkable
performance in removing the corresponding noise. How-
ever, a significant challenge in applying these deep models
to real-world scenarios is their generalization ability. Since
the real-world noise distribution can differ from that ob-
served during training, these models often struggle to gen-

*Haoyu Chen and Jinjin Gu contribute equally to this work.
†Lei Zhu (leizhu@ust.hk) is the corresponding author.

Gaussian 15
a. In-distribution b. Out-of-distribution

SwinIR SwinIR OursMixture noise

Figure 1. We illustrate the generalization problem of denois-
ing networks. We train a SwinIR model on Gaussian noise with
σ = 15. When tested on the same noise, SwinIR demon-
strates outstanding performance. However, when applied to out-
of-distribution noise, e.g., the mixture of various noise. SwinIR
suffers from a huge performance drop. The model trained by the
proposed masked training method maintains a reasonable denois-
ing effect, despite aldo being trained on Gaussian noise.

eralize to such scenarios.
More specifically, most existing denoising works train

and evaluate models on images corrupted with Gaussian
noise, limiting their performance to a single noise distri-
bution. When these models are applied to remove noise
drawn from other distributions, their performance drasti-
cally drops. Figure 1 shows an example. The research
community has become increasingly aware of this gener-
alization issue of deep models in recent years. As a coun-
termeasure, some methods [81] assume that the noise level
of a particular noise type is unknown, while others [5, 69]
attempt to improve the performance in real-world scenarios
by synthesizing or collecting training data closer to the tar-
get noise or directly performing unsupervised training on
the target noise [11, 72]. However, none of these meth-
ods substantially improve the generalization performance of
denoising networks, and they still struggle when the noise
distribution is mismatched [1]. The generalization issue of
deep denoising still poses challenges to making these meth-
ods broadly applicable.

In this work, we focus on improving the generalization
ability of deep denoising models. We define generalization

1

ar
X

iv
:2

30
3.

13
13

2v
1 

 [
cs

.C
V

] 
 2

3 
M

ar
 2

02
3

https://github.com/haoyuc/MaskedDenoising


ability as the model’s performance on noise different from
what it observed during training. We argue that the gener-
alization issue of deep denoising is due to the overfitting of
training noise. The existing training strategy directly op-
timizes the similarity between the denoised image and the
ground truth. The intention behind this is that the network
should learn to reconstruct the texture and semantics of nat-
ural images correctly. However, what is often overlooked is
that the network can also reduce the loss simply by overfit-
ting the noise pattern, which is easier than learning the im-
age content. This is at the heart of the generalization prob-
lem. Even many popular deep learning methods exacerbate
this overfitting problem. When it comes to noise different
from that observed during training, the network exhibits this
same behavior, resulting in poor performance.

In light of the preceding discussion, our study seeks
to improve the generalization performance of deep de-
noising networks by directing them to learn image con-
tent reconstruction instead of overfitting to training noise.
Drawing inspiration from recent masked modeling methods
[4, 20, 34, 70], we employ a masked training strategy to ex-
plicitly learn representations for image content reconstruc-
tion, as opposed to training noise. Leveraging the properties
of image processing Transformers [15,46,79], we introduce
two masking mechanisms: the input mask and the attention
mask. During training, the input mask removes input image
pixels randomly, and the network reconstructs the removed
pixels. The attention mask is implemented in each self-
attention layer of the Transformer, enabling it to learn the
completion of masked features dynamically and mitigate
the distribution shift between training and testing in masked
learning. Although we use Gaussian noise for training –
similar to previous works – our method demonstrates sig-
nificant performance improvements on various noise types,
such as speckle noise, Poisson noise, salt and pepper noise,
spatially correlated Gaussian noise, Monte Carlo-rendered
image noise, ISP noise, and complex mixtures of multiple
noise sources. Existing methods and models have yet to ef-
fectively and accurately remove all these diverse noise pat-
terns.

2. Related Works
Image Denoising approaches very broadly lie in two cat-
egories: traditional model-based and data-driven deep-
learning-based. Traditional methods are usually based on
modeling image priors to recover image content contami-
nated by noise [7, 19, 23, 32, 54]. These methods usually
do not impose too many constraints on the type of noise,
and have been proven to be applicable to a variety of noise,
with good generalization performance [1]. However, these
methods are not satisfactory for the reconstruction of im-
age content. In recent years, the paradigm of denoising
has gradually shifted to data-driven methods based on deep

learning methods [13]. Many techniques have been pro-
posed to improve the capabilities of the denoising networks
continuously, e.g., residual networks [39,81,82], dense net-
works [37, 87], recursive networks [9, 49, 64], multi-scale
[21, 31, 77], encoder-decoder [16, 55, 74], attention opera-
tions [85, 86], self-similarity [35], and non-local operations
[44, 45, 59]. Since 2020, the paradigm of vision network
design has gradually shifted from CNNs to Transformers
[22]. Vision Transformers treat input pixels as tokens and
use self-attention operations to process interactions between
these tokens. Inspired by the success of vision Transform-
ers, many attempts have been made to employ Transformers
for low-level vision tasks [10,14,15,46,63,68,71,75,78,79]
During the development of these models, the noise pattern
used for training is often consistent with the testing one.
The factor that determines its denoising performance is the
fitting ability of the network, in other words, the ability of
the network to overfit to the training noise. However, a bet-
ter network does not mean a better generalization ability of
the denoising model. As we will show in the experiment
section, a more efficient network even indicates worse gen-
eralization performance.

Generalization Problem in low-level vision often arises
when the testing degradation does not match the training
degradation, e.g., different downsampling kernel in super-
resolution [30, 40, 48]. We typically develop deep denois-
ing models based on Gaussian noise in the laboratory set-
ting. However, noise in the real-world is mostly non-
Gaussian. Models trained on Gaussian noise fail in these
non-Gaussian scenarios. There are two main categories
of solutions to this problem. The first is to make training
datasets with noise modeling as close to reality as possible
during development, e.g., synthesizing real noise according
to physical system modeling [5, 69], learning to generate
real noise [11, 24, 72], collecting real noise – clean image
pairs for training [1, 33, 42, 58]. Although the models ob-
tained by these methods can improve the effect on the tar-
get noise, they still cannot generalize to out-of-distribution
noise. Another category of solutions is to develop “blind”
denoising models, which are supposed to deal with un-
known noise [42, 73, 81]. These methods usually simply
assume that the noise level is unknown, or train on a large
amount of noise types [80], which also fails to generalize to
other noise not present in the training set. Few workd have
been proposed to study the reasons for the lack of general-
ization ability in low-level vision [40]. Liu et al. [50] ar-
gue that networks tend to overfit to degradations and show
degradation “semantics” inside the network. The presence
of these representations often means a decrease in general-
ization ability. The utilization of this knowledge can guide
us to analyze and evaluate the generalization performance
[51]. Apart from that, few works have been proposed to
improve the generalization ability of denoising models.

2



Trainging image Denoised by our method

Denoised by SwinIRGround truth

Our reconstruction result

Figure 2. SwinIR, when trained solely on immunohistochemistry
images with Gaussian noise, can still denoise natural images. This
observation supports the assertion that most existing methods per-
form denoising primarily through overfitting the training noise. In
contrast, our approach emphasizes reconstructing natural image
textures and edges observed in the training set on natural images,
rather than relying on noise overfitting for denoising. This distinc-
tion underlines the fundamental difference between our method
and previous approaches. “Our reconstruction result” refers to us-
ing our model but taking masked images as input.

original mask 70% mask 90%

Figure 3. The illustration of the proposed mask-and-complete
training strategy. Even if a large number of pixels are masked,
the model can still reconstruct the input to some extent.

Masked modeling for language [6, 20, 60, 61] is success-
ful for learning pre-trained representations that generalize
well to various downstream tasks. These methods mask out
a portion of the input sequence and train models to predict
the missing content. A similar approach can also be ap-
plied to the vision model pre-training. Masked image mod-
els learn representations from corrupted images. The earli-
est attempts in this regard can be traced back at least to the
denoising auto-encoder [67]. Since then, many works have
used predicting missing parts of images to learn efficient
image representations [4, 12, 34, 57, 70]. However, there
have been few successful attempts to apply masked image
modeling to low-level vision, even though the masked pre-
training method is in the form of low-level vision tasks.

3. Method
Our objective is to create denoising models capable of

generalizing to noise not encountered in the training set. In
this section, we first discuss our motivation before delving
into the specifics of our masked training method.

Motivation. When training a deep network on a large
number of images, the expectation is for the network to

learn to discern the rich semantics of natural images from
noise-contaminated test cases. However, several studies
have noted that the semantics and knowledge acquired by
low-level vision networks differ significantly from our ex-
pectations [29, 50, 51, 53]. We argue that the poor general-
ization ability of denoising models results from our train-
ing method, which leads the model to focus on overfit-
ting the training noise rather than learning image recon-
struction. We conduct a simple experiment for verification.
We trained a SwinIR denoising network [46] using images
that greatly differ from natural images (immunohistochem-
istry images [66]). We synthesized training data pairs us-
ing Gaussian noise, and then assessed the model’s perfor-
mance on natural images with Gaussian noise. According
to our hypothesis, if the model learns the content and recon-
struction of image semantics from the training set, it should
not perform well on natural images, as it has not been ex-
posed to any. If the model is simply overfitting the noise,
the model can remove the noise even if the images are dif-
ferent, as the model mainly relies on detecting the noise for
denoising.

The results are presented in Figure 2. As observed, the
SwinIR trained on immunohistochemistry images can still
denoise and reproduce the natural image. This supports our
conjecture regarding generalization ability, indicating that
most existing methods perform denoising by overfitting the
training noise. Consequently, when the noise deviates from
the training conditions, the denoising performance of these
models declines significantly.

This observation also inspires our approach to develop-
ing deep denoising models with improved generalization
ability. We aim for the model to learn the reconstruction
of image textures and structures, rather than focusing only
on noise. In this paper, we propose a new masked training
strategy for denoising networks. During training, we mask
out a portion of the input pixels and then train the deep net-
work to complete them, as shown in Figure 3. Our approach
emphasizes reconstructing natural image textures and edges
observed in the image, rather than overfitting noise. In Fig-
ure 2 we also show the results of our method. It is evi-
dent that our approach seeks to reconstruct the immuno-
histochemistry image texture from the training set on the
testing natural image, instead of relying on noise overfit-
ting for denoising. This demonstrates the potential of this
idea in improving generalization performance. By training
our method on natural images, it will concentrate on recon-
structing the content of natural images, aligning with our
core concept of employing deep learning for low-level vi-
sion tasks.

The Transformer Architecture. Our approach exploits
the excellent properties of visual Transformers, so we first
describe the basic Transformer backbone used in this study.
The shifted window mechanism is proven to be flexible and

3



[mask-token]

Input Mask

Randomly 
replace with

M
as

ke
d 

ST
L

M
as

ke
d 

ST
L

Mask Swin Transformer Block (STL)

+

La
ye

rN
or

m

M
LP +

[mask-token]

Attention Mask

Randomly 
replace with

M
SA

La
ye

rN
or

m

C
on

v 
La

ye
r

<latexit sha1_base64="FXxODS1uN5rphMcgWhJkIZgXvN0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKnXofRcTNoFxxq+4CZJ14OalAjuag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVtUv8bHHujFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDGz8TKkmRK7ZcFKaSYEzmv5Oh0JyhnFpCmRb2VsLGVFOGNqGSDcFbfXmdtK+qXr1ae6hVGrd5HEU4g3O4BA+uoQH30IQWMJjAM7zCm5M4L86787FsLTj5zCn8gfP5AzEyj30=</latexit>

6⇥

Mask STLB

Fe
at

ur
e 

Em
be

dd
in

g 

M
as

k 
ST

LB

M
as

k 
ST

LB

M
as

k 
ST

LB

a. b.

Noisy Input Denoised 
Image

Figure 4. The transformer architecture of our proposed masked image training. We make a minimal change to the original SwinIR
architecture – the input mask operation and the attention masks. Other micro-designs are not essentially different from other Transformers.

original w/o attention mask w/ attention mask

Figure 5. Quantitative effect of the attention mask. The histogram
differences are also shown above.

effective for image processing tasks [15, 46, 79]. We only
make minimal changes when applying it to the proposed
masked training method without the loss of generality. This
model is illustrated in Figure 4. Transformers divide the
input signal into tokens and process spatial information us-
ing self-attention layers. In our method, a convolution layer
with kernel size 1 is used as the feature embedding mod-
ule to project the 3-channel pixel values into C-dimensional
feature tokens. The 1 × 1 convolution layer ensures that
pixels do not affect each other during feature embedding,
which facilitates subsequent masking operations. These
feature tokens are gathered with shape H ×W ×C, where
H , W and C are the height, width and feature dimension.
The shifted window mechanism first reshapes the feature
maps of each frame to HW

M2 ×M2×C features by partition-
ing the input into non-overlapping M ×M local windows,
where HW

M2 is the total number of windows. We calculate
self-attention on the feature tokens within the same window.
Therefore, M2 tokens are involved in each standard self-
attention operation, and we produce the local window fea-
ture X ∈ RM2×C . In each self-attention layer, the query Q,
key K and value V are calculated as Q = XWQ, K =
XWK , V = XWV , where WQ,WK ,WV ∈ RC×D

are weight matrices, and D is the dimension of projected
vectors. Then, we use Q to query K to generate the atten-
tion map A = softmax(QKT

/
√
D+B) ∈ RM2×M2

, where
B is the learnable relative positional encoding. This atten-
tion map A is then used for the weighted sum of M2 vectors
in V . The multi-head settings are aligned with SwinIR [46]
and ViT [22].

Mixture noise Referencew/o input mask full methodw/o attention mask

Figure 6. The effectiveness of the input mask and attention mask.
Note that the brightness of the image is wrong w/o attention mask.

Input
Mask

Attention
Mask PSNR SSIM

✓ 29.17 0.8227
✓ 26.96 0.8202
✓ ✓ 29.74 0.8672

Table 1. The importance of using
different mask operations.

Mix. noise on CBSD68 [56]
Ratio (%) PSNR SSIM

65 29.57 0.8657
75 29.76 0.8678
85 28.84 0.8548

Table 2. Ablation on the at-
tention mask ratio.

Masked Training. Our masked training mainly consists
of two aspects, the input mask and the attention mask. Al-
though both are mask operations, the purpose of these two
masks is different. We describe them separately.

The Input Mask randomly masks out the feature tokens
embedded by the first convolution layer, and encourages the
network to complete the masked information during train-
ing. The input mask explicitly constructs a very challenging
inpainting problem, as shown in Figure 3. It can be seen that
even if up to 90% of the pixel information is destroyed, the
network can still reconstruct the target image to a certain
extent. The method is very simple. Given the feature token
tensor f ∈ RH×W×C , we randomly replace the token with a
[mask token]∈ RC with a probability pIM, where pIM
is called the input mask ratio. The network is trained under
the supervision of the l1-norm of the reconstructed image
and the ground truth. The [mask token] can be learn-
able and initialized with a 0 vector. But we actually found
that the 0 vector itself is already a suitable choice. The ex-
istence of the input mask forces the network to learn to rec-
ognize and reconstruct the content of the image from very
limited information.

The Attention Mask. We cannot build usable image pro-
cessing networks relying solely on the input mask opera-
tion. Because during testing, we will input uncorrupted im-
ages to retain enough information. At this time, due to the
inconsistency between training and testing, the network will
tend to increase the brightness of the output image. Such as
the example in Figure 5. Since Transformer uses the self-

4



0 15 25 50 75 80 85 95
27
29
31
33
35

G
au

ss
ia

n 
15

28
29
30
31

Sp
ec

kl
e,

 0
.0

24

Gaussian 15 Speckle, 0.024 Mixture, level 3 22

24

26

28

M
ix

tu
re

, l
ev

el
 3

Mask ratio (%)

PSNR

Figure 7. The trade-off of choosing different mask ratios. The per-
formance drop on training noise is not significant until 75% mask-
ing ratio. Our performance gain on the noise outside the training
set is greater than the performance loss on the training set.

attention operation to process spatial information, we can
narrow the gap between training and testing by perform-
ing the same mask operation during the self-attention pro-
cess. The specific mask operation is similar to the input
mask, but a different attention mask ratio pAM and [mask
token] are used. When some tokens in the self-attention
are masked, the attention operation will adjust to the fact
that the information of these tokens is no longer reliable.
Self-attention will focus on unmasked tokens in each layer
and complete the masked information. This operation is
difficult to implement on convolutional networks. Figure 5
shows the effect of the attention mask. As can be seen, the
attention mask successfully makes the masked trained net-
work work on the unmasked input image.

4. Experiments
Training Settings. For synthesizing training data, we
sample the clean images from DIV2K [65], Flickr2K [47],
BSD500 [3], and WED [52] during training. In our work,
all the networks are trained using Gaussian noise with stan-
dard deviation σ = 15. Each input image is randomly
cropped to a spatial resolution of 64×64, and the number
of the total training iteration is 200K. We adopt the Adam
optimizer [38] with β1=0.9 and β2=0.99 to minimize the L1

pixel loss. The initial learning rate is set as 1×10−4 and re-
duced by half at the milestone of 100K iterations and 150K
iterations. The batch size is set to 64.

Testing Noise. Since the training process utilizes the
Gaussian noise, we evaluate the generalization performance
of the models on six other synthetic noise: (1) Speckle
noise, a type of noise that occurs during the acquisition of
medical images or tomography images. (2) Poisson noise,
a type of signal-dependent noise that occurs during the ac-
quisition of digital images. (3) Spatially-correlated noise.
This is to synthesize the complex artifact after denoising us-
ing a flawed algorithm. It is produced by filtering Gaussian
noise with a 3 × 3 average kernel. Different standard devi-
ations of the Gaussian noise indicate different noise levels.
(4) Salt & pepper noise. (5) Image signal processing (ISP)
noise. [5] proposes a method to synthesize realistic ISP
noise during digital imaging. (6) Mixture noise obtained
by mixing the above different types of noise with different
levels [80]. The clean images are sampled from the bench-

mark datasets, including CBSD68 [56], Kodak24 [26], Mc-
Master [83], and Urban100 [36]. We also include two real
noise types in this work: the Smartphone Image Denoising
Dataset (SIDD) [1] and Monte Carlo (MC) rendered image
noise. For evaluation, we follow [27,28] and use the metrics
PSNR, SSIM [52], and LPIPS [84] to evaluate the results.
Since PSNR and SSIM are questioned in assessing the per-
ceptual quality of images [27,28], we also use the LPIPS as
an additional metric.

4.1. Resutls

Ablation Study. Table 1 and Figure 6 show the effective-
ness of using different mask operations. As we can see,
without the input mask, the model will lose its generaliza-
tion ability, and cannot effectively remove the noise out-
side the training set. Without the attention mask, due to the
training-testing inconsistency, the quantitative performance
degrades significantly, and the output image will have the
wrong brightness. In addition, even without the attention
mask, the generalization ability of the model is not signif-
icantly affected, and most of the noise is still effectively
removed. The input mask is the crucial factor in improving
the model the generalization ability.

Table 3a shows the impact of the different input mask
ratios. We test fixed ratios and random ratios from a uni-
form distribution. From our experiments, fixed ratios are
less stable for training than randomly chosen from a range,
and the performance is also worse. The best quantitative
performance is achieved with random sampling ratios be-
tween 75% ∼ 85%. This is a trade-off between denoising
generalization ability and the preservation of image details.
As shown in Figure 7, smaller ratios are not enough for the
network to learn the distribution of images because more
noise patterns are preserved. The larger ratio improves the
model generalization, as the model focuses more on recon-
struction. But at the same time, some image details may
be lost. For attention mask ratio, we show the effects in
Table 2. The optimal ratios are around 75%.

The Generalization Performance. We evaluate our deep
denoising method on synthetic noise, where our training
noise follows a Gaussian distribution with a single noise
level, but we test on multiple types of non-Gaussian noise
to assess the model’s generalization performance. In Fig-
ure 11, we compare our method with other state-of-the-art
models based on their PSNR and SSIM scores. The re-
sults show that our model outperforms all the other mod-
els in terms of generalization performance. Particularly, as
the noise level increases, our model exhibits a slower per-
formance degradation and thus demonstrates better gener-
alization. In contrast, other models suffer from significant
performance drops when dealing with more severe noise.
We also provide visual comparisons in Figure 8, where our
model achieves remarkable denoising results even though it

5



CBSD68: img 053

Spatially correlated Gaussian, σ = 50 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

CBSD68: img 0046

Speckle noise, σ2 = 0.013 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

CBSD68: img 0067

Salt-and-pepper noise, d = 0.02 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

Figure 8. Visual comparison on out-of-distribution noise. When all other methods fail completely, our method is still able to denoise
effectively. Please refer to the supplementary material to see more visual results.

Noisy Reference DnCNN

RNANRendered image (256 spp) SwinIR Ours

Figure 9. Visual results of denoising a Monte Carlo rendered image.

Noisy Reference DnCNN

RNAN SwinIR Ours

Figure 10. Results of ISP noise removal.

is trained only on Gaussian noise with a fixed standard devi-
ation. In contrast, existing models tend to overfit the train-
ing noise and fail when facing unseen noise. More quanti-
tative and qualitative results can be found in the supplemen-
tary material.

Evaluation on ISP noise. The removal of the ISP noise
is of great application value. Brooks et al. [5] present a sys-
tematic approach for generating realistic raw data with ISP
noise that can facilitate our research. We use the default
parameter settings of the method proposed in [5] to synthe-
size ISP noise on the Kodak24 [26] dataset for testing. The
results are shown in Figure 10 and Table 3c. Our method

achieves superior results compared to all other methods.
Notably, our method achieves a significant lead in LPIPS,
indicating that our results exhibit better perceptual quality.
Although DnCNN and our method obtain the same PSNR,
our method still outperforms DnCNN in terms of SSIM and
LPIPS. Furthermore, as evident from Figure 10, DnCNN’s
results still contain visible noise, while our method effec-
tively removes the noise.

Evaluation on Monte Carlo rendering noise. Monte
Carlo denoising is a vital component of the rendering pro-
cess since the widespread use in the industry of Monte Carlo
rendering algorithms [8, 17, 43]. We use the test dataset

6



Mix. noise on CBSD68 [56]
Ratio (%) PSNR SSIM

75 29.17 0.8132
85 29.44 0.8545
95 19.60 0.7273

70–80 29.86 0.8593
75–85 30.04 0.8756
75–90 29.87 0.8728
75–95 29.26 0.8607
80–90 29.74 0.8672

(a) Abl. of input mask ratios.

128 samples per pixel 64 samples per pixel
Method PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.94 0.7883 0.2671 26.28 0.6779 0.4216
RIDNet [2] 29.96 0.7921 0.2548 26.27 0.6788 0.4122
RNAN [86] 29.86 0.7825 0.2702 26.26 0.6743 0.4290
SwinIR [46] 29.32 0.7627 0.2943 26.14 0.6651 0.4485
Restormer [76] 24.98 0.6598 0.4575 24.59 0.5880 0.5375
Dropout [40] 28.85 0.7753 0.2941 26.10 0.6696 0.4443
baseline 29.68 0.7738 0.2851 25.91 0.6535 0.4564

Ours 30.62 0.8500 0.2254 28.25 0.7694 0.3348

(b) Quantitative comparison on Monte Carlo rendered image denoising.

Synthetic ISP noise [5]
Method PSNR SSIM LPIPS

DnCNN [81] 29.44 0.7857 0.3083
RIDNet [2] 28.75 0.7446 0.3696
RNAN [86] 28.47 0.7243 0.3601
SwinIR [46] 28.39 0.7079 0.3346
Restormer [76] 19.31 0.4982 0.6556
Dropout [40] 28.39 0.7816 0.2621
baseline 28.89 0.7595 0.2917

Ours 29.44 0.7920 0.2368

(c) Comparison on synthetic ISP noise.

Table 3. We train all the models on Gaussian noise, σ = 15. All the testing noise is out of the training set, therefore the results can show
the models’ generalization performance on different unseen noise.

 DnCNN  RIDNet  RNAN  SwinIR  Restormer  Dropout  baseline  Ours

PS
N

R
SS

IM
LP

IP
S

Speckle Noise LevelSpatially-correlated Noise Level Poisson Noise Level Mixture Noise Level

1 2 3 4 5

22

26

30

1 2 3 4 5

0.4

0.6

0.8

1 2 3 4 5

0.2

0.3

0.4

0.5

0.6

40 45 50 55 60

24

26

28

40 45 50 55 60
0.3

0.4

0.5

40 45 50 55 60
0.5

0.6

0.7

0.8

0.018 0.024 0.03 0.036 0.04

26

28

30

32

0.018 0.024 0.03 0.036 0.04

0.15

0.2

0.25

0.3

0.018 0.024 0.03 0.036 0.04
0.6

0.7

0.8

0.9

2 2.5 3 3.5

0.4

0.5

0.6

0.7

0.8

2 2.5 3 3.5
0.2

0.3

0.4

0.5

0.6

2 2.5 3 3.5
20

22

24

26

28

30

Figure 11. Performance comparisons on four noise types with different levels on the Kodak24 dataset [26]. All models are trained only
on Gaussian noise. Our masked training approach demonstrates good generalization performance across different noise types. We involve
multiple types and levels of noise in testing, the results cannot be shown here. More results are shown in the supplementary material.

proposed by [25] for Monte Carlo rendered image denois-
ing. The test images were rendered in 128 samples-per-
pixel (spp) and 64 spp. The lower the spp, the more severe
the noise of the image. In order to adapt the test set to our
model, we first convert the data set to sRGB color space by
tone mapping. Figure 9 and Table 3b show the denoising re-
sults. Our method outperforms all methods on both 128spp
and 64spp settings. In Figure 9, the existing methods fail
completely because of poor generalization. Our model is
still able to remove this noise, demonstrating the wide ap-
plicability of our method.

4.2. Generalization Analysis

Training curve. Figure 13 shows the training curves of
the model with and without the proposed masked training.
The models are trained using only Gaussian noise. The
baseline method has a significant overfitting problem. The
performance of our method gradually improves with train-
ing without overfitting.

CKA analysis. To investigate how masked training dif-
fers from normal training strategy, we utilize the centered
kernel alignment (CKA) [18, 62] to analyze the differences
between network representations obtained from those two
training methods. Due to the limited space, we describe the
detail of CKA in supplementary. In Figure 12, we present
our key findings. Specifically, Figure 12 (a) shows the
cross-model comparison between the baseline model and
our masked training model. We observe a significant dif-
ference between the two models in terms of their feature
correlations in the deeper layers. Specifically, the features
of the deeper layers of the baseline model exhibit low cor-
relations with all layers of our model. This finding suggests
that these two training methods exhibit inconsistent learn-
ing patterns for features, especially for the deeper layers.

To explore how the models perform on different noise
types, Figure 12 (b) shows the cross-noise comparison be-
tween in-distribution noise and out-of-distribution noise,
such as Gaussian and Poisson noise. For the baseline model,
we observe a low correlation between different noise types

7



b. cross-model comparison between different noisea. cross-model comparison on Gaussian 15

Figure 12. CKA similarity to analyze the representation similarity of network layers.

Iteration (K) Iteration (K)

PS
N

R
PS

N
R

PS
N

R

Speckle

10 60 110 160
0.7

0.75

0.8

0.85

SS
IM

SS
IM

SS
IM

Poisson

10 60 110 160

22

24

26

28 Spatially-correlated

10 60 110 160

0.5
0.55
0.6
0.65
0.7
0.75
0.8

10 60 110 160

22

24

26

28

10 60 110 160

0.5
0.55
0.6
0.65
0.7
0.75
0.8

10 60 110 160

26

28

30

Figure 13. The testing curves on different noise types and levels.

without masked trainingwith masked training

Figure 14. Comparing generalization ability with the SRGA met-
ric. A lower SRGA value indicates better generalization ability.

Gaussian
Speckle

Mixture
Poisson

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0

1

2

3

4
1e6

Masked Training

Gaussian
Speckle

Mixture
Poisson

-0.10 -0.05 0.0 0.05 0.10
0

1

2

3

4

5 1e6

Without Masked Training

co
un

t

Figure 15. The distribution of baseline model features is biased
across different noise types. Our method produces similar feature
distributions across different noise.

in the deep layers, indicating that the network processes
these two types of noise in different ways for the deep lay-
ers. This trend holds for other types of noise as well. This

phenomenon may be due to the baseline approach causing
the deep layers of the model to overfit to the patterns of the
training set, thereby limiting their generalization capabili-
ties to handle different noise types. In contrast, the high
correlation between adjacent layers in our masked training
model suggests that the model’s representation of the two
different noise types is similar. The proposed masked train-
ing forces the network to learn the underlying distribution of
the images themselves, which makes the model more robust
to different types of noise and enhances its generalization
capability.
Quantification of generalization performance. Liu et
al. [50, 51] suggest that model generalization ability can be
measured by measuring the consistency of the model’s rep-
resentations across different types of noise. They also pro-
pose a generalization assessment index for low-level vision
networks called SRGA [51]. It is a non-parametric and non-
learning metric which exploits the statistical characteristics
of internal features of deep networks. The lower the value of
SRGA, the better the generalization ability. In our case, we
use Gaussian noise as the reference and other types of noise
for testing. Figure 14 shows the SRGA results. Inspired
by [51], we visualize the distributions of deep features on
different noise types, shown in Figure 15. We can see that
for the baseline model, the feature distributions under differ-
ent noise types deviate from each other significantly. For the
model w/ masked training, the deep feature distributions of
different noise types are close to each other. This confirms
the effectiveness of our method.

5. Conclusion and Limitations
In summary, our masked training method provides a

promising approach to improving the generalization per-
formance of deep learning-based image denoising models.
The limitation of our method is that the mask operation in-
evitably loses information. How to preserve more details
needs to be explored in future work. Our approach is a step
towards developing more robust models for real-world ap-
plications.

Acknowledgment. This work is supported in part by
Guangzhou Municipal Science and Technology Project

8



(Grant No. 2023A03J0671), the National Natural Science
Foundation of China under Grant (62276251), the Joint Lab
of CAS-HK, and the Youth Innovation Promotion Associa-
tion of Chinese Academy of Sciences (No. 2020356).

References
[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S

Brown. A high-quality denoising dataset for smartphone
cameras. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1692–1700,
2018. 1, 2, 5, 13, 14

[2] Saeed Anwar and Nick Barnes. Real image denoising with
feature attention. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3155–3164,
2019. 6, 7, 13, 16, 17, 18, 19, 20

[3] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-
tendra Malik. Contour detection and hierarchical image seg-
mentation. TPAMI, 2010. 5

[4] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254,
2021. 2, 3

[5] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11036–11045, 2019. 1, 2, 5, 6, 7, 13

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 3

[7] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local
algorithm for image denoising. In 2005 IEEE computer so-
ciety conference on computer vision and pattern recognition
(CVPR’05), volume 2, pages 60–65. Ieee, 2005. 2

[8] Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank
Driskill, Ralf Habel, Patrick Kelly, Peter Kutz, Yining Karl
Li, and Daniel Teece. The design and evolution of disney’s
hyperion renderer. ACM Transactions on Graphics (TOG),
37(3):1–22, 2018. 6

[9] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu.
Deep boosting for image denoising. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 3–
18, 2018. 2

[10] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, 2021. 2

[11] Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming
Yang. Image blind denoising with generative adversarial net-
work based noise modeling. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3155–3164, 2018. 1, 2

[12] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International conference on machine
learning, pages 1691–1703. PMLR, 2020. 3

[13] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction
diffusion: A flexible framework for fast and effective image
restoration. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(6):1256–1272, 2016. 2

[14] Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, and
Xiaokang Yang. Recursive generalization transformer for
image super-resolution. arXiv preprint arXiv:2303.06373,
2023. 2

[15] Zheng Chen, Yulun Zhang, Jinjin Gu, Yongbing Zhang,
Linghe Kong, and Xin Yuan. Cross aggregation transformer
for image restoration. In NIPS, 2022. 2, 4

[16] Shen Cheng, Yuzhi Wang, Haibin Huang, Donghao Liu,
Haoqiang Fan, and Shuaicheng Liu. Nbnet: Noise basis
learning for image denoising with subspace projection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4896–4906, 2021. 2

[17] Per Christensen, Julian Fong, Jonathan Shade, Wayne
Wooten, Brenden Schubert, Andrew Kensler, Stephen Fried-
man, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister,
et al. Renderman: An advanced path-tracing architecture for
movie rendering. ACM Transactions on Graphics (TOG),
37(3):1–21, 2018. 6

[18] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh.
Algorithms for learning kernels based on centered alignment.
The Journal of Machine Learning Research, 13:795–828,
2012. 7, 15

[19] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on image
processing, 16(8):2080–2095, 2007. 2

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2, 3

[21] Nithish Divakar and R Venkatesh Babu. Image denoising
via cnns: An adversarial approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 80–87, 2017. 2

[22] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2, 4

[23] Michael Elad and Michal Aharon. Image denoising via
sparse and redundant representations over learned dictionar-
ies. IEEE Transactions on Image processing, 15(12):3736–
3745, 2006. 2

[24] Ruicheng Feng, Jinjin Gu, Yu Qiao, and Chao Dong. Sup-
pressing model overfitting for image super-resolution net-
works. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
0–0, 2019. 2

[25] Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann
Jensen. Progressive denoising of monte carlo rendered im-
ages. In Computer Graphics Forum, volume 41, pages 1–11.
Wiley Online Library, 2022. 7, 13

9



[26] Rich Franzen. Kodak lossless true color image suite. source:
http://r0k.us/graphics/kodak/, 1999. 5, 6, 7, 15, 17

[27] Jinjin Gu, Haoming Cai, Haoyu Chen, Xiaoxing Ye, Jimmy
Ren, and Chao Dong. Image quality assessment for percep-
tual image restoration: A new dataset, benchmark and met-
ric. arXiv preprint arXiv:2011.15002, 2020. 5

[28] Jinjin Gu, Haoming Cai, Haoyu Chen, Xiaoxing Ye, Jimmy
Ren, and Chao Dong. Pipal: a large-scale image qual-
ity assessment dataset for perceptual image restoration. In
European Conference on Computer Vision, pages 633–651.
Springer, 2020. 5

[29] Jinjin Gu and Chao Dong. Interpreting super-resolution
networks with local attribution maps. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9199–9208, 2021. 3

[30] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong.
Blind super-resolution with iterative kernel correction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1604–1613, 2019. 2

[31] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.
Self-guided network for fast image denoising. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2511–2520, 2019. 2

[32] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu
Feng. Weighted nuclear norm minimization with applica-
tion to image denoising. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2862–2869, 2014. 2

[33] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1712–1722,
2019. 2

[34] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 2, 3

[35] Xiaowan Hu, Ruijun Ma, Zhihong Liu, Yuanhao Cai, Xiaole
Zhao, Yulun Zhang, and Haoqian Wang. Pseudo 3d auto-
correlation network for real image denoising. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16175–16184, 2021. 2

[36] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
CVPR, 2015. 5, 15, 20

[37] Xixi Jia, Sanyang Liu, Xiangchu Feng, and Lei Zhang. Foc-
net: A fractional optimal control network for image denois-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6054–6063,
2019. 2

[38] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 5

[39] Filippos Kokkinos and Stamatios Lefkimmiatis. Deep im-
age demosaicking using a cascade of convolutional residual
denoising networks. In Proceedings of the European con-
ference on computer vision (ECCV), pages 303–319, 2018.
2

[40] Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, and Chao
Dong. Reflash dropout in image super-resolution. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6002–6012, 2022. 2, 7, 13,
17, 18, 19, 20

[41] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-
tations revisited. In International Conference on Machine
Learning, pages 3519–3529. PMLR, 2019. 15

[42] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug.
Noise2void-learning denoising from single noisy images. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2129–2137, 2019. 2

[43] Christopher Kulla, Alejandro Conty, Clifford Stein, and
Larry Gritz. Sony pictures imageworks arnold. ACM Trans-
actions on Graphics (TOG), 37(3):1–18, 2018. 6

[44] Stamatios Lefkimmiatis. Non-local color image denoising
with convolutional neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3587–3596, 2017. 2

[45] Stamatios Lefkimmiatis. Universal denoising networks: a
novel cnn architecture for image denoising. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3204–3213, 2018. 2

[46] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In CVPR, 2021. 2, 3, 4, 6, 7, 13, 16,
17, 18, 19, 20

[47] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In CVPRW, 2017. 5

[48] Anran Liu, Yihao Liu, Jinjin Gu, Yu Qiao, and Chao Dong.
Blind image super-resolution: A survey and beyond. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2022. 2

[49] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and
Thomas S Huang. Non-local recurrent network for image
restoration. Advances in neural information processing sys-
tems, 31, 2018. 2

[50] Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wen-
hao Wu, Yu Qiao, and Chao Dong. Discovering” se-
mantics” in super-resolution networks. arXiv preprint
arXiv:2108.00406, 2021. 2, 3, 8

[51] Yihao Liu, Hengyuan Zhao, Jinjin Gu, Yu Qiao, and
Chao Dong. Evaluating the generalization ability of super-
resolution networks. arXiv preprint arXiv:2205.07019,
2022. 2, 3, 8

[52] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang,
Hongwei Yong, Hongliang Li, and Lei Zhang. Waterloo ex-
ploration database: New challenges for image quality assess-
ment models. TIP, 2016. 5

[53] Salma Abdel Magid, Zudi Lin, Donglai Wei, Yulun Zhang,
Jinjin Gu, and Hanspeter Pfister. Texture-based error analysis
for image super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2118–2127, 2022. 3

[54] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro,
and Andrew Zisserman. Non-local sparse models for image

10



restoration. In 2009 IEEE 12th international conference on
computer vision, pages 2272–2279. IEEE, 2009. 2

[55] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image
restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. Advances in neu-
ral information processing systems, 29, 2016. 2

[56] David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001,
volume 2, pages 416–423. IEEE, 2001. 4, 5, 7, 15, 19

[57] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536–2544, 2016. 3

[58] Tobias Plotz and Stefan Roth. Benchmarking denoising
algorithms with real photographs. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1586–1595, 2017. 2

[59] Tobias Plötz and Stefan Roth. Neural nearest neighbors net-
works. Advances in Neural information processing systems,
31, 2018. 2

[60] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gen-
erative pre-training. 2018. 3

[61] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 3

[62] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? Advances
in Neural Information Processing Systems, 34:12116–12128,
2021. 7, 15

[63] Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu
Yang, and Chao Dong. Rethinking alignment in video super-
resolution transformers. arXiv preprint arXiv:2207.08494,
2022. 2

[64] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
net: A persistent memory network for image restoration. In
Proceedings of the IEEE international conference on com-
puter vision, pages 4539–4547, 2017. 2

[65] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, Lei Zhang, Bee Lim, Sanghyun Son, Heewon
Kim, Seungjun Nah, Kyoung Mu Lee, et al. Ntire 2017 chal-
lenge on single image super-resolution: Methods and results.
In CVPRW, 2017. 5

[66] Mathias Uhlen, Per Oksvold, Linn Fagerberg, Emma Lund-
berg, Kalle Jonasson, Mattias Forsberg, Martin Zwahlen,
Caroline Kampf, Kenneth Wester, Sophia Hober, et al. To-
wards a knowledge-based human protein atlas. Nature
biotechnology, 28(12):1248–1250, 2010. 3

[67] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua
Bengio, Pierre-Antoine Manzagol, and Léon Bottou.
Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion.
Journal of machine learning research, 11(12), 2010. 3

[68] Zhendong Wang, Xiaodong Cun, Jianmin Bao, and
Jianzhuang Liu. Uformer: A general u-shaped transformer
for image restoration. arXiv preprint arXiv:2106.03106,
2021. 2

[69] Kaixuan Wei, Ying Fu, Jiaolong Yang, and Hua Huang. A
physics-based noise formation model for extreme low-light
raw denoising. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2758–
2767, 2020. 1, 2

[70] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653–9663, 2022. 2, 3

[71] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In CVPR, 2020. 2

[72] Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang,
Chao Dong, and Liang Lin. Unsupervised image super-
resolution using cycle-in-cycle generative adversarial net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 701–710,
2018. 1, 2

[73] Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng,
and Lei Zhang. Variational denoising network: Toward blind
noise modeling and removal. Advances in neural information
processing systems, 32, 2019. 2

[74] Zongsheng Yue, Qian Zhao, Lei Zhang, and Deyu Meng.
Dual adversarial network: Toward real-world noise removal
and noise generation. In European Conference on Computer
Vision, pages 41–58. Springer, 2020. 2

[75] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In CVPR, 2022. 2

[76] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022. 6, 7, 13, 16, 17, 18, 19, 20

[77] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Multi-stage progressive image restoration. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 14821–14831, 2021. 2

[78] Jiale Zhang, Yulun Zhang, Jinjin Gu, Jiahua Dong,
Linghe Kong, and Xiaokang Yang. Xformer: Hybrid x-
shaped transformer for image denoising. arXiv preprint
arXiv:2303.06440, 2023. 2

[79] Jiale Zhang, Yulun Zhang, Jinjin Gu, Yongbing Zhang,
Linghe Kong, and Xin Yuan. Accurate image restora-
tion with attention retractable transformer. arXiv preprint
arXiv:2210.01427, 2022. 2, 4

[80] Kai Zhang, Yawei Li, Jingyun Liang, Jiezhang Cao, Yulun
Zhang, Hao Tang, Radu Timofte, and Luc Van Gool. Prac-
tical blind denoising via swin-conv-unet and data synthesis.
arXiv preprint arXiv:2203.13278, 2022. 2, 5

11



[81] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE transactions on image
processing, 26(7):3142–3155, 2017. 1, 2, 6, 7, 13, 14, 16,
17, 18, 19, 20

[82] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward
a fast and flexible solution for cnn-based image denoising.
IEEE Transactions on Image Processing, 27(9):4608–4622,
2018. 2

[83] Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color
demosaicking by local directional interpolation and nonlo-
cal adaptive thresholding. Journal of Electronic imaging,
20(2):023016, 2011. 5, 15, 18

[84] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

[85] Yulun Zhang, Kunpeng Li, Kai Li, Gan Sun, Yu Kong, and
Yun Fu. Accurate and fast image denoising via attention
guided scaling. IEEE Transactions on Image Processing,
30:6255–6265, 2021. 2

[86] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun
Fu. Residual non-local attention networks for image restora-
tion. arXiv preprint arXiv:1903.10082, 2019. 2, 6, 7, 13, 16,
17, 18, 19, 20

[87] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image restoration. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(7):2480–2495, 2020. 2

12



Appendix

A. Details of the Test Noise
We evaluate the generalization performance of the mod-

els on six different synthetic noise types to evaluate the gen-
eralization performance on the noise out of the training set:
(1) Speckle noise is a kind of noise that can occur during the
acquisition of medical images or tomography images. We
use different variances σ2 to obtain different levels of noise.
The imnoise function in MATLAB is used for generating
Speckle noise. We add multiplicative noise according to the
equation J = I + n ∗ I , where n is uniformly distributed
random noise with mean 0 and variance σ2, J is the noisy
image.
(2) Poisson noise is a kind of signal-dependent noise that
occurs during the acquisition of digital images. We am-
plified the noise using different scaling factor α using the
equation J = I + n ∗ α, where we generate Poisson noise
n first, then multiply it by a scaling factor α.
(3) Spatially-correlated noise indicates additive Gaussian
noise filtered with an average kernel of size 3×3. Different
levels indicate different standard deviations σ for the used
Gaussian noise. This is to synthesize the complex artifact
after denoising using a flawed algorithm.
(4) Salt & pepper noise. Different noise levels represent
different noise densities, denoted by d. The imnoise func-
tion in MATLAB is used for generating Salt & pepper noise.
This noise can appear during image acquisition as a result
of camera imaging pipeline errors.
(5) Image signal processing (ISP) noise. Modern digital
cameras aim to produce visually pleasing and accurate im-
ages that match human perception. The raw sensor data
captured by the camera cannot directly produce a usable
image, and several post-processing stages are required to
convert its linear intensities into the final image [5]. As the
original raw image contains noise, the post-processed image
exhibits more complex noise. Since there are no adequate
real noisy and noise-free image pairs, many denoising algo-
rithms perform poorly on real data due to the gap between
synthetic and real noise. In our experiments, we use the
default parameter settings of [5] to synthesize ISP noise on
RGB images.
(6) Mixture noise is obtained by mixing the above dif-
ferent types of noise with different levels. We consider
the real-world case where the image suffers from multi-
ple degradations. The order of noise adding is Gaussian
noise (variances σ2

g), speckle noise (variances σ2
s1), Poisson

noise (scale α), Salt & pepper noise (density d), speckle
noise (variances σ2

s2). Since speckle noise is a multiplica-
tive noise, it will have different effects when used in dif-
ferent positions. It will be multiplied by the noise already
existing in the image to obtain complex noise degradation.
There are 4 levels:

10 60 110 160
Iteration (K)

36.5

37

37.5

38

38.5

39

PS
N

R

from scratch pre-train (Gaussian) w/o mask

pre-train (Gaussian) w/ mask pre-train (clean) w/ mask

10 60 110 160
Iteration (K)

0.75

0.8

0.85

0.9

SS
IM

Figure 16. Training curve of different methods validated using our
SIDD testset.

ID Pre-train
SIDD

Fine-tune
Masked
Traning PSNR SSIM LPIPS

1 Gaus. 15 32.11 0.6606 0.5434
2 Gaus. 15 ✓ 33.01 0.6999 0.4626

3 None ✓ 38.36 0.8879 0.3555
4 Gaus. 15 ✓ 37.08 0.7920 0.3622
5 Gaus. 15 ✓ ✓ 38.15 0.8822 0.3237

6 Clean ✓ ✓ 39.11 0.9135 0.2614

Table 4. Masked pre-training for limited paired data. Our method
of pre-training on clean images by masked training first and then
fine-tuning on target limited dataset yields the best results.

1. σ2
g = 0.003, σ2

s1 = 0.003, α = 1, d = 0.002, σ2
s2 =

0.003;

2. σ2
g = 0.004, σ2

s1 = 0.004, α = 1, d = 0.002, σ2
s2 =

0.004;

3. σ2
g = 0.006, σ2

s1 = 0.006, α = 1, d = 0.003, σ2
s2 =

0.006;

4. σ2
g = 0.008, σ2

s1 = 0.008, α = 1, d = 0.004, σ2
s2 =

0.008;

The noise patterns produced by these four settings are com-
pletely different from existing studies.

We also include two real noise types in this work:
the Smartphone Image Denoising Dataset (SIDD) [1] and
Monte Carlo (MC) rendered image noise [25].

B. Additional Comparisons
Methods for Comparison. We compare our method with
several classical methods: DnCNN [81], RIDNet [2],
RNAN [86], SwinIR [46], Restormer [76], Dropout [40].
Among them, Dropout [40] was proposed to improve the
generalization ability and relieve the overfitting problem.
Following [40], we apply the dropout layer with a dropout
probability of 0.7 before the output convolutional layer of
the baseline model.

Masked Training as Pre-training. In many real-world
scenarios, we can only access very limited image pairs for

13



010 0179 008 S6 03200 00800 5500 L HQ Noisy SwinIR from scratch pre-train w/o mask pre-train w/ mask

Figure 17. Visual comparison of different methods on real smartphone noise dataset SIDD [1]. “SwinIR” is trained on Gaussian noise,
σ = 15. ”from scratch” is trained directly on the target two SIDD training samples. “pre-train w/o mask” is pre-trained on Gaussian noise,
σ = 15, and fine-tuned without mask. “pre-train w/ mask” is pre-trained on clean images and fine-tuned by masked training.

a.

c. d.

b.

C
KA

 S
im

ila
rit

ie
s

C
KA

 S
im

ila
rit

ie
s

C
KA

 S
im

ila
rit

ie
s

C
KA

 S
im

ila
rit

ie
s

Layer Index

baseline ours

baseline ours

baseline ours

baseline ours

Layer Index

Layer Index

Layer Index

Figure 18. CKA similarity to analyze the representation similarity of network layers.

training. It is not enough to adequately train a denoising
network because the network can easily overfit the train-
ing data. The performance of the network will be limited
if it is trained only on limited data. The pre-training and
fine-tuning paradigm may be helpful in this case. One ap-
proach is to train the network on the synthetic data first
and then fine-tune it on the target data [81], but the per-
formance may also be unsatisfactory because of the gap be-
tween the pre-train data and the target data. In this para-
graph, we will introduce a practical approach that uses the
masked training method for pre-training. We first pre-train
the model on clean images with the masked training strat-
egy, and then fine-tune the model on the limited real train-
ing samples with the mask. This allows the model to obtain
generalization ability even when trained on extremely lim-
ited training data. Pre-training on clean images enables the
network to learn the content representation of natural im-
ages and thus benefits the fine-tuning of target noise. To
conduct such experiments, we use images from the SIDD
dataset [1]. SIDD contains real noisy images with high-
quality clean references. Due to different lighting and dif-
ferent cameras, the noise of the image is also different. It
is consistent with the complex noise situation in the real
world. In order to simulate a scenario with extremely lim-

ited training samples, the training set only contains two 4K
noisy – clean image pairs from SIDD. We also selected one
image from each of the ten scenes, for a total of ten images
as a test set. Table 4 shows the experiment settings and re-
sults. For experiment 3, we directly train the model on the
limited training samples. For experiment 4 and 5, we first
pre-train the models using Gaussian noise with σ = 15 and
then fine-tune them on target noise. While for experiment 6,
we pre-trained the model on clean (noise-free) images with
the proposed masked training strategy, and then fine-tuned
it on the target training samples. The model pre-trained on
clean images using the proposed masked training achieves
the best results. This demonstrates the potential of our ap-
proach as a new low-level pre-training method. In addition,
our method pre-trained on noisy images is not as effective
as pre-trained on clean images, which illustrates that our
method benefits from learning information about the im-
age’s distribution. Visual results are shown in Figure 17.
Our method preserves the most texture detail. Figure 16
shows the training curves for different experiments. The nu-
merical performance of the model pre-trained on Gaussian
noise and fine-tuned without masking (red line) is gener-
ally low and does not increase with training. For the model
trained from scratch directly on SIDD (blue line), its PSNR

14



starts to fluctuate at the beginning of training and does not
improve any further. Its SSIM even drops with training.
This indicates a severe overfitting problem. In contrast, the
method using the proposed masked training (purple and yel-
low lines) can continue to improve the performance during
the training process. This indicates that the model has not
yet had an overfitting problem. The method pre-trained with
clean images (purple line) performs better.

Quantitative Comparison. We provide full numerical re-
sults in Table 5, Table 7, Table 6, and Table 8, where we
evaluate our method on four benchmark datasets, namely
CBSD68 [56], Kodak24 [26], McMaster [83], and Ur-
ban100 [36]. Our method outperforms other state-of-the-art
models significantly across all noise types. Particularly, we
obtain a significant lead in LPIPS performance, suggesting
that our results have better human visual perceptual quality.

Additional Visual Results. Figure 19 shows more visual
comparisons. The model’s performance without masked
training is significantly limited over the various noise types.
Our model still effectively removes noise when dealing with
a variety of noise outside the training set.

C. Additional Analyses of CKA
In the main text, in order to investigate how masked

training differs from normal training strategy, we utilize the
centered kernel alignment (CKA) [18, 62] to analyze the
differences between network representations obtained from
those two training methods. In detail, we calculate the rep-
resentations of two layers X ∈ Rm×p1 and Y ∈ Rm×p2

on the same m data points, with p1 and p2 neurons respec-
tively. Gram matrices K = XX⊤ and L = YY⊤ are used
to compute CKA:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)

where HSIC is the Hilbert-Schmidt independence criterion
[41]. Given the centering matrix H = In − 1

n11
⊤, and

centered Gram matrices K′ = HKH and L′ = HLH,
we have HSIC(K,L) = vec (K′) · vec (L′) /(m − 1)2.
More CKA results are shown in Figure 18. We first com-
pare the correlation of the features between different noise
types. For the baseline model, the correlation between the
features of Gaussian noise and other different noises at the
deep level is relatively low (a, b, c). Besides, the feature cor-
relation between the noise outside the training set is also low
(d). The model using the proposed masked training is able
to have a high correlation in all cases. Figure 18 (a) shows
the cross-model comparison between baseline and masked
training models. We find that a significant difference be-
tween the two is that the features of the deeper layers of the

baseline model have low correlations with all layers of our
model. This indicates that these two training methods have
inconsistent learning patterns for features, especially for the
deeper layers. To explore how the model performs on differ-
ent noise, Figure 18 (b) shows the cross-noise comparison
between in-distribution noise and out-of-distribution noise
(Gaussian and Poisson noise). For the baseline model, there
is a low correlation between the different noise in the deep
layers. It shows that the network processes these two types
of noise differently for the deep layers. The other types of
noise share a similar phenomenon. We suggest that this is
because the baseline approach makes the deep layer of the
model focus on overfitting the patterns of the training set,
which leads to the poor generalization of the deep layers
to handle different noise. In our model, the correlation be-
tween adjacent layers in our model is high. The proposed
masked training forces the network to learn the distribution
of the images themselves, which is similar to different types
of noise. This allows our method to have a stronger gener-
alization capability.

15



CBSD68: img 0067

Salt-and-pepper noise, d = 0.02 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

urban100: img 054

Speckle noise, σ2 = 0.016 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

kodak24: img 14

Poisson noise 2 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

McM: img 2

Spatially-correlated noise, σ = 45 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

kodak24: img 10

Poisson noise, α = 1.7 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

CBSD68: img 0009

Mixture noise, level 1 DnCNN [81] RIDNet [2] RNAN [86]

Restormer [76] SwinIR [46] baseline Masked Training

Figure 19. Visual comparison.
16



Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 30.74 0.8281 0.1806 29.31 0.7891 0.2082 27.49 0.7353 0.2533 25.22 0.6620 0.3292
RIDNet [2] 31.01 0.8337 0.1665 29.51 0.7916 0.1944 27.57 0.7331 0.2436 25.17 0.6554 0.3212
RNAN [86] 30.15 0.8101 0.1660 28.59 0.7662 0.1972 26.76 0.7101 0.2449 24.59 0.6377 0.3203
SwinIR [46] 29.64 0.7939 0.1555 28.16 0.7514 0.1851 26.43 0.6981 0.2305 24.37 0.6298 0.3004
Restormer [76] 29.95 0.8135 0.1521 28.84 0.7810 0.1767 27.50 0.7395 0.2113 25.66 0.6839 0.2649
Dropout [40] 29.97 0.8382 0.1709 29.03 0.8041 0.1974 27.77 0.7570 0.2413 26.14 0.6925 0.3110
baseline 29.84 0.8016 0.1778 28.34 0.7608 0.2082 26.56 0.7071 0.2536 24.44 0.6367 0.3242

Ours 31.22 0.8739 0.1594 30.81 0.8617 0.1683 30.20 0.8412 0.1849 29.10 0.8000 0.2248

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 28.41 0.7359 0.2284 24.38 0.5767 0.3887 21.63 0.4571 0.5330 19.65 0.3711 0.6521
RIDNet [2] 28.17 0.7231 0.2215 24.00 0.5546 0.3849 21.34 0.4379 0.5246 19.48 0.3567 0.6397
RNAN [86] 27.55 0.7000 0.2231 23.66 0.5402 0.3783 21.14 0.4263 0.5184 19.33 0.3486 0.6355
SwinIR [46] 27.32 0.6877 0.2081 23.68 0.5398 0.3487 21.17 0.4294 0.4860 19.32 0.3506 0.6059
Restormer [76] 29.22 0.7639 0.1662 26.11 0.6452 0.2608 23.98 0.5613 0.3530 22.55 0.5174 0.4306
Dropout [40] 28.47 0.7601 0.2209 25.61 0.6245 0.3652 23.53 0.5218 0.4986 21.97 0.4454 0.6136
baseline 27.70 0.7040 0.2339 23.85 0.5524 0.3782 21.27 0.4377 0.5109 19.45 0.3550 0.6241

Ours 30.59 0.8510 0.1662 28.80 0.7709 0.2488 27.04 0.6834 0.3493 25.46 0.6039 0.4502

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.63 0.8036 0.3527 28.17 0.7474 0.4192 26.85 0.6898 0.4718 25.70 0.6360 0.5173
RIDNet [2] 28.94 0.7766 0.4109 27.58 0.7189 0.4746 26.39 0.6637 0.5208 25.34 0.6131 0.5580
RNAN [86] 28.86 0.7644 0.3943 27.50 0.7078 0.4532 26.32 0.6542 0.4980 25.28 0.6050 0.5373
SwinIR [46] 28.73 0.7524 0.4056 27.38 0.6951 0.4620 26.20 0.6414 0.5070 25.17 0.5930 0.5458
Restormer [76] 23.42 0.6533 0.4412 23.06 0.6109 0.4783 22.82 0.5709 0.5072 22.59 0.5353 0.5356
Dropout [40] 29.35 0.8173 0.3188 28.27 0.7719 0.3800 27.19 0.7206 0.4400 26.19 0.6694 0.4943
baseline 29.34 0.7834 0.3706 27.82 0.7205 0.4375 26.55 0.6628 0.4878 25.46 0.6118 0.5295

Ours 29.55 0.8296 0.2949 28.84 0.8045 0.3358 28.05 0.7735 0.3762 27.27 0.7388 0.4163

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 24.75 0.6785 0.3639 21.15 0.4952 0.5626 17.55 0.2993 0.8196 15.47 0.2066 0.9779
RIDNet [2] 25.19 0.6769 0.3617 21.38 0.4934 0.5498 17.65 0.2969 0.8029 15.60 0.2066 0.9598
RNAN [86] 23.59 0.6416 0.3829 20.42 0.4639 0.5599 17.21 0.2850 0.8048 15.31 0.2006 0.9644
SwinIR [46] 23.42 0.6329 0.3873 20.21 0.4511 0.5710 17.00 0.2688 0.8103 15.14 0.1875 0.9614
Restormer [76] 23.81 0.6384 0.3919 20.99 0.4831 0.5551 19.79 0.3878 0.6512 19.25 0.3257 0.7574
Dropout [40] 27.44 0.7180 0.3041 24.36 0.5557 0.4898 21.01 0.3790 0.7415 19.03 0.2902 0.9047
baseline 25.36 0.6510 0.3694 21.93 0.4747 0.5642 18.42 0.2939 0.8153 16.46 0.2106 0.9656

Ours 30.52 0.8477 0.1768 28.48 0.7681 0.2786 25.01 0.5958 0.5039 22.48 0.4622 0.6979

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 28.31 0.7514 0.2299 26.53 0.6636 0.3011 23.55 0.5117 0.4522 21.66 0.4162 0.5622
RIDNet [2] 28.13 0.7335 0.2215 26.11 0.6320 0.2971 23.13 0.4776 0.4461 21.34 0.3899 0.5514
RNAN [86] 27.46 0.7090 0.2280 25.67 0.6126 0.2948 22.90 0.4657 0.4369 21.19 0.3826 0.5431
SwinIR [46] 27.44 0.7049 0.2051 25.73 0.6113 0.2682 23.03 0.4689 0.4073 21.29 0.3847 0.5145
Restormer [76] 29.23 0.7859 0.1639 28.22 0.7330 0.1965 25.69 0.6034 0.2894 24.05 0.5257 0.3662
Dropout [40] 28.61 0.7797 0.2071 27.23 0.7039 0.2777 24.96 0.5715 0.4290 23.49 0.4906 0.5324
baseline 28.12 0.7295 0.2259 26.22 0.6346 0.2985 23.28 0.4795 0.4441 21.44 0.3885 0.5463

Ours 30.31 0.8518 0.1617 29.63 0.8251 0.1903 28.12 0.7513 0.2732 26.91 0.6841 0.3530

Table 5. Quantitative comparison on Kodak24 [26].

17



Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 30.67 0.8254 0.1506 29.24 0.7927 0.1840 27.54 0.7551 0.2269 25.49 0.7095 0.2856
RIDNet [2] 30.77 0.8261 0.1444 29.31 0.7934 0.1757 27.58 0.7551 0.2168 25.49 0.7081 0.2750
RNAN [86] 29.77 0.8066 0.1492 28.32 0.7745 0.1814 26.67 0.7377 0.2224 24.75 0.6932 0.2796
SwinIR [46] 29.17 0.7947 0.1258 27.83 0.7660 0.1524 26.30 0.7322 0.1893 24.46 0.6909 0.2412
Restormer [76] 28.89 0.8005 0.1300 27.95 0.7790 0.1515 26.81 0.7523 0.1807 25.30 0.7173 0.2213
Dropout [40] 28.64 0.8153 0.1416 27.85 0.7852 0.1688 26.89 0.7501 0.2032 25.64 0.7062 0.2525
baseline 28.86 0.7283 0.1353 27.61 0.7014 0.1593 26.15 0.6679 0.1938 24.38 0.6251 0.2437

Ours 30.33 0.8157 0.1130 30.01 0.8016 0.1238 29.53 0.7800 0.1412 28.66 0.7463 0.1761

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.13 0.7771 0.1772 25.40 0.6740 0.2915 22.78 0.5910 0.3972 20.86 0.5261 0.4846
RIDNet [2] 29.00 0.7706 0.1681 25.17 0.6636 0.2838 22.59 0.5836 0.3877 20.76 0.5227 0.4730
RNAN [86] 28.13 0.7488 0.1760 24.58 0.6476 0.2897 22.18 0.5710 0.3916 20.44 0.5119 0.4765
SwinIR [46] 27.85 0.7419 0.1468 24.48 0.6459 0.2472 22.12 0.5710 0.3419 20.35 0.5122 0.4229
Restormer [76] 28.74 0.7765 0.1310 25.78 0.6936 0.2082 23.57 0.6296 0.2778 21.94 0.5792 0.3342
Dropout [40] 27.74 0.7699 0.1649 25.56 0.6751 0.2645 23.84 0.5986 0.3558 22.47 0.5377 0.4355
baseline 27.89 0.7024 0.1557 24.51 0.6025 0.2522 22.19 0.5361 0.3427 20.49 0.4761 0.4207

Ours 30.01 0.8016 0.1120 28.67 0.7439 0.1683 27.23 0.6876 0.2329 25.99 0.6347 0.2976

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.92 0.8159 0.2221 28.59 0.7672 0.2718 27.35 0.7160 0.3197 26.23 0.6665 0.3654
RIDNet [2] 29.36 0.7958 0.2608 28.06 0.7433 0.3146 26.90 0.6910 0.3624 25.85 0.6426 0.4056
RNAN [86] 29.16 0.7792 0.2542 27.85 0.7257 0.3053 26.70 0.6751 0.3514 25.68 0.6286 0.3941
SwinIR [46] 29.10 0.7710 0.2498 27.77 0.7165 0.3005 26.61 0.6658 0.3446 25.59 0.6193 0.3876
Restormer [76] 24.46 0.6408 0.2867 23.90 0.6043 0.3217 23.48 0.5723 0.3542 23.18 0.5431 0.3874
Dropout [40] 28.15 0.7946 0.2123 27.32 0.7542 0.2562 26.47 0.7097 0.3021 25.65 0.6649 0.3493
baseline 29.43 0.7731 0.2365 28.05 0.7191 0.289 26.61 0.6532 0.3513 25.82 0.6223 0.3770

Ours 28.96 0.7996 0.1952 28.36 0.7779 0.2216 27.65 0.7529 0.2507 27.01 0.7251 0.2827

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 23.53 0.6675 0.3607 20.13 0.4878 0.5403 16.72 0.2966 0.7748 14.73 0.2057 0.9320
RIDNet [2] 24.01 0.6639 0.3581 20.48 0.4864 0.5288 16.93 0.2960 0.7584 14.92 0.2065 0.9131
RNAN [86] 22.62 0.6428 0.3731 19.54 0.4651 0.5374 16.43 0.2854 0.7626 14.59 0.2007 0.9193
SwinIR [46] 22.68 0.6391 0.3580 19.50 0.4581 0.5226 16.32 0.2749 0.7379 14.47 0.1914 0.8889
Restormer [76] 23.04 0.6398 0.3667 20.10 0.4829 0.5207 18.64 0.3555 0.6163 18.34 0.3156 0.6797
Dropout [40] 25.83 0.6771 0.3082 23.04 0.5197 0.4693 19.89 0.3536 0.6918 17.96 0.2709 0.8487
baseline 24.06 0.6224 0.3485 20.87 0.4630 0.5183 17.69 0.2959 0.7378 15.86 0.2156 0.8867

Ours 29.51 0.7929 0.1504 27.45 0.7117 0.2476 24.03 0.5508 0.4350 21.59 0.4313 0.5968

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 28.41 0.7627 0.1869 26.88 0.6989 0.2406 24.16 0.5781 0.3564 22.33 0.4877 0.4447
RIDNet [2] 28.38 0.7509 0.1781 26.65 0.6811 0.2337 23.82 0.5558 0.3479 22.03 0.4659 0.4335
RNAN [86] 27.52 0.7285 0.1886 25.99 0.6616 0.2414 23.42 0.5412 0.3510 21.75 0.4533 0.4351
SwinIR [46] 27.57 0.7271 0.1601 26.07 0.6619 0.2050 23.56 0.5453 0.3059 21.86 0.4557 0.3869
Restormer [76] 28.59 0.7674 0.1410 27.53 0.7210 0.1703 25.29 0.6263 0.2462 23.71 0.5578 0.2991
Dropout [40] 27.47 0.7515 0.1694 26.41 0.6924 0.2190 24.58 0.5856 0.3255 23.27 0.5086 0.4079
baseline 28.05 0.7472 0.1665 26.40 0.6810 0.2148 23.70 0.5418 0.3229 21.91 0.4397 0.4061

Ours 29.91 0.8267 0.1094 29.44 0.8111 0.1312 28.24 0.7570 0.1870 27.15 0.7018 0.2452

Table 6. Quantitative comparison on McMaster [83].

18



Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.90 0.8380 0.1699 28.57 0.8044 0.1982 26.90 0.7610 0.2374 24.84 0.7035 0.2996
RIDNet [2] 30.11 0.8404 0.1597 28.75 0.8044 0.1884 27.03 0.7590 0.2305 24.87 0.6999 0.2927
RNAN [86] 29.36 0.8228 0.1593 27.95 0.7883 0.1872 26.28 0.7451 0.2276 24.28 0.6870 0.2893
SwinIR [46] 28.89 0.8101 0.1602 27.55 0.7774 0.1867 25.98 0.7362 0.2251 24.07 0.6810 0.2849
Restormer [76] 29.16 0.8279 0.1518 28.13 0.8015 0.1742 26.84 0.7667 0.2049 25.17 0.7202 0.2523
Dropout [40] 29.13 0.8447 0.1684 28.28 0.8171 0.1953 27.16 0.7804 0.2347 25.69 0.7311 0.2936
baseline 29.11 0.8122 0.1794 27.75 0.7801 0.2077 26.15 0.7393 0.2465 24.19 0.6837 0.3050

Ours 30.46 0.8777 0.1435 30.08 0.8697 0.1511 29.49 0.8502 0.1691 28.53 0.8169 0.2060

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 28.13 0.7790 0.1957 24.40 0.6417 0.3284 21.77 0.5295 0.4524 19.83 0.4446 0.5639
RIDNet [2] 28.00 0.7705 0.1878 24.08 0.6199 0.3237 21.50 0.5082 0.4459 19.67 0.4279 0.5542
RNAN [86] 27.38 0.7505 0.1902 23.73 0.6081 0.3201 21.29 0.5003 0.4405 19.51 0.4220 0.5498
SwinIR [46] 27.12 0.7392 0.1849 23.69 0.6049 0.3094 21.27 0.4992 0.4282 19.46 0.4200 0.5393
Restormer [76] 28.68 0.7973 0.1506 25.67 0.6951 0.2361 23.54 0.6167 0.3139 22.25 0.5598 0.3831
Dropout [40] 28.03 0.7953 0.1975 25.42 0.6823 0.3220 23.45 0.5901 0.4366 21.94 0.5182 0.5418
baseline 27.55 0.7517 0.2085 23.92 0.6173 0.3346 21.42 0.5087 0.4510 19.63 0.4259 0.5572

Ours 30.01 0.8656 0.1390 28.48 0.8053 0.2072 26.84 0.7318 0.2974 25.33 0.6616 0.3937

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.38 0.8304 0.2819 28.02 0.7839 0.3379 26.78 0.7349 0.3864 25.68 0.6880 0.4290
RIDNet [2] 28.74 0.8092 0.3306 27.45 0.7603 0.3865 26.32 0.7122 0.4300 25.31 0.6670 0.4672
RNAN [86] 28.68 0.7983 0.3192 27.39 0.7499 0.3703 26.25 0.7029 0.4122 25.25 0.6591 0.4500
SwinIR [46] 28.56 0.7883 0.3353 27.26 0.7389 0.3853 26.13 0.6918 0.4298 25.13 0.6484 0.4664
Restormer [76] 24.54 0.7076 0.3661 24.17 0.6689 0.4007 23.70 0.6320 0.4348 23.35 0.5978 0.4640
Dropout [40] 28.89 0.8383 0.2580 27.89 0.7999 0.3109 26.90 0.7563 0.3656 25.96 0.7123 0.4135
baseline 29.11 0.8109 0.3071 27.69 0.7578 0.3658 26.48 0.7078 0.4147 25.42 0.6625 0.4537

Ours 29.08 0.8445 0.2431 28.43 0.8242 0.2765 27.71 0.7985 0.3127 27.03 0.7719 0.3476

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 24.39 0.7102 0.3205 20.88 0.5423 0.5032 17.33 0.3499 0.7615 15.27 0.2510 0.9304
RIDNet [2] 24.83 0.7065 0.3165 21.12 0.5400 0.4912 17.44 0.3470 0.7459 15.41 0.2510 0.9096
RNAN [86] 23.32 0.6768 0.3312 20.19 0.5127 0.4970 16.99 0.3343 0.7464 15.12 0.2443 0.9133
SwinIR [46] 23.21 0.6724 0.3416 20.04 0.5035 0.5123 16.84 0.3206 0.7541 14.97 0.2320 0.9190
Restormer [76] 23.58 0.6779 0.3429 20.77 0.5292 0.5016 19.13 0.4143 0.6322 18.37 0.3500 0.7409
Dropout [40] 26.92 0.7433 0.2739 23.97 0.5999 0.4380 20.70 0.4330 0.6832 18.75 0.3431 0.8508
baseline 25.09 0.6879 0.3289 21.71 0.5261 0.5088 18.25 0.3480 0.7621 16.30 0.2594 0.9216

Ours 29.96 0.8558 0.1512 28.01 0.7893 0.2295 24.69 0.6391 0.4408 22.23 0.5174 0.6331

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 27.91 0.7876 0.1955 26.28 0.7151 0.2561 23.52 0.5791 0.3825 21.70 0.4867 0.4833
RIDNet [2] 27.80 0.7740 0.1888 25.97 0.6885 0.2510 23.14 0.5463 0.3777 21.38 0.4589 0.4752
RNAN [86] 27.16 0.7543 0.1946 25.52 0.6718 0.2515 22.89 0.5366 0.3711 21.22 0.4532 0.4683
SwinIR [46] 27.10 0.7477 0.1827 25.51 0.6668 0.2378 22.96 0.5363 0.3563 21.29 0.4523 0.4533
Restormer [76] 28.54 0.8091 0.1493 27.50 0.7625 0.1796 25.17 0.6509 0.2599 23.52 0.5729 0.3270
Dropout [40] 28.01 0.8076 0.1841 26.78 0.7455 0.2455 24.70 0.6296 0.3722 23.29 0.5532 0.4672
baseline 27.81 0.7717 0.2022 26.06 0.6916 0.2659 23.27 0.5476 0.3927 21.48 0.4563 0.4886

Ours 29.74 0.8672 0.1342 29.14 0.8466 0.1551 27.80 0.7900 0.2231 26.62 0.7305 0.2964

Table 7. Quantitative comparison on CBSD68 [56].

19



Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 28.66 0.8207 0.1456 27.28 0.7880 0.1745 25.64 0.7478 0.2138 23.67 0.6962 0.2716
RIDNet [2] 28.73 0.8218 0.1386 27.31 0.7874 0.1683 25.63 0.7457 0.2086 23.63 0.6933 0.2662
RNAN [86] 27.99 0.8047 0.1414 26.60 0.7726 0.1697 25.01 0.7333 0.2085 23.14 0.6826 0.2652
SwinIR [46] 27.50 0.7931 0.1408 26.19 0.7626 0.1683 24.68 0.7256 0.2059 22.88 0.6772 0.2609
Restormer [76] 28.22 0.8100 0.1370 27.17 0.7851 0.1578 25.86 0.7529 0.1874 24.15 0.7106 0.2302
Dropout [40] 27.69 0.8258 0.1516 26.83 0.7981 0.1797 25.78 0.7639 0.2167 24.42 0.7200 0.2693
baseline 27.66 0.7916 0.1611 26.33 0.7617 0.1877 24.80 0.7242 0.2241 22.98 0.6753 0.2772

Ours 28.97 0.8771 0.1062 28.60 0.8642 0.1180 28.04 0.8421 0.1421 27.12 0.8055 0.1832

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 27.72 0.7814 0.1656 24.06 0.6682 0.2738 21.52 0.5807 0.3740 19.65 0.5128 0.4638
RIDNet [2] 27.51 0.7728 0.1600 23.75 0.6536 0.2697 21.27 0.5675 0.3686 19.51 0.5025 0.4561
RNAN [86] 26.88 0.7550 0.1634 23.37 0.6428 0.2682 21.02 0.5593 0.3662 19.30 0.4953 0.4544
SwinIR [46] 26.59 0.7451 0.1586 23.27 0.6392 0.2575 20.95 0.5575 0.3533 19.21 0.4929 0.4426
Restormer [76] 28.39 0.7964 0.1326 25.34 0.7049 0.2043 22.89 0.6266 0.2802 21.25 0.5684 0.3524
Dropout [40] 27.19 0.7928 0.1722 24.82 0.6989 0.2706 22.98 0.6269 0.3607 21.55 0.5698 0.4437
baseline 26.94 0.7511 0.1790 23.45 0.6425 0.2788 21.09 0.5593 0.3712 19.40 0.4936 0.4556

Ours 28.72 0.8710 0.1051 27.48 0.8142 0.1668 26.04 0.7446 0.2464 24.71 0.6845 0.3232

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 29.87 0.8526 0.1912 28.50 0.8110 0.2371 27.23 0.7677 0.2795 26.09 0.7258 0.3173
RIDNet [2] 29.24 0.8364 0.2216 27.89 0.7908 0.2702 26.68 0.7464 0.3116 25.62 0.7051 0.3464
RNAN [86] 29.07 0.8203 0.2248 27.72 0.7767 0.2674 26.54 0.7351 0.3052 25.50 0.6961 0.3385
SwinIR [46] 28.99 0.8116 0.2360 27.64 0.7678 0.2769 26.46 0.7265 0.3131 25.43 0.6882 0.3455
Restormer [76] 26.38 0.7360 0.2593 25.56 0.7011 0.2902 24.77 0.6686 0.3189 24.06 0.6384 0.3455
Dropout [40] 28.68 0.8529 0.1797 27.78 0.8191 0.2204 26.86 0.7808 0.2635 25.96 0.7411 0.3046
baseline 29.58 0.8440 0.2092 28.11 0.7950 0.2567 26.84 0.7492 0.2974 25.74 0.7076 0.3323

Ours 28.06 0.8586 0.1720 27.55 0.8410 0.1976 26.98 0.8196 0.2266 26.40 0.7951 0.2562

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 24.01 0.7372 0.2643 20.55 0.5828 0.4143 17.05 0.4029 0.6335 15.01 0.3062 0.7973
RIDNet [2] 24.56 0.7372 0.2613 20.88 0.5835 0.4062 17.20 0.4023 0.6220 15.16 0.3072 0.7824
RNAN [86] 23.01 0.7132 0.2744 19.87 0.5582 0.4137 16.71 0.3892 0.6223 14.86 0.2999 0.7840
SwinIR [46] 22.90 0.7075 0.2823 19.74 0.5507 0.4215 16.56 0.3790 0.6231 14.71 0.2910 0.7773
Restormer [76] 23.42 0.7145 0.2799 20.53 0.5772 0.4086 18.65 0.4571 0.5308 17.81 0.3967 0.6311
Dropout [40] 26.33 0.7591 0.2326 23.48 0.6279 0.3647 20.29 0.4781 0.5635 18.35 0.3943 0.7181
baseline 24.92 0.7224 0.2667 21.56 0.5752 0.4130 18.11 0.4103 0.6263 16.15 0.3225 0.7840

Ours 28.58 0.8655 0.1158 26.93 0.8074 0.1850 24.01 0.6780 0.3530 21.75 0.5652 0.5140

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [81] 27.62 0.7842 0.1656 26.08 0.7221 0.2120 23.41 0.6112 0.3116 21.64 0.5332 0.3907
RIDNet [2] 27.51 0.7725 0.1592 25.75 0.7011 0.2076 23.01 0.5844 0.3080 21.31 0.5099 0.3851
RNAN [86] 26.85 0.7535 0.1651 25.28 0.6866 0.2092 22.75 0.5759 0.3046 21.13 0.5041 0.3813
SwinIR [46] 26.79 0.7475 0.1566 25.26 0.6816 0.1973 22.81 0.5751 0.2878 21.19 0.5040 0.3634
Restormer [76] 28.45 0.8085 0.1269 27.39 0.7665 0.1517 25.03 0.6716 0.2171 23.26 0.5984 0.2749
Dropout [40] 27.22 0.7976 0.1608 26.11 0.7431 0.2077 24.22 0.6484 0.3035 22.91 0.5849 0.3770
baseline 27.47 0.7795 0.1718 25.79 0.7136 0.2191 23.12 0.5931 0.3170 21.38 0.5131 0.3925

Ours 28.57 0.8749 0.0995 28.08 0.8566 0.1186 26.97 0.8053 0.1747 25.97 0.7516 0.2337

Table 8. Quantitative comparison on Urban100 [36].

20


	1 . Introduction
	2 . Related Works
	3 . Method
	4 . Experiments
	4.1 . Resutls
	4.2 . Generalization Analysis

	5 . Conclusion and Limitations
	A . Details of the Test Noise
	B . Additional Comparisons
	C . Additional Analyses of CKA

