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Abstract

User-generated content (UGC) live videos are often
bothered by various distortions during capture procedures
and thus exhibit diverse visual qualities. Such source videos
are further compressed and transcoded by media server
providers before being distributed to end-users. Because
of the flourishing of UGC live videos, effective video qual-
ity assessment (VQA) tools are needed to monitor and per-
ceptually optimize live streaming videos in the distributing
process. In this paper, we address UGC Live VQA prob-
lems by constructing a first-of-a-kind subjective UGC Live
VQA database and developing an effective evaluation tool.
Concretely, 418 source UGC videos are collected in real
live streaming scenarios and 3,762 compressed ones at dif-
ferent bit rates are generated for the subsequent subjective
VQA experiments. Based on the built database, we de-
velop a Multi-Dimensional VQA (MD-VQA) evaluator to
measure the visual quality of UGC live videos from seman-
tic, distortion, and motion aspects respectively. Extensive
experimental results show that MD-VQA achieves state-of-
the-art performance on both our UGC Live VQA database
and existing compressed UGC VQA databases.

1. Introduction

With the rapid development of social media applications
and the advancement of video shooting and processing tech-
nologies, more and more ordinary people are willing to tell
their stories, share their experiences, and have their voice
heard on social media or streaming media platforms such
as Twitch, Tiktok, Taobao, etc. However, due to the lack
of photography skills and professional equipment, the vi-

*These authors contributed equally to this work. The database is avail-
able at https://tianchi.aliyun.com/dataset/148818?t=1679581936815.
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Users 

UGC Distortion

Upload

Distribute

Live Platforms Viewers 
Transcoding

Quality Monitoring

Optimization

Figure 1. The distributing process of UGC live videos, where the
users upload the videos degraded by the UGC distortions to the
live platforms and the distorted videos are further compressed be-
fore being distributed to the viewers. The VQA models can mon-
itor the quality changes of the compressed UGC live videos and
adaptively optimize the transcoding setting.

sual quality of user-generated content (UGC) videos may
be degraded by in-the-wild distortions [51]. What’s more,
in common live platforms, live videos are encoded and dis-
tributed to end-users with very low delay, where compres-
sion algorithms have a significant influence on the visual
quality of live videos because they can greatly reduce trans-
mission bandwidth. As illustrated in Fig. 1, video quality
assessment (VQA) tools play an important role in monitor-
ing, optimizing, and further improving the Quality of Expe-
rience (QoE) of end-users in UGC live streaming systems.

Currently, many UGC VQA databases have been carried
out [14, 21, 36, 45, 51] to address the impact of general in-
the-wild distortions on video quality, while some compres-
sion VQA databases [22, 34, 40] are proposed to study the
influence of compression artifacts. Then some compressed
UGC VQA databases [1, 21, 46] are further constructed to
solve the problem of assessing the quality of UGC videos
with compression distortions. However, they are either
small in scale or employ high-quality UGC videos as the
sources, and all of the mentioned databases lack videos in
live streaming scenes. Therefore, there is a lack of a proper
UGC Live VQA database to develop and validate the video
quality measurement tools for live streaming systems.

To address UGC Live VQA problems, we first con-
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Table 1. Review of common VQA databases, where ’UGC+Compression’ refers to manually encoding the UGC videos with different
compression settings.

Database Year Duration/s Ref. Num. Scale Scope Subjective Evaluating Format

CVD2014 [31] 2014 10-25 - 234 In-capture In-lab
LIVE-Qualcomm [12] 2016 15 - 208 In-capture In-lab

KoNViD-1k [14] 2017 8 - 1,200 In-the-wild Crowdsourced
LIVE-VQC [36] 2018 10 - 585 In-the-wild Crowdsourced

YouTube-UGC [45] 2019 20 - 1,500 In-the-wild Crowdsourced
LSVQ [51] 2021 5-12 - 39,075 In-the-wild Crowdsourced

UGC-VIDEO [21] 2019 >10 50 550 UGC + Compression In-lab
LIVE-WC [53] 2020 10 55 275 UGC + Compression In-lab

YT-UGC+(Subset) [46] 2021 20 189 567 UGC + Compression In-lab
ICME2021 [1] 2021 - 1,000 8,000 UGC + Compression In-lab

TaoLive(proposed) 2022 8 418 3,762 UGC + Compression In-lab

struct a large-scale database named TaoLive, consisting 418
source UGC videos from the TaoBao [2] live streaming
platform and the corresponding 3,762 compressed videos at
various bit rates. Then we perform a subjective experiment
in a well-controlled environment. Afterward, we propose
a no-reference (NR) Multi-Dimensional VQA (MD-VQA)
model to measure the visual quality of UGC live videos
in terms of semantic, distortion, and motion aspects. The
semantic features are extracted by pretrained convolutional
neural network (CNN) model; the distortion features are ex-
tracted by specific handcrafted image distortion descriptors
(i.e. blur, noise, block effect, exposure, and colorfulness);
and the motion features are extracted from video clips by
pretrained 3D-CNN models. Compared with existing UGC
VQA algorithms, MD-VQA measures visual quality from
multiple dimensions, and these dimensions correspond to
key factors affecting live video quality, which thereby has
better interpretability and performance. The contributions
of this paper are summarized as below:

• We build a large-scale UGC Live VQA database
targeted at the compression artifacts on the UGC
live videos. We collect 418 raw UGC live videos that
are diverse in content, distortion, and quality. Then 8
encoding settings are used, which provides 3,762 com-
pressed UGC live videos in total.

• We carry out a well-controlled in-lab subjective ex-
periment. 44 participants are invited to participate in
the subjective experiment and a total of 165,528 sub-
jective annotations are gathered.

• A multi-dimensional NR-VQA model is proposed,
using pretrained 2D-CNN, handcrafted distortion de-
scriptors, and pretrained 3D-CNN for the semantic,
distortion, and motion features extraction respectively.
The extracted features are then spatio-temporally fused
to obtain the video-level quality score. The extensive
experimental results validate the effectiveness of the
proposed method.
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Figure 2. Comparison of the quality distribution of reference
videos between the TaoLive and ICME2021 [1] databases. The
source UGC videos in the ICME2021 database are centered on
high-quality levels while the quality levels of the source UGC
videos in the TaoLive database are more diverse.

2. Related Works

2.1. VQA Databases

During the last decade, many VQA databases [12, 14,
31, 36, 41, 42, 46, 51, 53] have been carried out to tackle
the challenge of VQA problems and a review of the com-
mon VQA database is exhibited in Table 1. The early VQA
databases [41,42] usually collect limited numbers of source
videos and manually introduce distortions such as compres-
sion and transmission error to generate distorted ones. Such
databases are less diverse in content and distortions, which
do not fit the scope of UGC videos. Then the CVD2014
[31], LIVE-Qualcomm [12], and LIVE-VQC [36] databases
are formed with videos that are captured by real cameras.
However, the scale of the mentioned in-capture databases
is relatively small and the included distortions are much
simpler. Later, UGC VQA databases such as KoNViD-
1k [14], YouTube-UGC [45], and LSVQ [51] gather in-the-
wild UGC videos from online platforms, which have more
diverse content and distortions and have significantly pro-
moted the development of UGC VQA tasks.

For UGC live videos, we can consider them as in-
captured UGC videos followed by compressed distortions,
where both in-the-wild distortions and compression dis-
tortions have a significant impact on the visual quality.



Although some works such as UGC-VIDEO [21], LIVE-
WC [53], and YT-UGC+ [46] attempt to assess the qual-
ity of UGC videos caused by common compression algo-
rithms, the relatively small size of these databases makes it
difficult to support the mainstream of data-driven models,
e.g. deep learning-based models in Section 2.2. The re-
cent ICME2021 [1] database is large in scale. However, as
shown in Fig. 2, source UGC videos in ICME2021 exhibit
high visual quality, and thus can not reflect real source video
quality distribution in live streaming systems. What’s more,
none of the mentioned databases includes source videos col-
lected from practical live-streaming platforms.

2.2. UGC VQA models

Handcrafted-based: Handcrafted-based VQA models
extract quality-aware features to model spatial and tempo-
ral distortions, such as natural scene statistics (NSS) fea-
tures [23, 29, 33], artifacts [18, 27, 39], motion [10, 18, 39],
etc. For example, VIIDEO [29] gives the intrinsic sta-
tistical regularities gathered from natural videos and as-
sesses the video quality according to the regularities. V-
BLIINDS [33] evaluates the video quality by using a spatio-
temporal NSS model and a motion representation model.
TLVQM [18] computes low complexity and high complex-
ity quality-aware features in two steps to obtain the final
video quality. VIDEVAL [39] carefully chooses represen-
tative quality-aware features among the mainstream NR-
VQA models and regresses the representative features into
quality values.

Deep learning-based: Considering the huge parame-
ters of deep neural networks (DNN) and the relatively small
scale of VQA databases, some VQA methods use pretrained
DNN models for feature extraction. VSFA [20] extracts
deep semantic features with a pre-trained DNN model and
learns the quality-aware representation with gated recurrent
units (GRUs). To enhance the understanding of video mo-
tion features, some studies [19, 37, 51] further attempt to
extract motion features with 3D-CNN models pre-trained
on the video action recognition databases to help detect
video motion distortions and have yielded good perfor-
mance. Later, some Transformer-based VQA methods are
carried out. LSCT [52] first extracts frame-wise percep-
tual quality features and then feeds the features into a long
short-term convolutional Transformer to predict the video
quality. FAST/FASTER-VQA [48,49] proposes Grid Mini-
patch Sampling and forms the video sampling results as
fragments, which are put into a fragment-modified video
swin transformer [24] for video quality representation.

720P 720P 720P

720P 720P

720P 720P1080P

1080P

1080P

Figure 3. Sample frames of the videos in the proposed TaoLive
Database, where the resolutions are marked on the top right. Ad-
ditionally, the frame samples are cropped to delete some sensitive
content such as human faces and watermarks for exhibition.

3. UGC Live Dataset and Human Study
3.1. Videos Collection

As illustrated in Fig. 1, users upload their live video
streams to platforms, and platforms compress the video
streaming at different bit rates and distribute one of them to
viewers according to the Internet bandwidth or the viewers’
choice. To reflect the real quality distribution of in-captured
live video, we first collect large-scale uncompressed raw
UGC videos from the Taolive [2] platform, a very popu-
lar live platform in China. Then, we manually select raw
UGC videos that contain the scenes of technology, fashion,
food, daily life, financial sales, etc, to ensure content diver-
sity. In the last, we collect 418 raw UGC videos (110 videos
have resolutions of 720P while 318 videos have resolutions
of 1080P), and each raw UGC video is cropped into about
8s duration as source UGC live videos.

We use the open-source compression tools, FFmpeg [3],
to compress source UGC live videos by 8 Constant Rate
Factors (CRF) of H.265 including 16, 20, 24, 28, 32, 36, 40,
and 44 to close to the distributing process of live platforms.
Therefore, 3,344=418×8 compressed UGC videos are gen-
erated and a total of 3,762 = 3,344 + 418 UGC videos are
collected for evaluation, the samples of which are exhibited
in Fig. 3.

3.2. Human Study

The human study is carried out in a well-controlled en-
vironment. 44 humans including 20 males and 24 females
are invited to participate in the subjective experiment. The
viewers are seated about 1.5 times the screen height (45cm)
with normal indoor illumination and the videos are played
on an iMac monitor which supports a resolution up to



4096×2304. Before the viewers start to evaluate the UGC
live videos, a short introduction is given to get the viewers
familiar with the equipment and quality assessment tasks.
We split the experiment into 76 small sessions and each ses-
sion contains 50 UGC live videos with no content overlap.
The viewers participate in all the sessions individually and
each session lasts about 30 minutes. There is at least 1-hour
break between the sessions and each subject is allowed to
attend no more than 2 sessions in a single day. During the
sessions, each video is played only once and the viewers
can rate the video quality from 1 to 5, with a minimum in-
terval of 0.1. We make sure that each UGC live video is
evaluated by the 44 invited viewers and 165,528=3,762×44
subjective ratings are collected in the end.

3.3. Subjective Data Analysis

According to the recommendation of ITU-R BT.500-13
[6], we compute the z-scores as the quality label of UGC
live videos:

zij =
rij − µi

σi
, (1)

where rij represents the quality rating given by the i-th
subject on the j-th UGC live video, µi = 1

Ni

∑Ni

j=1 rij ,

σi =
√

1
Ni−1

∑Ni

j=1 (rij − µi), and Ni is the number of
UGC live videos evaluated by subject i. Then we remove
the quality labels from unreliable subjects according to the
recommended subject rejection procedure in [6]. Finally,
the z-scores are linearly rescaled to [1, 5] and the mean opin-
ion score (MOS) of the UGC video j is obtained by averag-
ing the rescaled z-scores:

MOSj =
1

M

M∑
i=1

z
′

ij , (2)

where MOSj represents the MOS for the j-th UGC video,
M is the number of the valid subjects, and z

′

ij are the
rescaled z-scores.

We further plot the MOS distributions from the CRF and
resolution perspectives. As shown in Fig. 4a, conservative
CRF parameter selection (16∼24) introduces slight percep-
tual quality loss to the UGC live videos. When CRF in-
creases from 28 to 44, the downward trend of perceptual
quality is more obvious. Moreover, when CRF≥40, nearly
no compressed UGC video gains higher quality score than
3, which suggests that the 40+ CRF selection can result in
a viewing experience below average. Such phenomena can
provide useful guidelines for the compression strategy of
live platforms. From Fig. 4b, we can find that the general
quality of UGC videos with a resolution of 720P is lower
than the UGC videos with a resolution of 1080P, which fits
the common sense that lower resolutions lead to poorer vi-
sual quality levels.
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Figure 4. Illustration of the proposed TaoLive database’s MOS
distributions from different perspectives.

4. Proposed Method
The framework of the proposed MD-VQA model is il-

lustrated in Fig. 5, which includes the feature extraction
module, feature fusion module, and feature regression mod-
ule. Specifically, quality-aware features are extracted from
multiple dimensions including the semantic, distortion, and
motion aspects. What’s more, the feature error between ad-
jacent frames is employed to reflect the temporal quality
fluctuation. Then the obtained multi-dimensional features
are fused in spatio-temporal manners and mapped to qual-
ity scores via the quality regression module.

4.1. Feature Extraction

Given a video whose number of frames and frame rate is
n and r, we split the video into n

r clips for feature extraction
and each clip lasts for 1s. For each clip Ci (i represents
the index of the clip), 2L frames are uniformly sampled for
semantic and distortion feature extraction while the whole
clip is employed for motion feature extraction.

4.1.1 Semantic Feature Extraction

Different semantic contents shall have diverse impacts on
humans’ tolerance for different distortions [20]. For exam-
ple, humans are more able to endure blur distortions on flat
and texture-less objects such as clear sky and smooth walls
[55, 58]. However, the blur distortions can be unacceptable
on objects that are rich in texture such as rough rocks and
complex plants. It is also believed that semantic information
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Figure 5. The framework of the proposed method, where the semantic, distortion, and motion features are extracted by the pretrained
EfficientNetV2 [38], handcrafted distortion descriptors, and pretrained ResNet3D-18 [13] respectively. The absolute error between the
adjacent frames’ semantic and distortion features is used to reflect the temporal quality fluctuations. Finally, the multi-dimensional features
are spatio-temporally fused and regressed into quality values.

can help identify the existence and extent of the perceived
distortions [9]. Moreover, it has been proven that human
perception is highly affected by compression [15,50]. Thus
it is quite reasonable to incorporate the semantic informa-
tion into the compressed UGC video quality assessment.

Considering that visual perception is a hierarchical struc-
ture, that is, input visual information is perceived hierarchi-
cally from low-level features to high-level [26, 43, 44], we
propose to utilize multi-scale features extracted from the
last 4 stages of the pretrained EfficientNetV2 [38] as the
frame-level semantic information:

SF i
l = α1 ⊕ α2 ⊕ α3 ⊕ α4, l ∈ {1, · · · , 2L},
αj = GAP(Lj(F

i
l )), j ∈ {1, 2, 3, 4},

(3)

where SF i
l indicates the extracted semantic features from

the l-th sampled frame F i
l of clip Ci, ⊕(·) stands for the

concatenation operation, GAP(·) represents the global av-
erage pooling operation, Lj(F

i
l ) stands for the feature maps

obtained from j-th last layer of EfficientNetV2, and αj de-
notes the average pooled features from Lj(F

i
l ).

4.1.2 Distortion Feature Extraction

Various types of distortions exist in UGC videos and only
utilizing semantic information is insufficient to model the
distortion perception of UGC videos. What’s more, the
original UGC distortions can exhibit dissimilar quality rep-
resentations under different levels of compression. For ex-
ample, the blur is less sensitive to compression [56,57] since
compression usually wipes out high-frequency information,

and noise can be eased or even disappear when higher com-
pression levels are applied [5]. Therefore, to better improve
the quality representation of the proposed method, some
handcrafted distortion descriptors are further employed for
quality prediction, which include blur [54], noise [7], block
effect [47], exposure [18], and colorfulness [32]. Then the
frame-level distortion features can be derived as:

DF i
l = Ψ(F i

l ), l ∈ {1, · · · , 2L}, (4)

whereDF i
l represents the extracted distortion features from

the l-th sampled frame F i
l of clip Ci and Ψ(·) stands for the

distortion feature extraction process.

4.1.3 Motion Feature Extraction

UGC live videos are often bothered with motion distortions
resulting from the unstable shooting environment as well
as the restricted bit rates. However, these motion distor-
tions such as the video shaking and the motion blur are
difficult to recognize from the spatial features alone. Fur-
thermore, video compression deeply depends on motion es-
timation [11, 25], which indicates that motion distortions
can influence the quality of video compression. Therefore,
to help the model better understand the motion informa-
tion, we propose to use the pretrained 3D-CNN backbone,
ResNet3D-18 [13], to capture clip-level motion distortions:

MF i = Γ(Ci), (5)

whereMF i denotes the motion features extracted from clip
Ci and Γ(·) represents the motion feature extraction opera-
tion.



To sum up, given the i-th clip Ci of the video, we can
obtain the clip-level semantic features SF i ∈ R2L×NS , the
distortion features DF i ∈ R2L×ND , and the motion fea-
tures MF i ∈ R1×NM , where NS , ND, and NM represent
the number of channels for the semantic, distortion, and mo-
tion features respectively.

4.2. Feature Fusion

It has been proven in [30] that videos with better quality
tend to have smaller quality fluctuations while videos with
lower quality tend to have larger quality fluctuations. There-
fore, to quantify the fluctuations that are highly correlated
with human perception, we propose to employ the absolute
error between adjacent semantic and distortion features for
temporal quality fluctuations reflection:

SF i′

2k = |SF i
2k − SF i

2k−1|, k ∈ {1, · · · , L},

DF i′

2k = |DF i
2k −DF i

2k−1|, k ∈ {1, · · · , L},
(6)

where SF i′

2k andDF i′

2k represent the absolute error between
adjacent semantic and distortion features. Then the spatio-
temporal fusion can be derived as:

SDi
2k = ω(SF i

2k)⊕ ω(DF i
2k)⊕ ω(SF i′

2k)⊕ ω(DF i′

2k),

STF i = W 1
L(SDiT ),

(7)
where⊕(·) stands for the concatenation operation, ω(·) rep-
resents the learnable Multilayer Perceptron (MLP), SDi

2k ∈
R1×NSD indicates the frame-level spatial-fused features
obtained from semantic and distortion features, SDiT ∈
RNSD×L is the transposition result of the clip-level seman-
tic and distortion features SDi ∈ RL×NSD , W 1

L is a learn-
able linear mapping operation to fuse the SDiT in the tem-
poral domain, and we finally obtain the spatio-temporal
fused features STF i ∈ RNSD×1. To further introduce the
quality-aware motion features, we concatenate the spatio-
temporal features with the motion features:

F i = STF iT ⊕ ω(MF i), (8)

where STF iT ∈ R1×NSD , the final clip-level quality-aware
representation F i ∈ R1×(NSD+N ′

M ) and N ′M is adjusted
number of channels for the motion features after MLP op-
eration.

4.3. Feature Regression

After the feature extraction process described above, we
use the three-stage fully-connected layers to regress the
clip-level quality-aware representation F i into quality val-
ues:

Qi = FC(F i), (9)

where FC(·) indicates the fully-connected layers and Qi

stands for the quality value of clip Ci. Consequently, the

overall UGC live video quality can be obtained via average
pooling:

Q = 1/
n

r

n
r∑
1

Qi, (10)

where Q is the video quality value and n
r represents the

number of clips. We simply use the Mean Squared Error
(MSE) as the loss function:

Loss =
1

n

n∑
m=1

(Q′m −Qm)
2 (11)

where n indicates the number of videos in a mini-batch,
Q′m and Qm are the subjective quality labels and predicted
quality levels respectively.

5. Experiment
In this section, we first give the details of the experimen-

tal setup. Then we validate the proposed MD-VQA model
with other mainstream VQA models on the proposed Tao-
Live database and the other two UGC compression VQA
models. The ablation study and cross database validation
are conducted to investigate the contributions of different
groups of features and the generalization ability of the VQA
models. Finally, we test the proposed MD-VQA model on
two in-the-wild UGC VQA databases.

5.1. Benchmark Databases

The proposed TaoLive database and two compressed
UGC VQA databases including the LIVE-WC [53] and
YT-UGC+ [46] databases are selected as the benchmark
databases. For all the databases, we follow the common
practice and spilt the databases with an 80%-20% train-test
ratio. Additionally, all the databases are validated sepa-
rately. To fully evaluate the stabilization and performance
of the VQA models, the split is randomly conducted 30
times and the average results are recorded as the final per-
formance.

5.2. Implementation Details

The EfficientNetV2 [38] backbone is fixed with the
EfficientNetV2-S weights pretrained on the ImageNet
database [8] for semantic feature extraction while the
ResNet3D-18 [13] is fixed with the weights pretrained on
the Kinetics-400 [16] database. All the frames are main-
tained with the original resolution for the semantic, distor-
tion, and motion feature extraction. The Adam optimizer
[17] is employed with the initial learning rate set as 0.001. If
the training loss has not decreased for 5 epochs, the learning
rate will be reduced to half. The default number of epochs
is set as 50. The parameter L described in Section 4.1 is set
as 8, which means 16 frames are uniformly sampled for the
semantic and distortion feature extraction for a single clip.



Table 2. Experimental performance on the compressed UGC VQA databases. ‘Hand’ indicates using handcrafted-based features while
‘Deep’ indicates using deep learning-based features. Best in red and second in blue.

Method Hand Deep
LIVE-WC YT-UGC+ TaoLive

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
BRISQUE (TIP, 2012) [28] X × 0.787 0.788 0.303 0.309 0.771 0.777
TLVQM (TIP, 2019) [18] X × 0.838 0.830 0.672 0.697 0.862 0.869
VIDEVAL (TIP, 2021) [39] X × 0.812 0.825 0.660 0.662 0.914 0.910
VSFA (ACM MM, 2019) [20] × X 0.856 0.857 0.784 0.783 0.920 0.917
PVQ (CVPR, 2021) [51] × X 0.901 0.909 0.775 0.776 0.916 0.919
BVQA (TCSVT, 2022) [19] × X 0.912 0.916 0.777 0.781 0.926 0.922
SimpleVQA (ACM MM, 2022) [37] × X 0.927 0.920 0.789 0.784 0.932 0.926
MD-VQA(Ours) X X 0.931 0.937 0.822 0.828 0.942 0.945

Table 3. Experimental performance of the ablation study, where
SF, DF, and MF indicate the semantic features, distortion features,
and motion features respectively.

Feature
LIVE-WC YT-UGC+ TaoLive

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
SF 0.911 0.910 0.785 0.787 0.931 0.934
DF 0.640 0.658 0.277 0.381 0.603 0.638
MF 0.841 0.858 0.537 0.561 0.909 0.912

SF+DF 0.925 0.922 0.805 0.824 0.935 0.936
SF+MF 0.921 0.924 0.792 0.789 0.940 0.941
DF+MF 0.857 0.861 0.573 0.631 0.925 0.926

All 0.931 0.937 0.822 0.828 0.942 0.945

Table 4. Ablation study results for absolute error (ABS) and fea-
ture fusion module (FFM), where ABS is replaced with error and
FFM is replaced with concatenation.

Model
LIVE-WC YT-UGC+ TaoLive

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
w/o ABS 0.912 0.916 0.814 0.814 0.925 0.920
w/o FFM 0.913 0.915 0.811 0.817 0.921 0.928

All 0.931 0.937 0.822 0.828 0.942 0.945

5.3. Competitors & Criteria

To fully evaluate the performance of the proposed
method, we select several popular quality assessment mod-
els for comparison, which include BRISQUE [28], VSFA
[20], TLVQM [18], VIDEVAL [39], PVQ [51], BVQA
[19] and SimpleVQA [37]. It’s worth mentioning that
BRISQUE belongs to NR-IQA models and we obtain the
video quality features by averaging the features extracted
from each frame with BRISQUE. The other VQA models
are trained with the default parameter setting defined by
their authors.

Two criteria are adopted to evaluate the performance of
the quality assessment models, which include the Spear-
man Rank Order Correlation Coefficient (SRCC) and Pear-
son Linear Correlation Coefficient (PLCC). Before calcu-
lating the criteria values, a four-parameter logistic regres-
sion function [35] is utilized to fit the predicted scores to

the scale of MOSs. The value range for SRCC and PLCC
is [0,1] and better models should yield higher SRCC and
PLCC values.

5.4. Performance Discussion

The experimental performance on the three compressed
UGC VQA databases is shown in Table 2, from which we
can draw several conclusions. (a) The proposed MD-VQA
achieves first place and surpasses the second place (Sim-
pleVQA [37]) by about 0.004, 0.033, and 0.010 in terms
of SRCC values on the LIVE-WC, YT-UGC+, and Tao-
Live databases respectively, which demonstrates its effec-
tiveness of predicting the quality levels of compressed UGC
videos. (b) The handcrafted-based methods (BRISQUE,
TLVQM, and VIDEVAL) are significantly inferior to the
deep learning-based methods (VSFA, PVQ, BVQA, Sim-
pleVQA, and MD-VQA). It can be explained that the hand-
crafted based methods hold the prior experience of NSS,
which comes from the pristine videos. However, the char-
acteristics of compressed UGC videos are far more compli-
cated and do not suit the prior knowledge of natural regu-
larities. (c) All the VQA methods experience performance
drops on the YT-UGC+ database compared with the other
two databases. The YT-UGC+ database uses the recom-
mended VP9 settings and target bit rates [4] for compres-
sion while the LIVE-WC and TaoLive databases control the
compression by varying the CRF parameters of H.264 and
H.265 respectively. It might be because the recommended
VP9 compression settings do not monotonically reduce the
video bit rates, thus being more challenging for quality pre-
diction.

5.5. Ablation Study

To investigate the contributions of different features em-
ployed in MD-VQA, we conduct the ablation study in this
section. The experimental results for employing different
types of features are shown in Table 3. Combining features
yield better performance than using a single group of fea-
tures and employing all features leads to the best perfor-



mance among the combinations of different features, which
confirms the contributions of the semantic, distortion, and
motion features. Additionally, by comparing the perfor-
mance of SF, DF, and MF models, we can see that the SF
model achieves first place on all the databases, which in-
dicates that the semantic features make the most devotion
to the final performance. What’s more, the distortion and
motion features achieve only 0.277 and 0.537 in terms of
SRCC values on the YT-UGC+ database. This is because
1/3 of the YT-UGC+ database’s compressed UGC videos
are obtained from game videos. The game videos’ distor-
tion and motion characteristics differ greatly from the natu-
ral videos. To illustrate, noise usually does not exist in game
videos and the motion blur effect is manually introduced if
applied. Such phenomena result in the relatively low per-
formance of the distortion and motion features. We also
conduct the ablation study for using absolute error (ABS)
and feature fusion module (FFM) and the results are listed
in Tab 4, from which we can find that both ABS and FFM
make contributions to the final results.

5.6. Cross Database Performance

Since UGC videos are diverse in contents and distor-
tions, We carry out the cross database validation to test the
generalization ability of the VQA models in this section.
The VQA models are trained on the TaoLive database and
tested on the other two compressed UGC VQA databases.
The experimental results are listed in Table 5. The proposed
MD-VQA model has surpassed all the compared VQA
models on both LIVE-WC and YT-UGC+ databases, which
proves its strong generalization ability. The handcrafted-
based VQA models (BRISQUE, TLVQM, and VIDEVAL)
perform badly on the YT-UGC+ database and the deep
learning-based methods also undergo significant perfor-
mance drops from the LIVE-WC database to the YT-UGC+

database. The reason is that the YT-UGC+ database em-
ploys VP9 [4] while the TaoLive database utilizes H.265 for
compression respectively. The different compression stan-
dards can bring unignorable gaps between the data distri-
butions. Therefore the quality representation learned from
the TaoLive database is less effective on the YT-UGC+

database but works well on the H.264 compressing LIVE-
WC database.

5.7. In-the-wild Performance

Although the proposed MD-VQA model focuses on the
compressed UGC VQA issues, we also test its performance
on some mainstream in-the-wild UGC VQA databases,
which includes the KoNViD-1k [14] and LIVE-VQC [36]
databases. These databases are not focused on compres-
sion and contain a wide range of distortions. Validation on
these databases can reflect the VQA models’ ability to han-
dle general UGC VQA issues. The experimental results are

Table 5. Experimental performance of cross databases, where the
VQA models are all pretrained on the TaoLive database.

Method
LIVE-WC YT-UGC+

SRCC↑ PLCC↑ SRCC↑ PLCC↑
BRISQUE [28] 0.708 0.709 0.026 0.059
TLVQM [18] 0.562 0.583 0.155 0.184

VIDEVAL [39] 0.557 0.583 0.077 0.132
VSFA [20] 0.701 0.698 0.357 0.399

SimpleVQA [37] 0.711 0.723 0.388 0.394
MD-VQA 0.742 0.728 0.440 0.448

Table 6. Experimental performance of in-the-wild UGC databases.

Method
KonViD-1k LIVE-VQC

SRCC↑ PLCC↑ SRCC↑ PLCC↑
BRISQUE [28] 0.657 0.658 0.593 0.638
TLVQM [18] 0.773 0.769 0.799 0.803

VIDEVAL [39] 0.783 0.780 0.752 0.751
VSFA [20] 0.785 0.797 0.716 0.775

SimpleVQA [37] 0.856 0.860 0.811 0.815
MD-VQA 0.851 0.853 0.814 0.839

exhibited in Table 6, from which we can find that the pro-
posed MD-VQA outperforms the compared VQA models
on the LIVE-VQC databases and gets the second-ranking
on the KoNViD-1k database. This implies that the proposed
MD-VQA remains competitive not only for compression-
specific VQA issues and can be taken as a strong baseline
for in-the-wild UGC VQA tasks as well.

6. Conclusion
In this paper, we focus on the compressed UGC VQA

issues. To meet the practical needs of live platforms, we
carry out a large-scale compressed UGC VQA database
called TaoLive. Unlike the common compression VQA
databases that employ high-quality videos as source videos,
the TaoLive database collects the 418 source UGC videos
that cover a wide quality range and generate the compressed
videos by varying the CRF parameters with H.265. A well-
controlled subjective experiment is conducted to gather the
quality labels for the compressed UGC videos. Further, we
propose a VQA model (MD-VQA) to assess the quality of
the compressed UGC videos from the semantic, distortion,
and motion dimensions. The extensive experimental results
confirm the effectiveness of the proposed method.
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