
SparseViT: Revisiting Activation Sparsity for
Efficient High-Resolution Vision Transformer

Xuanyao Chen1,2,∗ Zhijian Liu4,∗ Haotian Tang4 Li Yi1,3 Hang Zhao1,3 Song Han4

1Shanghai Qi Zhi Institute 2Fudan University 3Tsinghua University 4MIT

https://sparsevit.mit.edu

Abstract

High-resolution images enable neural networks to learn
richer visual representations. However, this improved per-
formance comes at the cost of growing computational com-
plexity, hindering their usage in latency-sensitive applica-
tions. As not all pixels are equal, skipping computations
for less-important regions offers a simple and effective mea-
sure to reduce the computation. This, however, is hard to
be translated into actual speedup for CNNs since it breaks
the regularity of the dense convolution workload. In this
paper, we introduce SparseViT that revisits activation spar-
sity for recent window-based vision transformers (ViTs). As
window attentions are naturally batched over blocks, actual
speedup with window activation pruning becomes possible:
i.e., ∼50% latency reduction with 60% sparsity. Different
layers should be assigned with different pruning ratios due to
their diverse sensitivities and computational costs. We intro-
duce sparsity-aware adaptation and apply the evolutionary
search to efficiently find the optimal layerwise sparsity con-
figuration within the vast search space. SparseViT achieves
speedups of 1.5×, 1.4×, and 1.3× compared to its dense
counterpart in monocular 3D object detection, 2D instance
segmentation, and 2D semantic segmentation, respectively,
with negligible to no loss of accuracy.

1. Introduction
With the advancement of image sensors, high-resolution

images become more and more accessible: e.g., recent mo-
bile phones are able to capture 100-megapixel photos. The
increased image resolution offers great details and enables
neural network models to learn richer visual representations
and achieve better recognition quality. This, however, comes
at the cost of linearly-growing computational complexity,
making them less deployable for resource-constrained appli-
cations (e.g., mobile vision, autonomous driving).

∗ indicates equal contributions (listed in alphabetical order).

(a) Direct Downsample: Lower Resolution (0.5x), Dense (100%)

(b) Window Activation Pruning: Higher Resolution (1.0x), Sparse (25%)

Figure 1. Sparse, high-resolution features are far more informative
than dense, low-resolution ones. Compared with direct downsam-
pling, activation pruning can retain important details at a higher
resolution, which is essential for most image recognition tasks.

The simplest solution to address this challenge is to down-
sample the image to a lower resolution. However, this will
drop the fine details captured from the high-resolution sen-
sor. What a waste! The missing information will bottleneck
the model’s performance upper bound, especially for small
object detection and dense prediction tasks. For instance, the
detection accuracy of a monocular 3D object detector will
degrade by more than 5% in mAP by reducing the height and
width by 1.6×*. Such a large gap cannot be easily recovered
by scaling the model capacity up.

Dropping details uniformly at all positions is clearly sub-
optimal as not all pixels are equally informative (Figure 1a).
Within an image, the pixels that contain detailed object fea-
tures are more important than the background pixels. Moti-

*BEVDet [19] (with Swin Transformer [33] as backbone) achieves 31.2
mAP with 256×704 resolution and 25.90 mAP with 160×440 resolution.
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vated by this, a very natural idea is to skip computations for
less-important regions (i.e., activation pruning). However,
activation sparsity cannot be easily translated into the actual
speedup on general-purpose hardware (e.g., GPU) for CNNs.
This is because sparse activation will introduce randomly dis-
tributed and unbalanced zeros during computing and cause
computing unit under-utilization [54]. Even with dedicated
system support [40], a high sparsity is typically required to
realize speedup, which will hurt the model’s accuracy.

Recently, 2D vision transformers (ViTs) have achieved
tremendous progress. Among them, Swin Transformer [33]
is a representative work that generalizes well across different
visual perception tasks (such as image classification, object
detection, and semantic segmentation). Our paper revisits
the activation sparsity in the context of window-based ViTs.
Different from convolutions, window attentions are naturally
batched over windows, making real speedup possible with
window-level activation pruning. We re-implement the other
layers in the model (i.e., FFNs and LNs) to also execute at the
window level. As a result, we are able to achieve around
50% latency reduction with 60% window activation sparsity.

Within a neural network, different layers have different
impacts on efficiency and accuracy, which advocates for a
non-uniform layerwise sparsity configuration: e.g., we may
prune layers with larger computation and lower sensitivity
more, while pruning layers with smaller computation and
higher sensitivity less. To this end, we make use of the evo-
lutionary search to explore the best per-layer pruning ratios
under a resource constraint. We also propose sparsity-aware
adaptation by randomly pruning a different subset of the ac-
tivations at each iteration. This effectively adapts the model
to activation sparsity and avoids the expensive re-training of
every candidate within the large search space. Our Sparse-
ViT achieves speedups of 1.5×, 1.4×, and 1.3× compared
to its dense counterpart in monocular 3D object detection,
2D instance segmentation, and 2D semantic segmentation,
respectively, with negligible to no loss of accuracy.

2. Related Work
Vision Transformers. Transformers [46] have revolution-
ized natural language processing (NLP) and are now the
backbone of many large language models (LLMs) [9]. In-
spired by their success, researchers have explored the use
of transformers in a range of visual recognition tasks [22].
ViT [24] was the first work in this direction, demonstrating
that an image can be divided into 16×16 words and pro-
cessed using multi-head self-attention. DeiT [45] improves
on ViT’s data efficiency. T2T-ViT [57], Pyramid ViT [50,51],
and CrossFormer [52] introduce hierarchical modeling ca-
pability to ViTs. Later, Swin Transformer [31, 33] applies
self-attention to non-overlapping windows and proposes win-
dow shifting to enable cross-window feature communication.
There have also been extensive studies on task-specific ViTs,

such as ViTDet [26] for object detection, and SETR [59] and
SegFormer [53] for semantic segmentation.

Model Compression. As the computational cost of neu-
ral networks continues to escalate, researchers are actively
investigating techniques for model compression and accelera-
tion [12,16]. One approach is to design more efficient neural
network architectures, either manually [18, 20, 35, 41, 58] or
using automated search [2, 3, 11, 34, 43, 60]. These methods
are able to achieve comparable performance to ResNet [15]
with lower computational cost and latency. Another active di-
rection is neural network pruning, which involves removing
redundant weights at different levels of granularity, ranging
from unstructured [12, 13] to structured [17, 32]. Although
unstructured pruning can achieve higher compression ratios,
the lower computational cost may not easily translate into
measured speedup on general-purpose hardware and requires
specialized hardware support. Low-bit weight and activation
quantization is another approach that has been explored to
reduce redundancy and speed up inference [15, 21, 48, 49].

Activation Pruning. Activation pruning differs from
static weight pruning as it is dynamic and input-dependent.
While existing activation pruning methods typically focus
on reducing memory cost during training [29, 30, 38], few of
them aim to improve inference latency as activation sparsity
does not always lead to speedup on hardware. To overcome
this, researchers have explored adding system support for
activation sparsity [40,42,55]. However, these libraries often
require extensive engineering efforts and high sparsity rates
to achieve measurable speedup over dense convolutions.

Efficient ViTs. Several recent works have explored differ-
ent approaches to improve the efficiency of ViTs. For in-
stance, MobileViT [36] combines CNN and ViT by replacing
local processing in convolutions with global processing us-
ing transformers. MobileFormer [5] parallelizes MobileNet
and Transformer with a two-way bridge for feature fusing,
while NASViT [10] leverages neural architecture search to
find efficient ViT architectures. Other works have focused
on token pruning for ViTs [4, 23, 25, 37, 39, 44, 47, 56]. How-
ever, these approaches mainly focus on token-level pruning,
which is finer-grained than window pruning.

3. SparseViT

In this section, we first briefly revisit Swin Transformer
and modify its implementation so that all layers are applied
to windows. We then introduce how to incorporate the win-
dow activation sparsity into the model. Finally, we describe
an efficient algorithm (based on sparsity-aware adaptation
and evolutionary search) to find the layerwise sparsity ratio.



A0

B0

C0

D0

F0

E0
…

G0

A1Attn

B1

C1

D1

E1

Attn

Attn

Attn

Attn

F0

G0

…

A2Attn

B2

C2

D1

E1

Attn

Attn

F0

G0

…

A3Attn

B2

C2

D1

E1

F0

G0

…

Window Attention with Pruning 

Gather

Window Importance Score 
(Shared Per Stage)

A0 A1

Iteration 1

t=20ms

target = 22ms

target = 18ms
Resample

Keep
Sample

Latency MeasurementCandidate Network

A2

B0 B1 B1

C0 C0 C0

A0 A1 A2

B0 B1 B2

C0 C0 C0

A0 A1 A2

B0 B0 B0

C0 C0 C0

A0 A1 A2

B0 B1 B2

C0 C1 C1

Sparsity-Aware Adaptation

Resource-Constrained Search

Iteration 2 Iteration N

…

Figure 2. Overview of SparseViT. (Left) SparseViT first computes the L2 norm of each window activation as its importance score. After
that, it first gathers the features from the windows with the highest importance scores, then runs self-attention on selected windows, and
finally scatter the results back. (Right upper) SparseViT leverages sparsity-aware adaptation that samples a different layerwise activation
sparsity at each training iteration to accommodate the activation sparsity. (Right lower) SparseViT makes use of evoluationary search to
explore the best layerwise sparsity configuration given a latency constraint.

3.1. Swin Transformer Revisited

Swin Transformer [33] applies multi-head self-attention
(MHSA) to extract local features within non-overlapping im-
age windows (e.g., 7×7). The transformer design follows a
standard approach, involving layer normalization (LN), MHSA,
and a feed-forward layer (FFN) applied to each window. Swin
Transformer uses a shifted window approach that alternates
between two different window partitioning configurations to
introduce cross-window connections efficiently.

Window-Wise Execution. The original implementation
of Swin Transformer applies MHSA at the window level, while
FFN and LN are applied to the entire feature map. This mis-
match between the two operations requires additional struc-
turing before and after each MHSA, making window pruning
more complicated as the sparsity mask must be mapped from
the window level to the feature map. To simplify this process,
we modify the execution of FFN and LN to be window-wise
as well. This means that all operations will be applied at
the window level, making the mapping of the sparsity mask
very easy. In practice, this modification incurs a minimal
accuracy drop of less than 0.1% due to padding, even with-
out re-training. By making the execution of all operations
window-wise, our method simplifies the pruning process.

3.2. Window Activation Pruning

Not all windows are equally important. In this paper, we
define the importance of each window as its L2 activation
magnitude. This is much simpler than other learning-based
measures since it introduces smaller computational overhead
and is fairly effective in practice.

Given an activation sparsity ratio (which will be detailed
in the next section), we first gather those windows with the
highest importance scores, then apply MHSA, FFN and LN only
on these selected windows, and finally scatter outputs back.
Figure 2 shows the workflow of window activation pruning.

To mitigate information loss due to coarse-grained window
pruning, we simply duplicate the features of the unselected
windows. This approach incurs no additional computation,
yet proves highly effective in preserving information, which
is critical for dense prediction tasks such as object detection
and semantic segmentation.

Shared Scoring. Unlike conventional weight pruning, im-
portance scores are input-dependent and need to be com-
puted during inference, which can introduce significant over-
head to the latency. To mitigate this, we compute the window
importance score only once per stage and reuse it across all
the blocks within the stage, amortizing the overhead. This
also ensures that the window ordering remains consistent
within a stage. We simplify the gathering operation using
slicing, which does not require any feature copying.

3.3. Mixed-Sparsity Configuration Search

Using a uniform sparsity level throughout a model may
not be the best strategy because different layers have varying
impacts on both accuracy and efficiency. For example, early
layers typically require more computation due to their larger
feature map sizes, while later layers are more amenable to
pruning as they are closer to the output. Thus, it is more ben-
eficial to apply more pruning to layers with lower sensitivity
and higher costs. However, manually exploring layerwise
sparsity can be a time-consuming and error-prone task. To
overcome this challenge, we propose a workflow that effi-
ciently searches for the optimal mixed-sparsity pruning.

Search Space. We first design the search space for mixed-
sparsity activation pruning. For each Swin block, we allow
the sparsity ratio to be chosen from {0%, 10%, . . . , 80%}.
Note that each Swin block contains two MHSAs, one with
shifted window and one without. We will assign them with
the same sparsity ratio. Also, we enforce the sparsity ratio



Backbone Resolution Width #MACs (G) Latency (ms) mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑

Swin-T 256×704 1× 140.8 36.4 31.2 69.1 27.2 52.3 90.9 24.7 39.2
SparseViT (Ours) 288×792 1× 113.9 34.5 32.0 72.8 27.2 53.8 79.4 25.7 40.1

Swin-T (R224) 224×616 1× 78.5 23.0 29.9 71.8 27.4 60.9 79.0 26.0 38.4
Swin-T (W0.6×) 256×704 0.6× 56.0 22.6 29.9 69.9 27.5 59.9 81.4 25.8 38.5
SparseViT (Ours) 256×704 1× 78.4 23.8 31.2 70.9 27.5 58.7 83.1 27.2 38.9

Swin-T (R192) 192×528 1× 67.1 18.7 28.7 74.3 27.9 59.5 76.7 27.8 37.7
Swin-T (W0.4×) 256×704 0.4× 20.4 17.6 27.6 74.2 27.9 63.4 91.0 26.2 35.5
SparseViT (Ours) 256×704 1× 58.6 18.7 30.0 72.0 27.5 59.7 81.7 26.6 38.3

Table 1. Results of monocular 3D object detection on nuScenes.

to be non-descending within each stage. This ensures that a
pruned window will not engage in the computation again.

Sparsity-Aware Adaptation. To identify the best mixed-
sparsity configuration for a model, it is crucial to evaluate
its accuracy under different sparsity settings. However, di-
rectly assessing the original model’s accuracy with sparsity
might produce unreliable results (see Section 4.2). On the
other hand, retraining the model with all possible sparsity
configurations before evaluating its accuracy is impractical
due to the significant time and computational costs involved.
We therefore propose sparsity-aware adaptation as a more
practical solution to address this challenge. Our approach
involves adapting the original model, which was trained with
only dense activations, by randomly sampling layerwise ac-
tivation sparsity and updating the model accordingly at each
iteration. After adaptation, we can obtain a more accurate
estimate of the performance of different sparsity configura-
tions without the need for full retraining. This enables us to
efficiently and effectively evaluate different mixed-sparsity
configurations and identify the optimal one for the model.
Notably, our approach differs from super network training
(used in NAS) as we only randomly sample activations, with-
out changing the number of parameters.

Resource-Constrained Search. With an accurate esti-
mate of the model’s performance through sparsity-aware
adaptation, we can proceed to search for the best sparsity con-
figurations within specified resource constraints. In this pa-
per, we consider two types of resource constraints: hardware-
agnostic theoretical computational cost, represented by the
number of multiply-accumulate operations (#MACs), and
hardware-dependent measured latency. To perform the spar-
sity search, we adopt the evolutionary algorithm [11]. We
first initialize the population with n randomly sampled net-
works within the search space and using rejection sampling
(i.e., repeated resampling until satisfaction) to ensure every
candidate meets the specified resource constraint. In each
generation, we evaluate all individuals in the population and
select the top k candidates with the highest accuracy. We
then generate the population for the next generation through

(n/2) mutations and (n/2) crossovers using rejection sam-
pling to satisfy the hard resource constraints. We repeat this
process to obtain the best configuration from the population
in the last generation.

Finetuning with Optimal Sparsity. The resulting model
from our resource-constrained search has been trained under
a variety of sparsity configurations during the adaptation
stage. To further optimize its performance, we finetune the
model with the fixed sparsity configurations identified in the
search process until convergence.

4. Experiments

In this section, we evaluate our method on three diverse
tasks, including monocular 3D object detection, 2D instance
segmentation, and 2D semantic segmentation.

Latency Measurement. We report the latency of the back-
bone in all our results as our method is only applied to the
backbone. The latency measurements are obtained using a
single NVIDIA RTX A6000 GPU. To ensure accurate mea-
surements, we perform 500 inference steps as a warm-up
and subsequently measure the latency for another 500 steps.
To minimize the variance, we report the average latency of
the middle 250 measurements out of the 500.

4.1. Main Results

4.1.1 Monocular 3D Object Detection

Dataset and Metrics. We use nuScenes [1] as the bench-
mark dataset for monocular 3D object detection, which in-
cludes 1k scenes with multi-modal inputs from six surround-
ing cameras, one LiDAR, and five radars. We only employ
camera inputs in our experiments. We report official metrics,
including mean average precision (mAP), average translation
error (ATE), average scale error (ASE), average orientation
error (AOE), average velocity error (AVE), and average at-
tribute error (AAE). We also report the nuScenes detection
score (NDS), which is a weighted average of the six metrics.



Backbone Resolution Width #MACs (G) Latency (ms) APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

Swin-T 640×640 1× 161.8 46.6 42.0 63.3 45.7 38.3 60.3 40.9

Swin-T (R576) 576×576 1× 149.5 41.3 41.0 62.1 44.9 37.2 59.0 39.6
Swin-T (W0.9×) 640×640 0.9× 122.3 41.8 40.4 61.9 43.8 37.1 58.9 39.8
SparseViT (Ours) 672×672 1× 139.5 41.3 42.4 63.3 46.4 38.5 60.3 41.3

Swin-T (R544) 544×544 1× 119.8 34.8 40.5 61.2 43.8 36.8 58.2 39.1
Swin-T (W0.8×) 640×640 0.8× 90.5 35.9 39.4 60.7 42.8 36.4 57.9 38.8
SparseViT (Ours) 672×672 1× 116.5 34.1 41.6 62.5 45.5 37.7 59.4 40.2

Swin-T (R512) 512×512 1× 117.5 32.9 39.6 60.1 43.4 36.0 57.0 38.2
Swin-T (W0.6×) 640×640 0.6× 63.4 31.7 38.7 60.2 41.6 35.7 57.0 38.0
SparseViT (Ours) 672×672 1× 105.9 32.9 41.3 62.2 44.9 37.4 59.1 39.7

Table 2. Results of 2D instance segmentation on COCO.

Model and Baselines. We use BEVDet [19] as the base
model for monocular 3D object detection. It adopts Swin-
T [33] as the baseline and employs FPN [27] to fuse informa-
tion from multi-scale features. Following BEVDet [19], we
resize the input images to 256×704 and train the model for
20 epochs. We compare our SparseViT against two common
model compression strategies: reducing resolution and width.
For reduced resolution, we re-train the model with different
resolutions. For reduced width, we uniformly scale down the
model to 0.4× and 0.6×, then pre-train it on ImageNet [8]
and finally finetune it on nuScenes [1].

Compared with Reduced Resolution. The accuracy of
monocular 3D object detection is highly influenced by resolu-
tion scaling. With fine-grained features in higher-resolution
images, our SparseViT outperforms the baseline with smaller
resolutions, with comparable or faster latency. The results in
Table 1 show that SparseViT achieves the same accuracy as
Swin-T with 1.8× lower #MACs and 1.5× faster inference
latency. Furthermore, when compared to the baseline with
192×528 resolution, SparseViT achieves 30.0 mAP and 38.3
NDS at 50% latency budget of the full Swin-T backbone,
which is 1.3 mAP and 0.6 NDS better, respectively.

Comparison with Reduced Width. Reducing the
model’s width lowers #MACs. However, this decrease in
computation cost might not necessarily translate into a
measured speedup due to low device utilization. SparseViT
outperforms the baseline with 0.6× width by 1.3 mAP and
the one with 0.4× width by 2.4 mAP at similar latency.
This indicates that activation pruning is more effective than
model pruning in latency-oriented compression.

4.1.2 2D Instance Segmentation

Dataset and Metrics. We use COCO [28] as our bench-
mark dataset for 2D instance segmentation, which contains
118k/5k training/validation images. We report the box/mask
average precision (AP) over 50% to 95% IoU thresholds.

Model and Baselines. We use Mask R-CNN [14] as the
base model. The model uses Swin-T [33] as its backbone.
We adopt 640×640 as the default input resolution and train
the model for 36 epochs. We compare our SparseViT against
baselines with reduced resolutions and widths. For reduced
resolution, we train the model using random scaling aug-
mentation [14, 33] and evaluate the model under different
resolutions. For reduced width, we uniformly scale down the
model to 0.6×, 0.8× and 0.9×, pre-train it on ImageNet [8]
and finetune it on COCO [28].

Comparison with Reduced Resolution. As in Table 2,
SparseViT consistently outperforms the baseline with less
computation across various input resolutions from 512×512
to 640×640. Our key insight is that starting with a high reso-
lution of 672×672 and aggressively pruning the activation is
more efficient than directly scaling down the input resolution.
This observation aligns with the visualizations in Figure 1,
where fine-grained details become indistinguishable under
low resolution. Despite using a higher resolution, SparseViT
achieves 1.2× smaller #MACs than the baseline while de-
livering 0.4% higher APbbox and 0.2% higher APmask. With
similar accuracy, SparseViT has 1.4× lower #MACs, result-
ing in a perfect 1.4× speedup. This is because our SparseViT
performs window-level activation pruning, which is equiva-
lent to reducing the batch size in MHSA computation and is
easy to accelerate on hardware. Similarly, to match the accu-
racy of the baseline with 90% resolution, SparseViT is 1.3×
faster and consumes 1.4× less computation. Remarkably,
despite using 30% larger resolution (i.e., 1.7× larger #MACs
to begin with!), SparseViT is more efficient than the baseline
at 512×512 resolution, while providing significantly better
accuracy (+1.7 APbbox and +1.4 APmask).

Comparison with Reduced Width. In Table 2, we also
compare SparseViT with the baseline with reduced channel
width. Although reducing channel width leads to a signifi-
cant reduction in #MACs, we do not observe a proportional
increase in speed. For example, the baseline with 0.6× chan-
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Figure 3. SparseViT delivers a significantly better accuracy-efficiency trade-off than the baselines with reduced resolutions and widths on
monocular 3D object detection (left) and 2D instance segmentation (right).

Backbone Resolution Latency (ms) mIoU

Swin-L 1024×2048 329.5 83.3

Swin-L (R896) 896×1792 256.5 82.8
SparseViT (Ours) 1024×2048 250.6 83.2

Table 3. Results of 2D semantic segmentation on Cityscapes.

nel width on 640×640 inputs consumes only 63.4G MACs,
yet it runs slightly slower than SparseViT on 672×672 inputs
with 105.9G MACs (which is actually 1.7× heavier!). GPUs
prefer wide and shallow models to fully utilize computation
resources. Pruning channels will decrease device utilization
and is not as effective as reducing the number of windows
(which is equivalent to directly reducing the batch size in
MHSA computation) for model acceleration.

4.1.3 2D Semantic Segmentation

Dataset and Metrics. Our benchmark dataset for 2D se-
mantic segmentation is Cityscapes [7], which consists of over
5k high-quality, fully annotated images with pixel-level se-
mantic labels for 30 object classes, including road, building,
car, and pedestrian. We report mean intersection-over-union
(mIoU) as the primary evaluation metric on this dataset.

Model and Baselines. We use Mask2Former [6] as our
base model, which uses Swin-L [33] as its backbone. We
train the model for 90k iterations with an input resolution
of 1024×2048. Here, we only compare to the baseline with
reduced resolution.

Results. Based on Table 3, SparseViT model attains com-
parable segmentation accuracy to the baseline while deliver-
ing a speedup of 1.3×. In contrast, reducing the resolution
results in a more substantial decrease in accuracy. By uti-
lizing spatial redundancy, SparseViT delivers competitive
results while being more efficient than direct downsampling.

4.2. Analysis

In this section, we present analyses to validate the effec-
tiveness of our design choices. All studies are conducted on
monocular 3D object detection (on nuScenes), except the
evolutionary search one in Figure 4(c), which is conducted
on 2D instance segmentation (on COCO).

Window pruning is more effective than token pruning.
Table 4 demonstrates that SparseViT achieves a low computa-
tional cost and latency without any loss of accuracy, whereas
DynamicViT [39], a learnable token pruning method, expe-
riences a substantial decrease in accuracy of 0.4 mAP with
only a minor reduction in computational cost. These findings
offer valuable insights into the comparative performance of
these pruning methods. Furthermore, it is worth noting that
token pruning requires more fine-grained token-level gather-
ing, which has inferior memory access locality and tends to
be slower on GPUs, unlike window pruning in our SparseViT
that only necessitates window-level gathering.

#MACs (G) Latency (ms) mAP Drop

DynamicViT 98.6 33.3 -0.1
DynamicViT 91.7 32.6 -0.4

SparseViT 78.4 23.8 0.0

Table 4. Window pruning (SparseViT) is more efficient and effec-
tive than learnable token pruning (DynamicViT).

Pruning from higher resolution matters. A key design
insight in SparseViT is that it is more advantageous to start
with a high-resolution input and prune more, rather than be-
ginning with a low-resolution input and pruning less. While
counterintuitive, starting with a high-resolution input allows
us to retain fine-grained information in the image. The abun-
dance of uninformative background windows provides us
with ample room for activation pruning. Quantitatively, as in
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Figure 4. Non-uniform sparsity is better than uniform sparsity (a, b). Evolutionary search is more sample-efficient than random search (c).

Table 5, starting from the highest resolution (i.e., 256×704)
produces the best accuracy under the same latency constraint.

Input Resolution #MACs (G) Latency (ms) mAP

192×528 67.1 18.7 28.7
224×616 64.9 19.1 29.7
256×704 58.6 18.7 30.0

Table 5. Starting from a high-resolution input and pruning more is
better than starting from a low-resolution input and pruning less.

Mixed-sparsity pruning is better than uniform pruning.
In Figure 4(a), we show the pruning strategy used by Sparse-
ViT to achieve 50% overall sparsity. Unlike uniform sparsity
ratios applied to all layers, SparseViT favors non-uniform
sparsity ratios for different layers based on their proximity to
the input. Specifically, the smaller window sizes in the first
and second blocks allow for more aggressive pruning, while
larger window sizes in later layers result in less aggressive
pruning. This non-uniform sparsity selection leads to better
accuracy, as in Figure 4(b). Compared to uniform pruning,
SparseViT achieves similar accuracy but is up to 1.2× faster.
Alternatively, when compared at similar speeds, SparseViT
achieves 0.6% higher accuracy than uniform pruning.

Evolutionary search is better than random search. We
demonstrate the efficacy of evolutionary search in selecting
the sparsity ratios. Figure 4(c) compares the results obtained
by evolutionary search and random search, by visualizing the
validation mAP of the best-performing models found in the
last seven epochs. The accuracy of the models discovered by
evolutionary search converges to a high value of 37.5 after
the sixth epoch, whereas the models found by random search
still exhibit high variance until the final epoch.

Sparsity-aware adaptation offers a better proxy. Con-
ventional pruning methods [12, 13] typically scan different
sparsity ratios at each layer, zero out corresponding weights,
and evaluate accuracy directly on a holdout validation set.
While this approach works well for weight pruning in CNNs,
it falls short when generalizing to activation pruning in ViTs.

For example, as in Table 6, the naive accuracy sensitivity
analysis approach asserts that pruning away 50% of the win-
dows in stage 2 is much better than doing so in stage 1 (i.e.,
30.93 mAP vs. 28.31 mAP). However, if both models are
finetuned, the accuracy difference is almost zero. In contrast,
sparsity-aware adaptation provides a much better accuracy
proxy (i.e., 30.83 mAP vs. 30.63 mAP), which can serve as
a better feedback signal for evolutionary search.

SAA Sparsity Ratios mAP w/o FT mAP w/ FT

(0.5, 0, 0, 0) 28.31 31.40
(0, 0.5, 0, 0) 30.93 31.37

✓
(0.5, 0, 0, 0) 30.83 31.45
(0, 0.5, 0, 0) 30.63 31.44

Table 6. Sparsity-aware adaptation (SAA) improves the correlation
between the accuracy before and after finetuning (FT).

Sparsity-aware adaptation improves the accuracy. In
Table 7, we explore the impact of sparsity-aware adaptation
on model convergence during the finetuning stage. Using the
same window sparsity ratios, we compare three approaches:
(a) training from scratch, (b) finetuning from a pre-trained
Swin-T, and (c) finetuning from a pre-trained Swin-T with
sparsity-aware adaptation (SAA). Our results indicate that ap-
proach (c) achieves the best performance. We speculate that
sparsity-aware adaptation could serve as a form of implicit
distillation during training. Models with higher window
sparsity can benefit from being co-trained with models with
lower window sparsity (and therefore higher #MACs and
higher capacity), resulting in improved overall performance.

mAP

(a) Training from scratch 29.67
(b) Finetuning from a pre-trained Swin-T 30.83
(c) Finetuning from a pre-trained Swin-T with SAA 31.21

Table 7. Sparsity-aware adaptation improves the convergence.

SparseViT keeps important foreground windows. In
Figure 5, we visualize the window pruning strategy discov-



Figure 5. SparseViT effectively prunes irrelevant background windows while retaining informative foreground windows. Each window’s
color corresponds to the number of layers it is executed. Brighter colors indicate that the model has executed the window in more layers.

ered by SparseViT, where the color represents the number
of layers each window is executed. Notably, on the first row,
SparseViT automatically learns the contour of the objects, as
demonstrated in the third and fourth figures, where the com-
puter and sportsman are respectively outlined. Furthermore,
on the second row, the windows corresponding to foreground
objects are not pruned away. Despite being a small object,
the pedestrian in the last figure is retained throughout the
entire execution, illustrating the effectiveness of SparseViT.

L2 magnitude-based scoring is simple and effective. Ta-
ble 8 demonstrates that the L2 magnitude-based scoring is
simple and effective, outperforming the learnable window
scoring that utilizes MLP and Gumbel-Softmax for predict-
ing window scores. We also include the regularization loss
on pruning ratios, following Rao et al. [39], to restrict the
proportion of preserved windows to a predetermined value in
the learnable window scoring baseline. However, the added
complexity of the learnable scoring results in higher latency
and #MACs compared to the L2 magnitude-based scoring.
Achieving an optimal balance between pruning regulariza-
tion loss and detection loss is not an easy task, as evidenced
by a 0.4 mAP drop observed in the learnable scoring method.

Scoring #MACs (G) Latency (ms) mAP Drop

Learnable 89.6 33.1 -0.6
L2 Magnitude 78.4 23.8 0.0

Table 8. L2 magnitude-based scoring is simple and effective, achiev-
ing a better accuracy-efficiency trade-off than learnable scoring.

Shared scoring is better than independent scoring. We
compare our proposed shared scoring strategy with the inde-
pendent scoring. Despite being an approximation, sharing
window scores per stage, as in Table 9, does not negatively

impact the performance. This strategy amortizes the cost of
score calculation, which allows for more effective computa-
tion and results in a better accuracy-latency trade-off.

Scoring Sparsity #MACs (G) Latency (ms) mAP

Independent 0.5 70.68 23.3 30.08
Shared 0.5 70.68 23.0 30.17

Table 9. Shared scoring per stage reduces the cost of score calcula-
tion, leaving room for effective computation and offering a better
accuracy-latency trade-off than independent scoring per block.

5. Conclusion

Although activation pruning is a very powerful technique
for preserving high-resolution information, it does not offer
actual speedup for CNNs. In this paper, we revisit activation
sparsity for recent window-based ViTs and propose a novel
approach to leverage it. We introduce sparsity-aware adapta-
tion and employ evolutionary search to efficiently find the
optimal layerwise sparsity configuration. As a result, Spar-
seViT achieves 1.5×, 1.4×, and 1.3× measured speedups in
monocular 3D object detection, 2D instance segmentation,
and 2D semantic segmentation, respectively, with minimal to
no loss in accuracy. We hope that our work inspires future re-
search to explore the use of activation pruning for achieving
better efficiency while retaining high-resolution information.
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