
Learning Decorrelated Representations Efficiently
Using Fast Fourier Transform

Yutaro Shigeto* Masashi Shimbo∗ Yuya Yoshikawa Akikazu Takeuchi
{shigeto,shimbo,yoshikawa,takeuchi}@stair.center

STAIR Lab, Chiba Institute of Technology, Narashino, Chiba, Japan

Abstract

Barlow Twins and VICReg are self-supervised represen-
tation learning models that use regularizers to decorrelate
features. Although these models are as effective as conven-
tional representation learning models, their training can be
computationally demanding if the dimension 𝑑 of the pro-
jected embeddings is high. As the regularizers are defined
in terms of individual elements of a cross-correlation or
covariance matrix, computing the loss for 𝑛 samples takes
𝑂 (𝑛𝑑2) time. In this paper, we propose a relaxed decorre-
lating regularizer that can be computed in 𝑂 (𝑛𝑑 log 𝑑) time
by Fast Fourier Transform. We also propose an inexpensive
technique to mitigate undesirable local minima that develop
with the relaxation. The proposed regularizer exhibits ac-
curacy comparable to that of existing regularizers in down-
stream tasks, whereas their training requires less memory
and is faster for large 𝑑. The source code is available.1

1. Introduction

Self-supervised learning (SSL) of representations [1, 4–
6, 11, 14, 16, 29, 30, 33, 34] has become an integral part
of deep learning applications in computer vision. Most
SSL models for visual representations employ a multi-view,
Siamese network architecture. First, an input image is al-
tered by different transformations that preserve its origi-
nal semantics. The two augmented examples are then fed
to a neural network (or in some cases, two different net-
works) that consists of a backbone network cascaded with a
small projection network (usually a multi-layer perceptron)
to produce “twin” projected embeddings, or views, of the
original. Finally, the network weights are trained so that
the twin embeddings (referred to as a “positive pair”) are
similar, reflecting the fact that they represent the same orig-
inal image. After training, the projection network is dis-
carded, while the backbone network is reused for down-

*Equal contribution.
1https://github.com/yutaro-s/scalable-decorrelation-ssl.git

stream tasks; the idea is that the pretrained backbone should
produce generic representations of images that also benefit
downstream tasks.

One major issue in SSL is to sidestep collapsed embed-
dings, or the presence of trivial solutions such that all exam-
ples are projected to a single embedding vector. Contrastive
approaches [4, 5, 16, 29, 30] eliminate such solutions by a
loss term that repels embeddings of different original im-
ages (known as “negative pairs”) from each other. Consid-
ering all possible negative pairs is infeasible, and negative
sampling is usually performed.

Recent studies have explored non-contrastive SSL mod-
els. Among these models, Barlow Twins [33] and VICReg
[1] use loss functions to penalize features (components of
embedding vectors) with a small variance, which are char-
acteristic of collapsed embeddings. Also notable in these
loss functions are regularization terms for feature decorre-
lation. They reduce redundancy in the learned features and
make Barlow Twins and VICReg perform as well as con-
trastive models. However, since the regularizers are defined
in terms of elements in a sample cross-correlation or covari-
ance matrix, they require 𝑂 (𝑛𝑑2) time to compute, where 𝑛

is the number of examples in a batch, and 𝑑 is the dimen-
sionality of the projected embeddings. This is problematic,
as an increased 𝑑 has been reported to improve the perfor-
mance of both Barlow Twins and VICReg [1, 33].

Contributions. We propose a relaxed decorrelating regu-
larizer to address the inefficiency of Barlow Twins and VI-
CReg. The proposed regularizer does not require the ex-
plicit calculation of cross-correlation or covariance matrices
and can be computed in 𝑂 (𝑛𝑑 log 𝑑) time by means of Fast
Fourier Transform (FFT) [8]. Although undesirable local
minima develop as a result of relaxation, they can be mit-
igated by feature permutation; we give an account of why
this simple technique works. The SSL models using the
proposed regularizer achieve competitive performance with
Barlow Twins and VICReg in downstream tasks, with sub-
stantially less computation time for large 𝑑. With 𝑑 = 8192,
training is 1.2 (with a ResNet-50 backbone) or 2.2 (with a

1

ar
X

iv
:2

30
1.

01
56

9v
2

 [
cs

.L
G

]
 1

 J
un

 2
02

3

https://github.com/yutaro-s/scalable-decorrelation-ssl.git

lightweight ResNet-18 backbone) times as fast as Barlow
Twins. The proposed method also reduces memory con-
sumption, which allows for larger batch size.

Notation. We use zero-based indexing for vector and ma-
trix components unless stated otherwise; thus, for a vector
x ∈ R𝑑 , the component index ranges from 0 to 𝑑−1. We use
[x]𝑖 to denote the 𝑖th component of vector x, and [M]𝑖 𝑗 to
denote the (𝑖, 𝑗)th element of matrix M. For a complex vec-
tor c, c denotes its componentwise complex conjugate. For
vectors x and y, x ◦ y denotes their componentwise product.

2. Related Work
Contrastive SSL. Contrastive SSL uses positive and neg-
ative pairs of augmented samples [4, 5, 7, 10, 16, 26, 29, 30].
The commonly used InfoNCE loss [29] consists of an align-
ment term, which maximizes the similarity between posi-
tive pairs, and a uniformity term, which minimizes the sim-
ilarity between negative pairs [30]. SimCLR [4] is a state-
of-the-art contrastive SSL method. However, to obtain ef-
fective representations, SimCLR requires a large number of
negative pairs [4], or, in other words, a large batch (or mem-
ory bank) size 𝑛. This can be a computational bottleneck, as
the loss computation of SimCLR takes 𝑂 (𝑛2𝑑) time where
𝑑 is the dimensionality of the projected embeddings.

Non-contrastive SSL Using Asymmetric Architec-
ture. Recently, researchers have started exploring non-
contrastive approaches to SSL, i.e., those that do not use
negative pairs for training. To overcome collapsed embed-
dings, models such as BYOL [14] and SimSiam [6] intro-
duce asymmetry in the architecture, e.g., by suppressing
gradient updates and/or using the moving average of net-
work parameters for one branch of the Siamese network.
These methods are heuristically motivated, as collapsed em-
beddings are not explicitly penalized; however, they are ef-
fective in practice.

Non-contrastive SSL by Decorrelating Regularization.
A line of work exists that maintains a standard (symmet-
ric) Siamese network but introduces loss functions to sup-
press collapsed embeddings. These loss functions also have
regularization terms to promote feature decorrelation. Bar-
low Twins [33] is the first method in this line. It uses a
decorrelating regularizer based on cross-correlation across
two views. VICReg [1] uses regularizers that are defined
in terms of covariance matrices of individual views. We re-
view these methods in detail in Sec. 3.

Non-contrastive SSL by Whitening. Some authors [11,
19] have used whitening to explicitly decorrelate features
during training, as opposed to performing regularization.

Subsequent work [34] whitened both features and instances.
Because the whitening procedures used in these approaches
require the computation of all the eigenvalues of the co-
variance matrices, a training epoch takes 𝑂 (min(𝑑𝑛2, 𝑛𝑑2))
time, which is inefficient with large 𝑑 or 𝑛.

Use of Convolution in Machine Learning. Convolution
is the fundamental building block of convolution neural net-
works (CNNs). CNNs take (linear) convolution of input
vectors with small learnable kernels to extract local fea-
tures. Although FFT reduces the asymptotic complexity of
convolution computation, it is seldom used with CNNs, be-
cause the size of kernels is typically too small to benefit
from speed-up by FFT. In contrast to CNNs, we use (cir-
cular) convolution to compute summary statistics of covari-
ance and cross-correlation matrices.

In other areas of machine learning, circular convolu-
tion and its non-commutative analogue, circular correla-
tion, have been used for implementing associative mem-
ory [3,22,24]. The idea has recently been applied to knowl-
edge graph embeddings (KGEs) [20], with the resulting
model later shown [15] to be isomorphic to complex-valued
KGEs [27] by means of the convolution theorem.

3. SSL Using Decorrelating Regularizers
This section reviews Barlow Twins [33] and VICReg [1].

Given a batch of 𝑛 original training examples, these mod-
els apply two randomly chosen transformations to each ex-
ample. The transformed examples are then processed in-
dependently by a neural network to produce twin embed-
dings (views) of the original. Let a(𝑘) , b(𝑘) ∈ R𝑑 denote the
twin embeddings thus obtained for the 𝑘th example, and let
A = {a(𝑘) }𝑛

𝑘=1, B = {b(𝑘) }𝑛
𝑘=1 be the sets of embeddings for

individual views. Given these embeddings, the network is
trained to minimize the loss function specific to each model.

Barlow Twins. Barlow Twins optimizes the loss function
defined in terms of the cross-correlation matrix C(A,B) ∈
R𝑑×𝑑 between views A and B:

𝐿BT =

𝑑−1∑︁
𝑖=0

(1 − [C(A,B)]𝑖𝑖)2 + 𝜆𝑅off (C(A,B)), (1)

where hyperparameter 𝜆 ≥ 0 controls the strength of reg-
ularization, and 𝑅off : R𝑑×𝑑 → R is a regularizer function
defined as

𝑅off (M) =
𝑑−1∑︁
𝑖=0

𝑑−1∑︁
𝑗=0
𝑗≠𝑖

[M]2
𝑖 𝑗 . (2)

The first term in Eq. (1) is minimized when the corre-
sponding features of two views are fully correlated, i.e.,

2

[C(A,B)]𝑖𝑖 = 1 for 𝑖 = 0, . . . , 𝑑 − 1. This term
can be efficiently computed in 𝑂 (𝑛𝑑) time. Regularizer
𝑅off (C(A,B)) in the second term is responsible for feature
decorrelation, as it is minimized when all the off-diagonal
elements in C(A,B) are zero. For a large 𝑑, 𝑅off (C(A,B))
can be a computational burden, as it takes 𝑂 (𝑛𝑑2) time to
compute due to the 𝑑 × 𝑑 matrix C(A,B).

VICReg. Let K(A),K(B) ∈ R𝑑×𝑑 be the covariance ma-
trices of A and B, respectively. The VICReg loss function
is

𝐿VIC =
𝛼

𝑛

𝑛∑︁
𝑘=1

∥a(𝑘) − b(𝑘) ∥2
2

+ 𝜇

𝑑
(𝑅var (K(A)) + 𝑅var (K(B)))

+ 𝜈

𝑑
(𝑅off (K(A)) + 𝑅off (K(B))) , (3)

where hyperparameters 𝛼, 𝜇, 𝜈 ≥ 0 control the importance
of individual terms, and 𝑅var is the regularizer defined as

𝑅var (M) =
𝑑−1∑︁
𝑖=0

max(0, 𝛾 −
√︁
[M]𝑖𝑖), (4)

with the target standard deviation 𝛾 > 0. Function 𝑅off is
the same regularizer as used in Barlow Twins (Eq. (2)), but
here, it is applied to K(A) and K(B) instead of C(A,B).

The first term in Eq. (3) brings two embeddings of
the same example closer. Regularizer 𝑅var penalizes col-
lapsed embeddings with zero variance, whereas 𝑅off pro-
motes the diversity of features by encouraging the feature
covariance to be zero. The time complexity of calculating
𝑅off (K(A)) and 𝑅off (K(B)) is 𝑂 (𝑛𝑑2), identical to that of
𝑅off (C(A,B)) in Barlow Twins.

4. Proposed Method

We propose a weaker but efficiently computable alterna-
tive to the regularizer function 𝑅off. In the following, our
regularizer is presented in terms of cross-correlation matrix
C(A,B), similarly to Barlow Twins. However, if applied
instead to K(A) and K(B), it produces a relaxed version of
the corresponding regularization terms in the VICReg loss.

4.1. Regularizer Based on Sums of Cross-correla-
tions

Recall that the Barlow Twins loss is based on the cross-
correlation matrix C = C(A,B) of two views A = {a(𝑘) }𝑛

𝑘=1
and B = {b(𝑘) }𝑛

𝑘=1. For brevity, assume that both 𝐴 and 𝐵

are standardized. Then, we can simply write C = (1/(𝑛 −
1))∑𝑛

𝑘=1 a(𝑘)b(𝑘)T.

𝑐00 𝑐01 𝑐02

𝑐10 𝑐11 𝑐12

𝑐20 𝑐21 𝑐22

𝑣0

𝑣1

𝑣2

𝑣0 = 𝑐00 + 𝑐11 + 𝑐22

𝑣1 = 𝑐01 + 𝑐12 + 𝑐20

𝑣2 = 𝑐02 + 𝑐10 + 𝑐21

Figure 1. A 3×3 cross-correlation matrix C =
[
𝑐𝑖 𝑗

]
(𝑖, 𝑗 = 0, 1, 2)

and sumvec(C) = [𝑣0 𝑣1 𝑣2]T.

Our regularizer is defined in terms of a 𝑑-dimensional
“summary” vector of the 𝑑 × 𝑑 matrix C. This vector, de-
noted by sumvec(C), is given componentwise by

[sumvec(C)]𝑖 =
𝑑−1∑︁
𝑗=0

[C] 𝑗 , (𝑖+ 𝑗) mod 𝑑 . (5)

Note the zero-based component indices. The zeroth compo-
nent [sumvec(C)]0 is the trace of C. Each of the remaining
𝑑 − 1 components corresponds to a sum of 𝑑 different off-
diagonal elements of C, with no single element appearing
in two distinct sums. Thus, every element in C appears ex-
actly once in the summations in Eq. (5). The calculation of
a summary vector for a 3×3 covariance matrix is illustrated
in Fig. 1.

Now, we define a regularizer in terms of all but the zeroth
component of sumvec(C):

𝑅sum (C) =
𝑑−1∑︁
𝑖=1

∥ [sumvec(C)]𝑖 ∥𝑞𝑞 , (6)

where hyperparameter 𝑞 ∈ {1, 2}. This function 𝑅sum can
be used as a drop-in replacement for 𝑅off in the Barlow
Twins loss (Eq. (1)). The zeroth component [sumvec(C)]0
is excluded in Eq. (6), because it concerns the diagonal ele-
ments of C that are irrelevant to feature decorrelation; they
do not appear in Barlow Twin’s regularizer 𝑅off (C) either.

The regularizer 𝑅sum is weaker than 𝑅off in that it im-
poses constraints on the components of the summary vec-
tor, or the sums of 𝑑 elements of C, whereas 𝑅off constrains
individual elements. Indeed, the minimizers of 𝑅off (C) also
minimize 𝑅sum (C), but the converse does not necessarily
hold. However, as we discuss in Sec. 4.2, 𝑅sum allows faster
computation. Furthermore, in Sec. 4.3, we provide a simple
technique to mitigate the weakness of 𝑅sum.

4.2. Efficient Computation

Computing sumvec(C) by Eq. (5) requires the cross-
correlation matrix C(A,B), whose calculation incurs the
same computational cost as that of the Barlow Twins loss.
However, by means of the Fourier transform, sumvec(C)

3

can be calculated directly from the vectors in A and B with-
out explicit calculation of their cross-correlation matrix. To
this end, we use involution and circular convolution.

For a vector x ∈ R𝑑 , its involution [24] (also called flip-
ping [25]) inv(x) is the vector obtained by reversing the or-
der of its first (not the zeroth) to (𝑑 − 1)st components; i.e.,
[inv(x)]𝑖 = [x] (𝑑−𝑖) mod 𝑑 for 𝑖 = 0, . . . , 𝑑 − 1.

For vectors x, y ∈ R𝑑 , their circular convolution x ∗ y is
a 𝑑-dimensional vector with components given as

[x ∗ y]𝑖 =
𝑑−1∑︁
𝑗=0

[
x yT]

𝑗 , (𝑖− 𝑗) mod 𝑑
. (7)

As a result, circular convolution is known as the “com-
pressed outer product.”

Now, for each twin embedding pair a(𝑘) ∈ A and b(𝑘) ∈
B (𝑘 = 1, . . . , 𝑛), let us consider vector inv(a(𝑘)) ∗ b(𝑘) ∈
R𝑑 .2 Noting the indices altered by involution, we see that
this vector is given componentwise by[

inv(a(𝑘)) ∗ b(𝑘)
]
𝑖
=

𝑑−1∑︁
𝑗=0

[
a(𝑘)b(𝑘)T

]
𝑗 , (𝑖+ 𝑗) mod 𝑑

. (8)

Substituting C = (1/(𝑛 − 1))∑𝑛
𝑘=1 a(𝑘)b(𝑘)T into Eq. (5)

and using Eq. (8), we have

[sumvec(C)]𝑖 =
𝑑−1∑︁
𝑗=0

C︷ ︸︸ ︷[
1

𝑛 − 1

𝑛∑︁
𝑘=1

a(𝑘)b(𝑘)T
]
𝑗 , (𝑖+ 𝑗) mod 𝑑

=
1

𝑛 − 1

𝑛∑︁
𝑘=1

𝑑−1∑︁
𝑗=0

[
a(𝑘)b(𝑘)T

]
𝑗 , (𝑖+ 𝑗) mod 𝑑

=
1

𝑛 − 1

𝑛∑︁
𝑘=1

[
inv(a(𝑘)) ∗ b(𝑘)

]
𝑖
, (9)

or, as a vector,

sumvec(C) = 1
𝑛 − 1

𝑛∑︁
𝑘=1

inv(a(𝑘)) ∗ b(𝑘) . (10)

Let F and F−1 denote the discrete Fourier transform and in-
verse discrete Fourier transform, respectively. Noting that
F(inv(x)) = F(x) for any x ∈ R𝑑 (see e.g., [25], Sec-
tion 7.4.2) and using the convolution theorem F(x ∗ y) =

F(x) ◦ F(y), we have

inv(a(𝑘)) ∗ b(𝑘) = F−1
(
F(a(𝑘)) ◦ F(b(𝑘))

)
. (11)

2The vector inv(x) ∗ y is known as the circular (cross-)correlation of
x and y [22, 24, 25]. We opt not to use this term in this paper to avoid
confusion with the cross-correlation of random vectors, which is used in
Barlow Twins.

Substituting Eq. (11) into Eq. (10), we obtain

sumvec(C) = 1
𝑛 − 1

𝑛∑︁
𝑘=1

inv(a(𝑘))∗b(𝑘)︷ ︸︸ ︷
F−1

(
F(a(𝑘)) ◦ F(b(𝑘))

)
=

1
𝑛 − 1

F−1

(
𝑛∑︁

𝑘=1
F(a(𝑘)) ◦ F(b(𝑘))

)
. (12)

Using this equation, we can compute sumvec(C) directly
from the embedding vectors {a(𝑘) , b(𝑘) }𝑛

𝑘=1, bypassing the
cumbersome calculation of C. Noting that the (inverse)
Fourier transform of a 𝑑-dimensional vector can be per-
formed in 𝑂 (𝑑 log 𝑑) time by the FFT algorithm, while
the calculation of complex conjugates, component products,
and the sum of 𝑛 vectors takes 𝑂 (𝑛𝑑) time, we can see that
the overall time to obtain sumvec(C) is 𝑂 (𝑛𝑑 log 𝑑), which
is also the time needed to compute 𝑅sum (C). This is a sub-
stantial improvement over the 𝑂 (𝑛𝑑2) computation time of
𝑅off (C) in the Barlow Twins loss.

Furthermore, the space complexity of computing
𝑅sum (C) is 𝑂 (𝑛𝑑), which is optimal if the 𝑂 (𝑛𝑑) space
needed to store input vectors A and B is considered as part
of the complexity. In contrast, Barlow Twins requires extra
𝑂 (𝑑2) space to store C.

4.3. Feature Permutation to Mitigate Undesirable
Local Minima

As seen from Eq. (5), the components of sumvec(C) are
the sums of 𝑑 elements in C, and the proposed regularizer
𝑅sum (Eq. (6)) encourages these sums to be close to zero.
This is weaker than the regularizer 𝑅off (Eq. (2)) in the Bar-
low Twins loss, which pushes individual elements of C to-
wards zero. Indeed, 𝑅sum (C) can be close to zero even if
individual elements in C are not; the summands in Eq. (5)
can cancel each other, since they can be either positive or
negative. As a result, undesirable local minima develop in
the parameter space, rendering our regularizer ineffective.

Here, we propose a technique to eliminate these local
minima: we randomly permute feature indices during train-
ing so that sums of different cross-correlation terms consti-
tute sumvec(C). To understand why this simple technique
is effective, consider minimizing 𝑅sum (C), regarding the el-
ements of C as independent3 variables. It is easy to see that
the minimum is attained by the solutions to a homogeneous
system of linear equations:

[sumvec(C)]𝑖︷ ︸︸ ︷
𝑑−1∑︁
𝑗=0

[C] 𝑗 , (𝑖+ 𝑗) mod 𝑑 = 0, for 𝑖 = 1, . . . , 𝑑 − 1.

3This assumption is not unrealistic given the high capacity of modern
neural networks.

4

This is an underdetermined system, with only 𝑑 − 1 equa-
tions but with 𝑑 (𝑑 − 1) unknowns, namely, [C] 𝑗ℓ , 𝑗 , ℓ =

0, . . . , 𝑑 − 1, 𝑗 ≠ ℓ. This underdeterminacy is the cause
of nontrivial solutions such that [C] 𝑗ℓ ≠ 0, that is, unde-
sirable solutions in which summands with opposite signs
cancel each other in an equation.

Now, by repeatedly permuting the feature indices and
minimizing the loss, we effectively introduce additional
equations to the system, since permutation can produce dif-
ferent sets of linear equations over the unknowns, and these
new constraints eventually render nontrivial solutions inad-
missible.

For ease of implementation, we permute feature indices
randomly during training, instead of generating all permu-
tations systematically at once, similarly to the way that
stochastic gradient descent is a modification to full gradient
descent. Note that the permuted feature indices need not be
identical across mini-batches, even within a single epoch;
indeed, in the experiments presented in Sec. 5, we use a dif-
ferent random permutation of features in every mini-batch
in every epoch.

4.4. Feature Grouping to Control the Degree of Re-
laxation

Instead of computing a summary vector for an entire
cross-correlation matrix C, we can compute summaries at
a more fine-grained level. Specifically, we partition 𝑑 fea-
tures into groups of size 𝑏 each4. This partitioning induces
in C a total of ⌈𝑑/𝑏⌉2 block submatrices of size 𝑏 × 𝑏,
i.e., C = [C𝑖 𝑗] (𝑖, 𝑗 = 1, . . . , ⌈𝑑/𝑏⌉) with submatrices
C𝑖 𝑗 ∈ R𝑏×𝑏. We then define the regularizer as

𝑅
(𝑏)
sum (C) =

⌈𝑑/𝑏⌉∑︁
𝑖=1

𝑏−1∑︁
ℓ=1

∥ [sumvec(C𝑖𝑖)]ℓ ∥𝑞𝑞

+
⌈𝑑/𝑏⌉∑︁
𝑖, 𝑗=1
𝑖≠ 𝑗

𝑏−1∑︁
ℓ=0

[sumvec(C𝑖 𝑗)]ℓ

𝑞
𝑞
. (13)

As before, sumvec(C𝑖 𝑗) can be computed without ex-
plicitly computing C𝑖 𝑗 by means of involution, circu-
lar convolution (of subvectors of embeddings), and the
Fourier transform. Calculating a single sumvec(C𝑖 𝑗)
takes 𝑂 (𝑛𝑏 log 𝑏) time using FFT, and since there are
⌈𝑑/𝑏⌉2 blocks, the total time needed to compute 𝑅

(𝑏)
sum is

𝑂 ((𝑛𝑑2/𝑏) log 𝑏).
The block size hyperparameter 𝑏 controls the granular-

ity of the summary computation and interpolates the pro-
posed and existing regularizers. On one hand, the regular-
izer 𝑅 (1)

sum (C) reduces 𝑅off (C) of Barlow Twins when 𝑏 = 1,
provided that 𝑞 = 2. On the other hand, when 𝑏 = 𝑑, we

4If 𝑑 is not divisible by 𝑏, pad dummy features that are constantly 0 in
the last group.

recover 𝑅
(𝑑)
sum (C) = 𝑅sum (C) given in Eq. (6). Thus, this

grouping formulation provides a generalization of Barlow
Twins, with parameter 𝑏 controlling the trade-off between
the computational efficiency and the degree of relaxed reg-
ularization. Empirically, the performance can be slightly
improved by the use of a feature group of moderate size,
with no substantial degradation observed in training time
and memory usage; see Sec. 5.

It should be noted that the permutation and grouping of
features are compatible and can be combined.

4.5. Regularizer Based on Sums of Feature Covari-
ances

The function 𝑅sum can also be used to define a VICReg-
style regularizer based on covariance, simply by replacing
𝑅off with 𝑅sum in Eq. (3), and passing correlation matrices
K(A) or K(B) instead of C(A,B) as the argument. Fast
computation is possible with FFT, and the grouping version
is also straightforward; this is described in greater detail in
Supplementary Material.

4.6. Summary of Proposed Models

The loss functions of the proposed models are summa-
rized below. Let the function 𝑅 = 𝑅

(𝑏)
sum if feature grouping

is used with block size 𝑏, or let 𝑅 = 𝑅sum if grouping is not
used.

For Barlow Twins-style cross-correlation regularization,
the loss function is

𝐿 =
∑︁
𝑖

(1 − [C(A,B)]𝑖𝑖)2 + 𝜆𝑅(C(A,B)), (14)

whereas for VICReg-style covariance regularization, we use

𝐿 =
𝛼

𝑛

∑︁
𝑖

∥a(𝑖) − b(𝑖) ∥2
2 +

𝜇

𝑑
(𝑅var (K(A)) + 𝑅var (K(B)))

+ 𝜈

𝑑
(𝑅(K(A)) + 𝑅(K(B))) . (15)

Setting 𝑅 = 𝑅off in these formulas gives the original Barlow
Twins and VICReg, when hyperparameter 𝑞 = 2.

5. Experiments
We empirically evaluate the effect of the proposed regu-

larizers. To be precise, we train SSL models using the Bar-
low Twins–style loss function of Eq. (14) and the VICReg-
style loss function of Eq. (15) and compare their perfor-
mance with Barlow Twins and VICReg in downstream
tasks. The training time and memory consumption are
also evaluated. For our models, feature permutation is per-
formed in every batch iteration except for the ablation study.

In the following, we briefly present the tasks and datasets
used in the experiments. See Appendices D and E for the
complete experimental setup, including the hyperparameter
values and the results of additional experiments.

5

Table 1. Linear evaluation accuracy (%) on ImageNet-100 with
𝑑 = 2048. Bold numbers indicate the best performance within
each family (cross-correlation regularization, covariance regular-
ization, or other SSL models). †: quoted from the solo-learn [28]
GitHub repository as of December 28, 2022; ‡: quoted from [34].

Model Top-1 Top-5

Barlow Twins† 80.16 95.14
Barlow Twins 80.12 95.24
Proposed (Barlow Twins–style; no grouping) 79.94 94.76
Proposed (Barlow Twins–style; 𝑏 = 128) 81.02 95.24

VICReg† 79.40 95.02
VICReg 79.30 94.30
Proposed (VICReg-style; no grouping) 79.20 94.96
Proposed (VICReg-style; 𝑏 = 128) 80.04 94.98

W-MSE† [11] 69.06 91.22
Zero-FCL‡ [34] 79.32 94.94
Zero-CL‡ [34] 79.26 94.98
NNCLR† [10] 80.16 95.30
BYOL† [14] 80.32 94.94
MoCo V3† [7] 80.36 94.96

5.1. Tasks and Datasets

Models are pretrained with images in the ImageNet
dataset [9] or its subset, ImageNet-100 [26], depending on
the experiment. ResNet-50 [17] is used as the backbone for
ImageNet, while ResNet-18 is used for ImageNet-100.

To evaluate downstream SSL performance, we follow
the standard linear evaluation protocol: After the backbone
network is pretrained by a SSL method, we train a linear
classifier on top of the frozen backbone using labeled data
from the ImageNet or ImageNet-100 training set. The re-
sulting classifier is then evaluated by the top-1 and top-5
accuracy on the respective validation sets.

For transfer learning evaluation, we apply the pretrained
models to an object detection task on Pascal VOC07+12
[12]. Following previous studies [1, 16, 33], we use the
trainval set of VOC2007 and VOC2012 for training and the
test split of VOC2007 for testing. We fine-tune Faster R-
CNN [23] with R50-C4. Models are evaluated by three
types of average precision (AP): AP, AP50, and AP75, where
AP𝑥 signifies the intersection-over-union (IoU) threshold of
𝑥 %. We report the average scores over five trials.

5.2. Results and Discussion

Linear evaluation on ImageNet-100. Tab. 1 presents the
results. We can see that the accuracy of the proposed mod-
els is comparable to that of all existing models in the table,
including Barlow Twins and VICReg, with or without fea-
ture grouping.

Linear evaluation on ImageNet. Tab. 2 presents the re-
sults. Due to the high computational cost of this large-scale

Table 2. Linear evaluation accuracy (%) on ImageNet; highest
accuracy over 100 epochs of linear head training. 𝑑 = 8192 for
the proposed model, Barlow Twins, and VICReg. †: quoted from
the original papers of the respective methods; ‡: quoted from the
MoCo V3 GitHub repository.

Model Epochs Top-1 Top-5

Barlow Twins† 1000 73.2 91.0
Barlow Twins 1000 72.4 90.6
Proposed (Barlow Twins–style; no grouping) 1000 73.0 91.2
Proposed (Barlow Twins–style; 𝑏 = 128) 1000 73.2 91.3

VICReg† 1000 73.2 91.1
VICReg 1000 72.6 90.9
Proposed (VICReg-style; no grouping) 1000 72.8 91.1

W-MSE 4† [11] 400 72.6 —
Zero-CL† [34] 400 72.6 90.5
SimCLR† [4] 1000 69.3 89.0
NNCLR† [10] 1000 75.4 92.3
BYOL† [14] 1000 74.3 91.6
MoCo V3‡ [7] 1000 74.6 —

Table 3. Results of transfer learning for object detection on
VOC07+12. †: quoted from original papers; ‡: quoted from [16].

Model AP50 AP AP75

Supervised‡ 81.3 53.5 58.8

Barlow Twins† 82.6 56.8 63.4
Proposed (Barlow Twins–style; no grouping) 82.5 55.0 61.1

VICReg† 82.4 — —
Proposed (VICReg-style; no grouping) 82.3 56.1 62.1

experiment, we do not evaluate feature grouping with the
VICReg-style regularization. The proposed models perform
slightly worse than NNCLR, BYOL, and MoCo V3, but
have comparable performance to that of Barlow Twins and
VICReg.

Transfer learning evaluation on Pascal VOC object de-
tection. Tab. 3 presents the results of transfer learning.
Again, the proposed models demonstrate performance com-
parable to that of Barlow Twins and VICReg.

Training time on ImageNet. Tab. 4 presents the training
time over 1000 epochs on ImageNet. We tested two situa-
tions: training using 8 and 4 GPUs. In both situations, we
set the per GPU batch size to 128, which leads to the effec-
tive batch size of 1024 for 8 GPUs and 512 for 4 GPUs. As
indicated in Tab. 4, the accuracy of the proposed model is
comparable to that of Barlow Twins, with a noticeable re-
duction in training time.5 More precise evaluation of train-

5This experiment was conducted on a commercial cloud platform that
limits a session to a maximum of three days. To finish training Barlow
Twins with 8 GPUs for 1000 epochs, three sessions were required, whereas

6

Table 4. Linear evaluation accuracy (%) and the total training time
on ImageNet with ResNet-50 backbone (𝑑 = 8192). The per GPU
batch size is 128. Proposed refers to the proposed method us-
ing the Barlow Twins–style regularizer without grouping. Barlow
Twins∗ refers to the results quoted from [33, Figure 2].

#GPUs (Batch size) Model Top-1 Top-5 Time

8 (1024) Barlow Twins∗ 73.2 91.0 —
Barlow Twins 72.4 90.7 6d 14h 0m
Proposed 73.0 91.3 5d 14h 58m

4 (512) Barlow Twins∗ — — —
Barlow Twins 72.1 90.2 12d 19h 30m
Proposed 72.8 91.2 10d 21h 6m

Table 5. The effect of feature permutation: accuracy (%) and train-
ing time per 10 epochs (second) on ImageNet-100.

(a) Barlow Twins–style cross-correlation regularization

Grouping Permutation Top-1 Top-5 Time

no no 59.64 85.20 1646.2
yes 79.94 94.76 1668.7

𝑏 = 128 no 73.58 93.36 1697.5
yes 81.02 95.24 1709.6

(b) VICReg-style covariance regularization

Grouping Permutation Top-1 Top-5 Time

no no 57.42 84.26 1692.2
yes 79.20 94.96 1718.0

𝑏 = 128 no 66.26 89.68 1802.1
yes 80.04 94.98 1813.3

ing speed is provided in the next experiment, and additional
results are provided in Appendices E.2 to E.4.

Dimensionality of embeddings and computational cost.
Fig. 2 presents the elapsed time and the peak GPU mem-
ory allocation over 10 epochs on ImageNet-100 on a single
GPU, with varying dimensionality of the projected embed-
dings: 𝑑 ∈ {2048, 4096, 8192, 16384}. The improvement
over Barlow Twins and VICReg becomes noticeable as 𝑑

is increased; at 𝑑 = 8192, the proposed models (without
grouping) are 2.8 times as fast as VICReg, and 2.2 times as
fast as Barlow Twins; while at 𝑑 = 16384, they are 5.7 times
as fast as VICReg, and 4.0 times as fast as Barlow Twins.
For both 𝑑 = 8192 and 16384, memory consumption is re-
duced by more than half. See Appendices E.2 and E.4 for
the results with the ResNet-50 backbone on multiple GPUs
and the detail of forward/backward/loss computation time.

the proposed model required two sessions. The time reported in Tab. 4 is
the total run time of these sessions, which includes time (3 to 5 seconds)
for reinitialization at the beginning of each session.

Table 6. The regularizers of Barlow Twins and VICReg applied to
the embeddings produced by the proposed models. Perm.: permu-
tation; Diff: difference to the baselines.

(a) Barlow Twins–style cross-correlation regularization

Normalized Barlow
Model Grouping Perm. Twins loss (Eq. (16)) Diff

Barlow Twins — — 0.005 0

Proposed no no 0.564 0.559
yes 0.010 0.005

𝑏 = 128 no 0.049 0.044
yes 0.009 0.004

(b) VICReg-style covariance regularization

Normalized
Model Grouping Perm. VICReg loss (Eq. (17)) Diff

VICReg — — 0.002 0

Proposed no no 1.999 1.997
yes 0.011 0.009

𝑏 = 128 no 0.379 0.377
yes 0.007 0.005

Effectiveness of feature permutation. Tab. 5 presents
the effect of feature permutation on ImageNet-100 at 𝑑 =

2048. Regardless of whether grouping is used, the accuracy
decreases significantly without permutation, suggesting that
feature permutation is essential for the effectiveness of our
proposed regularizer. As illustrated in the column “Time”
in Tab. 5, the cost of permutation is negligible, even though
it was performed as frequently as every batch iteration.

We also quantitatively evaluate the degree of decorrela-
tion obtained by feature permutation. After the proposed
models are trained, we compute the normalized values of
Barlow Twins’ and VICReg’s regularizers applied to the
embeddings 𝐴, 𝐵 output by the proposed models, given as
follows:

𝑅off (C(A,B))
𝑑 (𝑑 − 1) (16)

𝑅off (K(A)) + 𝑅off (K(B))
2𝑑 (𝑑 − 1) (17)

The normalization factor 𝑑 (𝑑 − 1) is to make the resulting
values the means over 𝑑 (𝑑 − 1) off-diagonal elements of
K(A), K(B), and C(A,B). Since VICReg has regulariza-
tion terms for K(A) and K(B), its loss is further divided by
2. Tab. 6 presents the results on ImageNet-100 (𝑑=2048).
We observe that feature permutation promotes decorrelation
from the point of view of the baseline loss functions.

Impact of block size in feature grouping. To evaluate
the effect of feature grouping on ImageNet-100, we fix the
embedding dimension at 𝑑 = 2048 and change the block

7

Cross-correlation regularization Covariance regularization

Elapsed time per 10 epochs

2048 4096 8192 16384
Dimensionality

0

5000

10000

15000

20000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 16384
Dimensionality

0

5000

10000

15000

20000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

VICReg
proposed (no grouping)
proposed (b = 128)

Peak GPU allocated memory

2048 4096 8192 16384
Dimensionality

0

5000

10000

15000

20000

25000

P
ea

k
m

em
or

y
(M

B
)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 16384
Dimensionality

0

5000

10000

15000

20000

25000

P
ea

k
m

em
or

y
(M

B
)

VICReg
proposed (no grouping)
proposed (b = 128)

Figure 2. Training time and memory usage on ImageNet-100 with ResNet-18 on a single GPU.

2 8 32 128 512 2048
Block size

79.0

79.5

80.0

80.5

81.0

81.5

82.0

A
cc

ra
cy

 (%
)

cross-correlation
covariance

(a) Top-1 accuracy

2 8 32 128 512 2048
Block size

2000

4000

6000

8000

10000

12000

14000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

cross-correlation
covariance

(b) Elapsed training time

2 8 32 128 512 2048
Block size

2000

2500

3000

3500

4000

4500

P
ea

k
m

em
or

y
(M

B
)

cross-correlation
covariance

(c) Peak GPU memory allocated

Figure 3. The impact of the block size on ImageNet-100. The 𝑥-axis indicates the block size 𝑏.

size 𝑏 ∈ {2, 4, 8, ..., 2048}. The block size 𝑏 = 𝑑 = 2048
corresponds to no feature grouping. Figure 3 presents the
result, which indicates that unless 𝑏 is extremely small (i.e.,
8 or less), there is no significant increase in training time or
GPU memory usage. Setting 𝑏 to a moderate size, such as
𝑏 = 128, improves performance.

6. Conclusion
We have proposed a new decorrelating regularizer for

non-contrastive SSL. Given 𝑑-dimensional embeddings of
𝑛 samples, the regularizer can be computed in 𝑂 (𝑛𝑑 log 𝑑)
time, which is an improvement over the 𝑂 (𝑛𝑑2) time re-
quired by the existing models (Barlow Twins and VICReg).
The reduced memory consumption allows for a larger batch
size, which in general enables more effective models to be
learned. We also proposed a feature permutation technique
to alleviate the weakness of our regularizer.

With our regularizer, the speed-up is most notable with
networks with a lightweight backbone, wherein computa-
tion at the loss node takes a large part of training time.
This makes our method an attractive option to use with
knowledge-distilled backbones [13, 18].

The proposed method is not limited to SSL but poten-
tially useful to a wider range of applications that involve
decorrelation. We plan to pursue this avenue in future work.

Acknowledgments

We thank anonymous reviewers for their helpful com-
ments. This work was partially supported by the New En-
ergy and Industrial Technology Development Organization
(NEDO) and JSPS Kakenhi Grant 19H04173.

8

References
[1] Adrien Bardes, Jean Ponce, and Yann LeCun. VI-

CReg: Variance-invariance-covariance regularization for
self-supervised learning. In ICLR, 2022. 1, 2, 6, 13, 14

[2] Lukas Biewald. Experiment tracking with Weights and Bi-
ases. Software available from https://www.wandb.com/,
2020. 12

[3] A. Borsellino and T. Poggio. Convolution and correlation
algebras. Kybernetik, 13(2):113–122, 1973. 2

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, pages 1597–1607, 2020.
1, 2, 6

[5] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E. Hinton. Big self-supervised mod-
els are strong semi-supervised learners. In NeurIPS, pages
22243–22255, 2020. 1, 2

[6] Xinlei Chen and Kaiming He. Exploring simple Siamese
representation learning. In CVPR, pages 15750–15758,
2021. 1, 2

[7] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
ICCV, pages 9640–9649, 2021. 2, 6

[8] James W. Cooley and John W. Tukey. An algorithm for the
machine calculation of complex Fourier series. Mathematics
of Computation, 19(90):297–301, 1965. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[10] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. With a little help from
my friends: Nearest-neighbor contrastive learning of visual
representations. In ICCV, pages 9588–9597, 2021. 2, 6

[11] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. In ICML, pages 3015–3024, 2021. 1, 2, 6

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The PASCAL visual ob-
ject classes (VOC) challenge. International Journal of Com-
puter Vision, 88(2):303–338, 2010. 6

[13] Yuting Gao, Jia Xin Zhuang, Shaohui Lin, Hao Cheng, Xing
Sun, Ke Li, and Chunhua Shen. DisCo: Remedying self-
supervised learning on lightweight models with distilled con-
trastive learning. In ECCV, pages 237–253, 2022. 8

[14] Jean-bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A
new approach to self-supervised learning. In NeurIPS, pages
21271–21284, 2020. 1, 2, 6

[15] Katsuhiko Hayashi and Masashi Shimbo. On the equivalence
of holographic and complex embeddings for link prediction.
In ACL ’17, pages 554–559, 2017. 2

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In CVPR, pages 9729–9738, 2020. 1,
2, 6, 14

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 8

[19] Tianyu Hua, Wenxiao Wang, Zihui Xue, Yue Wang, Sucheng
Ren, and Hang Zhao. On feature decorrelation in self-
supervised learning. In ICCV, pages 9598–9608, 2021. 2

[20] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio.
Holographic embeddings of knowledge graphs. In AAAI,
pages 1955–1961, 2016. 2

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8024–8035, 2019. 12

[22] Tony Plate. Holographic Reduced Representation: Dis-
tributed Representation for Cognitive Structures. CSLI Lec-
ture Notes No. 150. CSLI Publications, 2003. 2, 4, 11

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NIPS, pages 91–99, 2015. 6

[24] P. H. Schönemann. Some algebraic relations between invo-
lutions, convolutions, and correlations, with applications to
holographic memories. Biological Cybernetics, 56:367–374,
1987. 2, 4

[25] Julius O. Smith, III. Mathematics of the Discrete Fourier
Transform (DFT) with Audio Applications. W3K Publishing,
2nd edition, 2008. 4, 11

[26] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. In ECCV, pages 776–794, 2020.
2, 6

[27] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. Complex embeddings
for simple link prediction. In ICML, pages 2071–2080, 2016.
2

[28] Victor G. Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu
Sebe, and Elisa Ricci. solo-learn: A library of self-
supervised methods for visual representation learning. Jour-
nal of Machine Learning Research, 23(56):1–6, 2022. 6, 12,
13, 14

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Represen-
tation learning with contrastive predictive coding. arXiv.cs
preprint, 1807.03748, 2018. 1, 2

[30] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In ICML, pages 9929–9939, 2020. 1, 2

[31] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019. 12

9

https://www.wandb.com/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[32] Yang You, Igor Gitman, and Boris Ginsburg. Large
batch training of convolutional networks. arXiv.cs preprint,
1708.03888, 2017. 13

[33] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéhane
Deny. Barlow Twins: Self-supervised learning via redun-
dancy reduction. In ICML, pages 12310–12320, 2021. 1, 2,
6, 7, 13, 14

[34] Shaofeng Zhang, Feng Zhu, Junchi Yan, Rui Zhao, and Xi-
aokang Yang. Zero-CL: Instance and feature decorrelation
for negative-free symmetric contrastive learning. In ICLR,
2022. 1, 2, 6

10

A. Derivation of Eq. (8)
Let 𝑑-dimensional vectors x = [𝑥0 · · · 𝑥𝑑−1]T, y = [𝑦0 · · · 𝑦𝑑−1]T. We first show inv(x) ∗ y =

∑𝑑−1
𝑗=0 𝑥 𝑗 𝑦 (𝑖+ 𝑗) mod 𝑑 .

[inv(x) ∗ y]𝑖 =
𝑑−1∑︁
𝑗=0

[inv(x)] 𝑗 𝑦 (𝑖− 𝑗) mod 𝑑

=

𝑑−1∑︁
𝑗=0

𝑥 (𝑑− 𝑗) mod 𝑑 𝑦 (𝑖− 𝑗) mod 𝑑 ∵ [inv(x)] 𝑗 = 𝑥 (𝑑− 𝑗) mod 𝑑

=

𝑑−1∑︁
𝑗′=0

𝑥 𝑗′ 𝑦 (𝑖−(𝑑− 𝑗′)) mod 𝑑 ∵ substituting 𝑗 ′ = (𝑑 − 𝑗) mod 𝑑

=

𝑑−1∑︁
𝑗′=0

𝑥 𝑗′ 𝑦 (𝑖+ 𝑗′) mod 𝑑 ∵ (𝑎 − 𝑑) mod 𝑑 = 𝑎 mod 𝑑

=

𝑑−1∑︁
𝑗=0

[
xyT]

𝑗 , (𝑖+ 𝑗) mod 𝑑
. ∵ renaming variable 𝑗 ′ → 𝑗

Setting x = a(𝑘) and y = b(𝑘) , we obtain Eq. (8) in Sec. 4.2. In the literature (e.g., [22, 25]), inv(x) ∗ y is called the circular
correlation of x and y, and the above equation is usually presented as its definition.

B. Regularizers Based on Sums of Feature Covariances
As mentioned in Sec. 4.5, if we substitute 𝑅sum for 𝑅off in the loss function of VICReg given in Eq. (3), we obtain

regularization based on the covariance matrices K(A),K(B) of individual views. The resulting regularizer for K(A) is:

𝑅sum (K(A)) =
𝑑−1∑︁
𝑖=1

∥ [sumvec(K(A))]𝑖 ∥𝑞𝑞 , (18)

where hyperparameter 𝑞 ∈ {1, 2}. The regularizer for K(B) has the same form and is omitted.
𝑅sum (K(A)) can be efficiently computed by FFT, in a similar manner to 𝑅sum (C(A,B)). For brevity, assume that set A is

centered; i.e., all features have mean 0 in A. In this case, its covariance matrix is K(A) = (1/(𝑛 − 1))∑𝑛
𝑘=1 a(𝑘)a(𝑘)T.

Noting that F(inv(a(𝑘)) = F(a(𝑘)) and the convolution theorem F(x ∗ y) = F(x) ◦ F(y), we have

sumvec(K(A)) = 1
𝑛 − 1

𝑛∑︁
𝑘=1

inv(a(𝑘)) ∗ a(𝑘)

=
1

𝑛 − 1

𝑛∑︁
𝑘=1

inv(a(𝑘))∗a(𝑘)︷ ︸︸ ︷
F−1

(
F(a(𝑘)) ◦ F(a(𝑘))

)
=

1
𝑛 − 1

F−1

(
𝑛∑︁

𝑘=1
F(a(𝑘)) ◦ F(a(𝑘))

)
, (19)

The grouping version is also straightforward. Partitioning K(A) into block submatrices of size 𝑏 × 𝑏, i.e., K(𝐴) = [K𝑖 𝑗]
(𝑖, 𝑗 = 1, . . . , ⌈𝑑/𝑏⌉), where K𝑖 𝑗 ∈ R𝑏×𝑏, and applying 𝑅

(𝑏)
sum defined in Eq. (13) to it, we obtain

𝑅
(𝑏)
sum (K(A)) =

⌈𝑑/𝑏⌉∑︁
𝑖=1

𝑏−1∑︁
ℓ=1

∥ [sumvec(K𝑖𝑖)]ℓ ∥𝑞𝑞 +
⌈𝑑/𝑏⌉∑︁
𝑖, 𝑗=1
𝑖≠ 𝑗

𝑏−1∑︁
ℓ=0

[sumvec(K𝑖 𝑗)]ℓ

𝑞
𝑞
. (20)

where block size 𝑏 is the hyperparameter that controls the granularity of the summary computation. When 𝑞 = 2 and 𝑏 = 𝑑,
i.e., the block size is (𝑏/𝑑) × (𝑏/𝑑) = 1 × 1, the regularizer 𝑅 (𝑏)

sum (K(A)) reduces to 𝑅off (K(A)) of VICReg.

11

Table 7. Complexity of loss computation. The space complexity includes 𝑂 (𝑛𝑑) memory needed to store input embeddings. Grouping =
𝑏 indicates 𝑏 being the size of the group (i.e., block size).

Regularizer Grouping Time Space

Barlow Twins — 𝑂 (𝑛𝑑2) 𝑂 (𝑛𝑑 + 𝑑2)
VICReg — 𝑂 (𝑛𝑑2) 𝑂 (𝑛𝑑 + 𝑑2)
Proposed (𝑅sum) no 𝑂 (𝑛𝑑 log 𝑑) 𝑂 (𝑛𝑑)
Proposed (𝑅 (𝑏)

sum) 𝑏 𝑂 ((𝑛𝑑2/𝑏) log 𝑏) 𝑂 (𝑛𝑑)

Table 8. Loss functions and regularizers in the proposed method (with and without grouping), Barlow Twins, and VICReg. Grouping = 𝑏

indicates 𝑏 being the size of the group (i.e., block size).

(a) Cross-correlation–regularization with Barlow Twins–style loss function 𝐿 =
∑

𝑖 (1 − [C(A, B)]𝑖𝑖)2 + 𝜆𝑅 (C(A, B))

Method Grouping Regularizer function 𝑅

Barlow Twins — 𝑅off

Proposed no 𝑅sum

Proposed 𝑏 𝑅
(𝑏)
sum

(b) Covariance regularization with VICReg-style loss function 𝐿 = 𝛼
𝑛

∑
𝑖 ∥a(𝑖) − b(𝑖) ∥2

2 + 𝜇

𝑑
(𝑅var (K(A)) + 𝑅var (K(B))) + 𝜈

𝑑
(𝑅 (K(A)) + 𝑅 (K(B)))

Method Grouping Regularizer function 𝑅

VICReg — 𝑅off

Proposed no 𝑅sum

Proposed 𝑏 𝑅
(𝑏)
sum

C. Summary of Computational Complexity

Tab. 7 summarizes the computational complexity of the regularizers discussed in this paper. As the table shows, the
proposed regularizers are faster and cheaper than the Barlow Twins and VICReg in terms of time and space complexity.

D. Detailed Experimental Setups

All the experiments in Sec. 5 were conducted on commercial Linux servers with CUDA v11.6.2 and cuDNN v8. We
implemented our model using PyTorch v1.12.0 [21] and solo-learn v1.0.5 [28], a library of self-supervised methods for
visual representation learning built on top of PyTorch and PyTorch Lightning6 v1.6.4. We also used NVIDIA DALI, a library
for data loading and pre-processing to accelerate deep learning applications7. For object detection, detectron2 [31] was used.
To manage the experiments, we used Weights & Biases, a machine learning platform for the tracking and visualization of
experiments [2]. As PyTorch v1.12.0 only provides experimental support for half precision FFT8, we trained every model
with 32-bit precision, including Barlow Twins and VICReg.

D.1. Compared Methods

In each comparison, the proposed method and the two baselines, Barlow Twins and VICReg, used an identical network
architecture, with the exception of the training loss. The loss functions of the baselines are given by Eqs. (1) and (3), which
are repeated below as Eqs. (21) and (22) for convenience. Let A = {a(𝑖) }𝑚

𝑖=1, B = {b(𝑖) }𝑚
𝑖=1 be the embeddings of the two

views, with 𝑖 = 1, . . . , 𝑚 indicating the original sample indices, K(A),K(B) ∈ R𝑑×𝑑 be their respective covariance matrices,

6https://www.pytorchlightning.ai/
7https://github.com/NVIDIA/DALI
8https://pytorch.org/blog/pytorch-1.12-released/#beta-complex32-and-complex-convolutions-in-pytorch

12

https://www.pytorchlightning.ai/
https://github.com/NVIDIA/DALI
https://pytorch.org/blog/pytorch-1.12-released/#beta-complex32-and-complex-convolutions-in-pytorch

and C(A,B) ∈ R𝑑×𝑑 be the cross-correlation matrices between 𝐴 and 𝐵.

𝐿BT =

𝑑−1∑︁
𝑖=0

(1 − [C(A,B)]𝑖𝑖)2 + 𝜆𝑅off (C(A,B)), (21)

𝐿VIC =
𝛼

𝑛

𝑚∑︁
𝑖=1

∥a(𝑖) − b(𝑖) ∥2
2 +

𝜇

𝑑
(𝑅var (K(A)) + 𝑅var (K(B))) + 𝜈

𝑑
(𝑅off (K(A)) + 𝑅off (K(B))) , (22)

where hyperparameters 𝛼, 𝜇, 𝜈, 𝜆 ≥ 0 determine the importance of individual terms, and the regularization functions are
given by

𝑅off (M) =
𝑑−1∑︁
𝑖=0

𝑑−1∑︁
𝑗=0
𝑗≠𝑖

[M]2
𝑖 𝑗 ,

𝑅var (M) =
𝑑−1∑︁
𝑖=0

max(0, 𝛾 −
√︁
[M]𝑖𝑖).

For the proposed method, we replace all occurrences of 𝑅off in Eqs. (21) and (22) with either 𝑅sum (Eq. (6)) or 𝑅 (𝑏)
sum (Eq. (13))

depending on whether grouping is used. These functions are repeated below.

𝑅sum (M) =
𝑑−1∑︁
𝑖=1

∥ [sumvec(M)]𝑖 ∥𝑞𝑞 , (23)

𝑅
(𝑏)
sum (M) =

⌈𝑑/𝑏⌉∑︁
𝑖=1

𝑏−1∑︁
ℓ=1

∥ [sumvec(M𝑖𝑖)]ℓ ∥𝑞𝑞 +
⌈𝑑/𝑏⌉∑︁
𝑖, 𝑗=1
𝑖≠ 𝑗

𝑏−1∑︁
ℓ=0

∥ [sumvec(M𝑖 𝑗)]ℓ ∥𝑞𝑞 , (24)

where M = [M𝑖 𝑗] is a block matrix with block elements M𝑖 𝑗 ∈ R𝑏×𝑏, 𝑖, 𝑗 = 1, . . . , ⌈𝑑/𝑏⌉.
Tab. 8 summarizes the regularizers and loss functions for Barlow Twins, VICReg, and the proposed models.

D.2. Data Augmentation

Following the Barlow Twins paper [33], we used non-symmetric parameters for Barlow Twins-style objectives. For
VICReg-style objectives in ImageNet-100 experiments, we used the symmetrized augmentation pipeline reported in the
VICReg paper [1, Appendix C.1]. Following a comment in the VICReg GitHub repository9, we used the non-symmetric
augmentation parameters (the same parameters as in Barlow Twins) for ImageNet experiments.

D.3. Hyperparameters

ImageNet-100. For ImageNet-100 experiments, we followed the optimization procedure described in [28]. To train models,
stochastic gradient descent (SGD) was used with the LARS optimizer [32] for 400 epochs. We used linear warm-up with
cosine annealing decay for the learning rate scheduler. The batch size was wet to 256 (per GPU batch size is 32). The loss
scaling value and the importance coefficients for the proposed regularizers (𝜈 in Eq. (3) and 𝜆 in Eq. (1)) were sought by grid
search. In addition to these parameters, we further tuned the block size and 𝑞 in our regularizers (Eqs. (6) and (13)).

In linear evaluation, linear classifiers was optimized with SGD for 100 epochs. In training for ImageNet-100, we used the
hyperparameters provided by the solo-learn library.

Tab. 9 summarizes the hyperparameters for ImageNet-100 experiments.

ImageNet. For ImageNet experiments, we followed the optimization procedure described in [1,33]. We used SGD with the
LARS optimizer for 1000 epochs and linear warmup with cosine annealing decay. We set the batch size to 1024 (per GPU
batch size is 128) and used a learning rate of 0.25 by reference to the Barlow Twins GitHub repository10. We searched for 𝜆
and 𝑞 for the proposed regularizers by grid search.

9https://github.com/facebookresearch/vicreg/issues/3
10https://github.com/facebookresearch/barlowtwins/issues/7

13

https://github.com/facebookresearch/vicreg/issues/3
https://github.com/facebookresearch/barlowtwins/issues/7

Table 9. The hyperparameters for ImageNet-100 experiments that were used for training models. The hyperparameters for Barlow Twins
and VICReg were set to the values reported by [28]. For the proposed methods, we found values by grid search.

(a) Cross-correlation regularization with Barlow Twins–style loss function

Method Grouping Loss scale 𝑞 𝜆

Barlow Twins — 0.1 — 0.0051
Proposed (Barlow Twins–style) no 0.125 2 2−10

Proposed (Barlow Twins–style) 𝑏 = 128 0.125 2 2−10

(b) Covariance regularization

Method Grouping Loss scale 𝑞 𝜈

VICReg — — — 1.0
Proposed (VICReg-style) no 0.25 1 1.0
Proposed (VICReg-style) 𝑏 = 128 0.25 1 2.0

(c) All other hyperparameters were set to the values reported by [28].

Learning rate Weight decay Batch size Warmup epochs 𝛼 𝜇

0.3 10−4 256 10 25.0 25.0

(d) Hyperparameters for linear evaluation on ImageNet-100.

Pretrained model Learning rate Steps for learning rate decay Weight decay Batch size

Barlow Twins / Proposed (Barlow Twins–style) 0.1 [60, 80] 0 256
VICReg / Proposed (VICReg-style) 0.3 [60, 80] 0 512

In the linear evaluation on ImageNet, the linear head was trained for 100 epochs with SGD and cosine learning rate decay.
We tuned the learning rate and batch size for the proposed methods. For Barlow Twins and VICReg, the learning rate and
batch size are set to the values reported in the original papers [1, 33].

In object detection, we trained a Faster R-CNN with a C-4 backbone for 24K iterations. The backbone is initialized with
the pretrained ResNet-50 backbone. Following [1, 16, 33], we set the batch size to 16 (per GPU batch size is 2) and used a
step learning rate decay (divided by 10 at 18K and 22K iterations) with a linear warmup (slope of 0.333 for 1K iterations).
We tuned the learning rate and the region proposal network loss weight for the proposed methods.

Tab. 10 summarizes the hyperparameters for ImageNet experiments.

D.4. Evaluation of Training Time and Memory Consumption

To discuss empirical complexity, we measured the elapsed time and peak GPU memory allocation over ten epochs. We
conducted three trials and reported the average time and memory allocation. To avoid communication overhead between
GPUs, we evaluated the results of single GPU training (not distributed data parallel training) unless otherwise noted. The
batch size was set to 32 for ImageNet-100 and 128 for ImageNet as in pretraining settings (per GPU batch size is 32 and
128). The number of workers (the argument “num_workers” in the solo-learn library used for implementation) is set to 32
for ImageNet-100 and 4 for ImageNet.

We used the Simple Profiler in PyTorch Lightning11 to measure training time. From the profiler output, the value of the
“Total time (s)” in the “run_training_epoch” line was extracted and plotted as the training time in Figs. 2, 3 and 4 to 7. We
used a function in PyTorch12 to monitor memory occupied by tensors. The value of “Peak Usage” in the “Allocated memory”
line was used as the peak GPU memory allocation.

As regards the total training time in Tab. 4, we reported the runtime counted by WandB.13 As mentioned in the footnote
of Sec. 5.2, our experiment was performed on a commercial cloud platform that terminates a session after three days. To

11https://pytorch-lightning.readthedocs.io/en/1.6.4/advanced/profiler.html#simple-profiler
12https://pytorch.org/docs/stable/generated/torch.cuda.memory_summary.html
13We used the value of the “Runtime” in WandB.

14

https://pytorch-lightning.readthedocs.io/en/1.6.4/advanced/profiler.html#simple-profiler
https://pytorch.org/docs/stable/generated/torch.cuda.memory_summary.html

Table 10. The hyperparameters for ImageNet experiments that were used for training models.

(a) Cross-correlation regularization

Method Grouping Loss scale 𝑞 𝜆

Barlow Twins — 0.024 — 0.0051
Proposed (Barlow Twins–style) no 0.024 2 2−11

Proposed (Barlow Twins–style) 𝑏 = 128 0.024 2 2−11

(b) Covariance regularization

Method Grouping Loss scale 𝑞 𝛼 𝜇 𝜈

VICReg — — — 25.0 25.0 1.0
Proposed (VICReg-style) no — 1 2.5 2.5 0.1

(c) Hyperparameters for optimization.

Learning rate Weight decay Batch size Warmup epochs

0.25 10−6 1024 10

(d) Hyperparameters for linear evaluation on ImageNet.

Pretrained model Learning rate Learning rate decay Weight decay Batch size

Barlow Twins 0.3 cosine decay 10−6 256
VICReg 0.02 cosine decay 10−6 256
Proposed (Barlow Twins–style) 0.125 cosine decay 10−6 2048
Proposed (VICReg-style) 0.125 cosine decay 10−6 256

(e) Hyperparameters for object detection on VOC07+12.

Pretrained model Learning rate Region proposal network loss weigh

Proposed (Barlow Twins–style) 0.125 0.03125
Proposed (VICReg-style) 0.125 0.125

finish training Barlow Twins and VICReg with 8 GPUs for 1000 epochs on ImageNet, we needed three sessions, and the
proposed model only two (see Tab. 4). The timing reported in Tab. 4 is the run time of these sessions that includes the time
for initialization at the beginning of each session. This initialization takes only 3–5 seconds at each session and does not
affect the trend observed in the table. Note that in addition to this initialization, data copy takes about 15 minutes at the start
of a session, but this has already been excluded from the timing in Tab. 4.

D.5. Computational Resources

We used a cloud computing platform for the experiments. In the main experiments, we trained models with eight Nvidia
A100-SXM4 GPUs on this platform. We used a single Nvidia A100 GPU to evaluate empirical complexity, except where
noted.

D.6. License of the Assets

PyTorch has a BSD-style license14. Solo-learn has an MIT license15. PyTorch Lightning is licensed under the Apache
License 2.016. The ImageNet17 dataset is publicly available and frequently used as the benchmark dataset. The category list
of ImageNet-100 is also publicly available18.

14https://github.com/pytorch/pytorch/blob/master/LICENSE
15https://github.com/vturrisi/solo-learn/blob/main/LICENSE
16https://github.com/Lightning-AI/lightning/blob/master/LICENSE
17https://www.image-net.org/
18https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt

15

https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/vturrisi/solo-learn/blob/main/LICENSE
https://github.com/Lightning-AI/lightning/blob/master/LICENSE
https://www.image-net.org/
https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt

Table 11. The accuracy with 𝑞 ∈ {1, 2} on ImageNet-100.

Model Grouping 𝑞 Top-1 Top-5

Proposed (Barlow Twins–style) no 1 75.94 94.28
2 79.94 94.76

𝑏 = 128 1 76.44 94.46
2 81.02 95.24

Proposed (VICReg-style) no 1 79.20 94.96
2 57.98 84.56

𝑏 = 128 1 80.04 94.98
2 71.78 92.54

Cross-correlation regularization Covariance regularization

Elapsed time per 10 epochs

2048
4096

8192
10000

Dimensionality

0

10000

20000

30000

40000

50000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048
4096

8192
10000

Dimensionality

0

10000

20000

30000

40000

50000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

VICReg
proposed (no grouping)
proposed (b = 128)

Peak GPU allocated memory

2048
4096

8192
10000

Dimensionality

0

10000

20000

30000

P
ea

k
m

em
or

y
(M

B
)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048
4096

8192
10000

Dimensionality

0

10000

20000

30000

P
ea

k
m

em
or

y
(M

B
)

VICReg
proposed (no grouping)
proposed (b = 128)

Figure 4. Training time and memory usage on ImageNet with ResNet-50 on a single GPU.

E. Additional Experiments

E.1. Impact of Hyperparameter 𝑞

We investigate the effect of the hyperparameter 𝑞 in our regularizers (Eqs. (6) and (13)). Tab. 11 shows the results with
𝑞 ∈ {1, 2} on ImageNet-100 (𝑑 = 2048). The results indicate that 𝑞 = 1 works better than 𝑞 = 2 in VICReg-style covariance
regularizers. Conversely, 𝑞 = 2 works well in Barlow Twins–style cross-correlation regularizers.

E.2. Training Time with ResNet-50 Backbone

Figure 4 presents the single GPU training cost with ResNet-50 on ImageNet. Due to GPU memory limitation, we were
unable to run Barlow Twins and VICReg at 𝑑 = 16384, and also the grouped version of the proposed models with block size
𝑏 = 128. Instead of 𝑑 = 16384, we present the results at 𝑑 = 10000.19 As in the results of ImageNet-100, we can observe
that the proposed regularizers are more efficient than the existing regularizers. At 𝑑 = 8192, the proposed model (without
grouping) is 1.3 (= 41414.3/31280.0) times faster than VICReg, and 1.2 (= 37522.0/31306.0) times faster than Barlow
Twins; while at 𝑑 = 10000, it is 1.5 (= 47448.0/32208.3) times faster than VICReg, and 1.3 times (= 41546.3/32143.7)
faster than Barlow Twins.

19In Section E.3 (see Fig. 7), we show the results with 𝑑 = 16384 using multi-node DDP computation.

16

Cross-correlation regularization family Covariance regularization family

Elapsed time per 10 epochs

2048 4096 8192 16384
Dimensionality

0

500

1000

1500

2000

2500

3000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 16384
Dimensionality

0

500

1000

1500

2000

2500

3000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

VICReg
proposed (no grouping)
proposed (b = 128)

Figure 5. The elapsed DDP training time on ImageNet-100 with ResNet-18.

Cross-correlation regularization family Covariance regularization family

Elapsed time per 10 epochs

2048
4096

8192
10000

Dimensionality

0

2000

4000

6000

8000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048
4096

8192
10000

Dimensionality

0

2000

4000

6000

8000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

VICReg
proposed (no grouping)
proposed (b = 128)

Figure 6. The elapsed DDP training time on ImageNet with ResNet-50.

Cross-correlation regularization family Covariance regularization family

Elapsed time per 10 epochs

2 nodes 4 nodes
0

5000

10000

15000

20000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2 nodes 4 nodes
0

5000

10000

15000

20000

25000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

VICReg
proposed (no grouping)
proposed (b = 128)

Figure 7. The elapsed multi-node DDP training time on ImageNet with ResNet-50 (𝑑 = 16384).

E.3. Training Time with Distributed Data Parallel

Except for Tab. 4, the training time figures reported in Sec. 5 and Appendix E.2 were measured on a single GPU. Here we
evaluate the timing of distributed data parallel (DDP) training, when multiple GPUs are available. Fig. 5 shows the elapsed
time of DDP training for ten epochs on eight A100 GPUs. With DDP, the cost of communication between GPUs emerges
as an additional factor determining the total computational time, and hence the relative merit of our method in reducing
loss computation time is expected to diminish. Although this is certainly true, our method is still effective, improving the
computation time by a factor of more than 2.2 (= 945.5/428.7) for VICReg and 2.0 (= 740.6/366.4) for Barlow Twins when
𝑑 = 8192 and a factor of 4.4 (= 2833.3/647.1) and 3.1 (= 1943.7/622.7) when 𝑑 = 16384.

Fig. 6 shows the elapsed time on ImageNet with ResNet-50. As in ImageNet-100 with ResNet-18 (Fig. 5), our method
improves speed, but the speed-up factor is smaller: 1.4 (= 6658.1/4858.9) for VICReg and 1.2 (= 5657.6/4868.7) for Barlow
Twins when 𝑑 = 8192. When 𝑑 = 10000, the factors are 1.5 (= 7729.9/5035.1) for VICReg and 1.2 (= 6247.7/5129.6) for
Barlow Twins.

17

Table 12. The improvements for loss and backward computations on ImageNet100 with ResNet-18.

Model #GPU 𝑑 Forward (loss) Backward (model + loss)

Barlow Twins–style 1 8192 7.5 (= 285.5/38.0) 2.5 (= 1101.6/448.6)
16384 23.1 (= 1038.7/44.9) 6.3 (= 2959.1/468.0)

8 8192 7.4 (= 52.5/7.1) 1.9 (= 124.3/67.1)
16384 24.8 (= 183.6/7.4) 3.9 (= 274.0/70.3)

VICReg-style 1 8192 6.0 (= 323.0/53.5) 5.4 (= 2548.8/473.2)
16384 19.5 (= 1166.5/59.8) 18.3 (= 8820.3/482.0)

8 8192 7.0 (= 62.6/8.9) 4.1 (= 300.5/74.2)
16384 24.2 (= 215.7/8.9) 13.2 (= 996.3/75.5)

Table 13. The improvements for loss and backward computations on ImageNet with ResNet-50.

Model #GPU 𝑑 Forward (loss) Backward (model + loss)

Barlow Twins–style 1 8192 9.5 (= 751.1/79.2) 2.9 (= 8594.0/2977.5)
10000 13.2 (= 1097.5/83.2) 3.6 (= 11583.0/3181.2)

8 8192 10.6 (= 125.8/11.9) 1.5 (= 2129.1/1463.5)
10000 15.0 (= 184.4/12.3) 1.6 (= 2552.2/1593.5)

VICReg-style 1 8192 8.4 (= 898.8/107.0) 4.1 (= 12346.0/3016.6)
10000 11.9 (= 1311.1/110.3) 5.4 (= 17249.3/3221.7)

8 8192 18.1 (= 280.7/15.5) 2.0 (= 2937.3/1467.1)
10000 25.2 (= 415.7/16.5) 2.4 (= 3752.4/1557.9)

In the ImageNet experiments (Figs. 4 and 6), all models triggered an out-of-GPU-memory error when 𝑑 = 16384. We
thus use multi-node DDP training for 𝑑 = 16384. We evaluated two situations: training using 2 nodes and 4 nodes. In both
situations, we set the effective batch size to 1024. Figure 7 shows the results. Barlow Twins and VICReg still ran out of
memory under 2 nodes, but the proposed models (with or without grouping) worked in this situation thanks to their efficient
memory usage. With 4 nodes, all models were trained successfully, and the proposed models were slightly faster than Barlow
Twins and VICReg. However, in this setting, there is no point in training our models using 4 nodes, when they are trainable
on 2 nodes. If we compare the speed of our models trained on 2 nodes with Barlow Twins and VICReg (which failed to be
trained on 2 nodes) on 4 nodes, the advantage of our models becomes more pronounced.

E.4. Computation Time for Forward and Backward Passes

We analyzed the training time spent for the forward pass (in the model network excluding the loss node), forward loss
computation, and backpropagation. These three types are denoted by “Forward (model)”, “Forward (loss)”, and “Backward
(model + loss)”, respectively. These measurements were quoted from the “Total time (s)” column in the respective lines in the
output of the Simple Profiler in PyTorch Lightning. Note that by default, the profiler only reports total forward computation
time. To separate the total time into “Forward (model)” and “Forward (loss)”, we specified custom measurement points in our
code where the model (backbone network and projection network) forward computation and the loss computation are per-
formed.20 Since the custom measurement points did not work for backpropagation, we plot the value of “Strategy.backward”
line as the total backpropagation time “Backward (model + loss)”.

Fig. 8 presents the results. The times for loss computation and backpropagation both improved with our method; see
Tabs. 12 and 13 for the detail of improvements. The improvement in backpropagation is due to reduced time at the loss
node, because Barlow Twins and the proposed method have the same model network and differ only in the loss used. This
reduction in the backpropagation time is not surprising because the same computation graph is traversed in both the forward
and backward passes, and therefore their asymptotic computational complexity is roughly identical.

20https://pytorch-lightning.readthedocs.io/en/1.6.4/advanced/profiler.html#profile-logic-of-your-interest

18

https://pytorch-lightning.readthedocs.io/en/1.6.4/advanced/profiler.html#profile-logic-of-your-interest

Setting Cross-correlation regularization Covariance regularization

(a)
ImageNet-100

ResNet-18
1 GPU

2048 4096 8192 16384
Dimensionality

0

2000

4000

6000

8000

10000

12000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 16384
Dimensionality

0

2000

4000

6000

8000

10000

12000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

VICReg
proposed (no grouping)
proposed (b = 128)

(b)
ImageNet
ResNet-50

1 GPU

2048 4096 8192 10000
Dimensionality

0

5000

10000

15000

20000

25000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 10000
Dimensionality

0

5000

10000

15000

20000

25000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

VICReg
proposed (no grouping)
proposed (b = 128)

(c)
ImageNet-100

ResNet-18
8-GPU DDP

2048 4096 8192 16384
Dimensionality

0

250

500

750

1000

1250

1500

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 16384
Dimensionality

0

250

500

750

1000

1250

1500

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)
Foward (model)
Forward (loss)
Backward (model + loss)

VICReg
proposed (no grouping)
proposed (b = 128)

(d)
ImageNet
ResNet-50

8-GPU DDP

2048 4096 8192 10000
Dimensionality

0

1000

2000

3000

4000

5000

6000

7000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

Barlow Twins
proposed (no grouping)
proposed (b = 128)

2048 4096 8192 10000
Dimensionality

0

1000

2000

3000

4000

5000

6000

7000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

d)

Foward (model)
Forward (loss)
Backward (model + loss)

VICReg
proposed (no grouping)
proposed (b = 128)

Figure 8. The elapsed 10-epoch training time spent on forward model (green) and loss (orange) computation, and backpropagation (total
of model and loss; purple).

F. Code
Listings 1 and 2 present Python-based implementations for covariance and cross-correlation regularizers (without feature

grouping). As explained in Sec. 4, the summary vectors can be efficiently calculated with FFT (see Listing 3).
In the computation of the proposed regularizers, we do not conduct collective operations, such as all-reduce and gather

functions.

19

1# Z1, Z2: projected image embeddings (n x d)
2# q: a hyperprameter for L_q^q norm
3

4def xsum_regularizer(Z1, Z2, G, q):
5 # pre-process: centering and normalization
6 Z1 = batch_normalization(Z1)
7 Z2 = batch_normalization(Z2)
8

9 # feature permutation
10 idx = torch.randperm(Z1.shape[1])
11 Z1 = Z1[:, idx]
12 Z2 = Z2[:, idx]
13

14 # summary vector
15 sumvec = cal_sumvec(Z1, Z2, 0) / n
16

17 # loss for off-diagonal elements
18 if q == 1:
19 loss = torch.sum(sumvec[1:].abs())
20 elif q == 2:
21 loss = torch.sum(sumvec[1:].pow(2))
22

23 return loss

Listing 1. Computing Barlow Twins–style cross-correlation regularizer

1# Z: projected image embeddings ([n: batch size] x [d: embedding dimension])
2# q: a hyperparameter for L_q^q norm
3

4def covsum_regularizer(Z, blck_size, q):
5 # pre-process: centering
6 Z = Z - Z.mean(dim=0)
7

8 # feature permutation
9 idx = torch.randperm(Z.shape[1])

10 Z = Z[:, idx]
11

12 # summary vector
13 sumvec = cal_sumvec(Z, Z, 0) / (n - 1)
14

15 # loss for off-diagonal elements
16 if q == 1:
17 loss = torch.sum(sumvec[1:].abs())
18 elif q == 2:
19 loss = torch.sum(sumvec[1:].pow(2))
20

21 return loss

Listing 2. Computing VICReg-style covariance regularizer

1def cal_sumvec(z1, z2, dim):
2 fz1 = fft.rfft(z1)
3 fz2 = fft.rfft(z2)
4 fz1_conj = fz1.conj()
5 fz_prod = fz1_conj * fz2
6 fc = fz_prod.sum(dim=dim)
7 sumvec= fft.irfft(fc)
8 return sumvec

Listing 3. Summary vector computation

20

	. Introduction
	. Related Work
	. SSL Using Decorrelating Regularizers
	. Proposed Method
	. Regularizer Based on Sums of Cross-correlations
	. Efficient Computation
	. Feature Permutation to Mitigate Undesirable Local Minima
	. Feature Grouping to Control the Degree of Relaxation
	. Regularizer Based on Sums of Feature Covariances
	. Summary of Proposed Models

	. Experiments
	. Tasks and Datasets
	. Results and Discussion

	. Conclusion
	. Derivation of eq:circular-correlation
	. Regularizers Based on Sums of Feature Covariances
	. Summary of Computational Complexity
	. Detailed Experimental Setups
	. Compared Methods
	. Data Augmentation
	. Hyperparameters
	. Evaluation of Training Time and Memory Consumption
	. Computational Resources
	. License of the Assets

	. Additional Experiments
	. Impact of Hyperparameter q
	. Training Time with ResNet-50 Backbone
	. Training Time with Distributed Data Parallel
	. Computation Time for Forward and Backward Passes

	. Code

