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Abstract

Masked Image Modeling (MIM) achieves outstanding
success in self-supervised representation learning. Unfortu-
nately, MIM models typically have huge computational bur-
den and slow learning process, which is an inevitable ob-
stacle for their industrial applications. Although the lower
layers play the key role in MIM, existing MIM models con-
duct reconstruction task only at the top layer of encoder.
The lower layers are not explicitly guided and the interac-
tion among their patches is only used for calculating new
activations. Considering the reconstruction task requires
non-trivial inter-patch interactions to reason target signals,
we apply it to multiple local layers including lower and up-
per layers. Further, since the multiple layers expect to learn
the information of different scales, we design local multi-
scale reconstruction, where the lower and upper layers re-
construct fine-scale and coarse-scale supervision signals
respectively. This design not only accelerates the represen-
tation learning process by explicitly guiding multiple lay-
ers, but also facilitates multi-scale semantical understand-
ing to the input. Extensive experiments show that with sig-
nificantly less pre-training burden, our model achieves com-
parable or better performance on classification, detection
and segmentation tasks than existing MIM models. Code is
available with both MindSpore and PyTorch.

1. Introduction

Recently, Masked Image Modeling (MIM) [2, 24, 60]
achieves outstanding success in the field of self-supervised
visual representation learning, which is inspired by the
Masked Language Modeling (MLM) [4, 34] in natural lan-
guage processing and benefits from the development of vi-
sion transformers [18, 39, 55]. MIM learns semantic repre-
sentations by first masking some parts of the input and then
predicting their signals based on the unmasked parts, e.g.,
normalized pixels [24,60], discrete tokens [2,17], HOG fea-
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ture [57], deep features [1, 67] or frequencies [38, 59].

Despite superior performance on various downstream
tasks, these models have huge computational burden and
slow learning process [31]. They typically require thou-
sands of GPU Hours for pre-training on ImageNet-1K to
get generalizing representations. Since we expect to pre-
train these models on more massive amount of unlabeled
data (e.g., free Internet data) to obtain more generalizing
representations in practice, the pre-training efficiency is
an inevitable bottleneck limiting the industrial applications
of MIM. How to accelerate the representation learning in
MIM is an important topic. To this end, MAE [24] pio-
neered the asymmetric encoder-decoder strategy, where the
costly encoder only operates few visible patches and the
lightweight decoder takes all the patches as input for pre-
diction. Further, GreenMIM [31] extends the asymmetric
encoder-decoder strategy to hierarchical vision transform-
ers (e.g., Swin [39]). Besides, [8, 22, 35] shrinks the input
resolution to lessen the input patches, thereby reducing the
computational burden. However, they all aim to accelerate
the encoding process rather than the representation learning.

In MIM, the learning of upper layers depends on that of
lower ones during pre-training, since the upper-layer fea-
tures are calculated from the lower layers. Besides, during
fine-tuning the upper layers are typically tuned quickly to
adapt to the downstream task while the lower ones change
more slowly and need to be well-learned [2, 29, 65]. Even
fine-tuning only the several upper layers and freezing the
others can obtain similar performance [24]. Therefore, the
lower layers of encoder play the key role in MIM. However,
all existing MIM models only conduct reconstruction task at
the top layer of encoder and the lower ones are not explicitly
guide, thus the interaction among their patches is only used
for calculating the activations of the next layer. Considering
the reconstruction task requires non-trivial inter-patch in-
teractions to reason target signals, we apply it to both lower
and upper layers to explicitly guide them and thus accelerate
the overall learning process. Using tiny decoder is sufficient
for each local reconstruction task and does not significantly
increase the computational burden.
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https://gitee.com/mindspore/hub/blob/fa2a3270aa36673f835e524fa55c5a4c67262eb2/mshub_res/assets/noah-cvlab/gpu/1.8/localmim_v1.0_imagenet2012.md
https://github.com/huawei-noah/Efficient-Computing/tree/master/Self-supervised/LocalMIM
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Figure 1. Top-1 fine-tuning accuracy on ImageNet-1K vs. Pre-training duration. The duration is estimated on a machine with one Tesla
V100-32G GPU, CUDA 10.2 and PyTorch 1.8. ‘GPU Hours’ is the running time on single GPU.

How to properly conduct reconstruction tasks at multi-
ple local layers is a non-trivial problem. For example, ap-
plying the top-layer reconstruction task to carefully chosen
local layers of ViT [18] can not achieve meaningful im-
provement. In general, the lower layers exploit low-level
information and the upper ones learn high-level informa-
tion [20, 44], so it is not appropriate to use the supervision
signals of same scale for multiple local reconstruction tasks.
Here ’scale’ is the spatial size of the supervision signals cal-
culated from the divided input regions, e.g., the signals from
the p × p regions in an input of H ×W resolution has the
scale of H

p × W
p . The fine-scale and coarse-scale super-

visions typically contain low-level and high-level informa-
tion of the input respectively, and these multi-scale supervi-
sions from input are widely ignored by existing MIM mod-
els. To this end, we propose local multi-scale reconstruction
where the lower and upper layers reconstruct fine-scale and
coarse-scale supervisions respectively. This design not only
accelerates the representation learning process, but also fa-
cilitates multi-scale semantical understanding to the input.
When the decoded predictions have different scale with the
supervisions (e.g., on ViT), we use the deconvolution/pool
operations to rescale them. We also apply the asymmetric
encoder-decoder strategy [24, 31] for quick encoding. Our
model, dubbed as LocalMIM, are illustrated in Fig. 2 (a).

Overall, we summarize our contributions as follows.

• To the best of our knowledge, this is the first work in
MIM to conduct local reconstructions and use multi-
scale supervisions from the input.

• Our model is architecture-agnostic and can be used in
both columnar and pyramid architectures.

• From extensive experiments, we find that 1) Lo-
calMIM is more efficient than existing MIM models,
as shown in Fig. 1 and Table 1. For example, Lo-
calMIM achieves the best MAE result with 3.1× ac-
celeration on ViT-B and the best GreenMIM result
with 6.4× acceleration on Swin-B. 2) In terms of top-

1 fine-tuning accuracy on ImageNet-1K, LocalMIM
achieves 84.0% using ViT-B and 84.1% using Swin-
B with significantly less pre-training duration than ex-
isting MIM models. The obtained representations also
achieve better generalization on detection and segmen-
tation downstream tasks, as shown in Table 2 and 3.

2. Related Works

Masked Image Modeling. With the development of vi-
sion transformers [18, 23, 39, 50, 55], Masked Image Mod-
eling (MIM) gradually replaces the dominant position of
contrastive learning [10, 25, 54] in visual self-supervised
representation learning due to its superior fine-tuning per-
formance in various visual downstream tasks. Many tar-
get signals have been designed for the mask-prediction pre-
text task in MIM, such as normalized pixels [24, 60], dis-
crete tokens [2,17], HOG feature [57], deep features [1,67]
or frequencies [38, 59]. However, they are all only ap-
plied as single-scale supervisions for reconstruction. An in-
evitable bottleneck for the industrial applications of MIM is
that these models typically require huge computational re-
sources and long pre-training duration. To this end, some
works accelerate the encoding process via the asymmet-
ric encoder-decoder strategy [24, 31] or lessening the in-
put patches [8, 35]. Only accelerating the encoding process
sometimes doesn’t really speed up the representation learn-
ing, like GreenMIM vs. SimMIM192 in Fig. 1. In this work,
we use local multi-scale reconstructions to explicitly guide
multiple lower layers and thus accelerate the overall learn-
ing process. Our method is compatible with the above quick
encoding approaches. ConvMAE [20] fuses the feature of
local layers for the final reconstruction to explicitly guide
them, but still applies single-scale supervision signals.

Locally supervised learning. Considering the biological
brain learns mainly based on local information [6], some
works [42, 43, 45, 56] used local error signals to greedily
optimize individual blocks of the backbone without global
back-propagation. This greedy training procedure signif-
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Figure 2. Illustration of local multi-scale reconstruction. a) We randomly mask some input patches and then predict their supervision
signals of different scales at multiple local layers. The multi-scale supervisions are obtained by first dividing the input under different
scales and then extracting signals with some feature descriptors. The lower layers are responsible for fine-scale reconstruction and the
upper ones are responsible for coarse-scale reconstruction. We also use the asymmetric encoder-decoder strategy for quick encoding. b)
The decoder consists of three parts: Transformer blocks, Deconvolution/Pool (optional) and Multilayer perceptron.

icantly reduces memory overhead, but can not accelerate
model learning. In this work, we also optimize error at
multiple local layers but still use global back-propagation
for end-to-end training. Compared with existing MIM mod-
els, our local reconstruction is more biologically plausible
since the human brain prefers local learning rules [3,14,16].
Feature distillation [28, 47] also explicitly guides the local
layers, but needs costly pre-trained or momentum teacher.
In fact, the multi-scale supervisions from original input are
sufficient to guide local layers and also readily available.

Multi-scale property. Biological visual perception is hi-
erarchical and multi-scale [33]. Moreover, multi-scale fea-
tures are also useful for many visual tasks [9,26,46]. To this
end, many advanced vision transformers [19, 39, 53, 55, 64]
hard-code the multi-scale property to the architectures and
boost the performance. However, global single-scale re-
construction is not enough for guiding multiple local layers
to learn multi-scale information. In this work, beyond the
multi-scale features, we further introduce multi-scale super-
visions to soft-code this property. This new design is not
limited to specific architectures.

3. Model

3.1. Masked Image Modeling

In MIM, the models first mask some parts of the input
image and then predict their information based on the un-
masked observation. For quick encoding, MAE [24] and
GreenMIM [31] use the asymmetric encoder-decoder strat-
egy. The major designs are described below.

Image presentation. Generally, we present an image to the
sequence of visual patches as the input to vision transform-
ers [18, 39]. The input image x ∈ RH×W×C is reshaped

to N = HW/p2 non-overlapping patches xp ∈ RN×(p2C),
where p is the patch size, (H,W ) is the resolution of in-
put image and C is the number of channels. The patches
{xp

i }Ni=1 are then linearly mapped to the patch embeddings.
For retaining the positional information, the patches are typ-
ically added with positional embeddings.

Vision transformers. Unlike the grid operations in the con-
volutional neural networks, vision transformers [18, 39, 55]
use the stacked multi-head self-attention modules. To ob-
tain the multi-scale feature maps for dense prediction tasks,
some advanced vision transformers [39, 55] extend the
columnar ViT [18] to the pyramidal structure, where the
feature maps change from fine-scale to coarse-scale and are
expected to capture the multi-scale information from the in-
put. The patches [xp

1, · · · , x
p
N ] are fed to a vision trans-

former with L layers and obtain the output feature at l-th
layer zl = [zl1, · · · , zlNl

], l = 1, · · · , L.

Masking. Given the patch sequence {xp
i }Ni=1, MIM con-

structs a random mask m ∈ {0, 1}N to indicate the masked
patches that correspond to mi = 1. There are two main
masking strategies, random masking [24] and block-wise
masking [2]. Specially, since the number of patches Nl de-
creases through layers in the pyramidal architectures, some
works [20,31] first construct the random mask mL with the
size of NL, and then up-sample it to size N .

Encoder. Only the visible patches xv = {xp
i |mi = 0}

are fed to the encoder and mapped to the latent features
zlv, l = 1, · · · , L, which significantly reduces compute and
memory. Specially, since the local window attention in
the pyramidal architectures is not compatible with the in-
complete input patches (i.e., only visible patches), Green-
MIM [31] proposes the Optimal Grouping algorithm and
the Group Window Attention scheme. After pre-training,
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the encoder is used in various downstream tasks.

Decoder. The decoder takes as the input of both encoded
visible patches zLv and mask tokens {e[M]|mL

i = 1}, where
the mask token e[M] is a shared and learnable vector. The
positional embeddings are also added to them for provid-
ing the location information. Since the decoder is only used
during pre-training to output the prediction ŷL, it can be any
architectures which support the global information propa-
gation among patches, e.g., a series of ViT or Swin blocks.
Many works [24, 31, 35] show that using lightweight de-
coders is sufficient to learn generalizing representations.

Global reconstruction. All existing MIM models predict
the supervision signal y based on the final output feature zLv
of the encoder and minimize a global reconstruction loss

LMIM = −
NL∑
i=1

mL
i · lnP (yi|ŷLi ) (1)

where the loss is calculated on the masked patches with
mL

i = 1, and P (·|·) can be the Gaussian or Dirichlet distri-
butions for regression or classification losses respectively.

3.2. Analysis and motivation

For pre-training, the upper-layer features are calculated
from the lower layers, so the well-learned lower layers can
propagate semantical knowledge to the upper ones and fa-
cilitate their learning. For fine-tuning, the upper layers typ-
ically adapt quickly to specific downstream tasks, while the
lower ones change more slowly and need to be sufficient
learned during pre-training [2,29,65]. Even fine-tuning only
the several upper layers and freezing the others can obtain
comparable performance [24]. Therefore, the lower layers
of the encoder play the key role in MIM.

After patchification and linearly projection, the initial
patch embeddings lose the inter-patch semantical relations.
The self-attention mechanism in vision transformers is re-
sponsible for learning these relations by inter-patch inter-
action and build a better representation space than pixel
space [5]. Further, since the self-attention mechanism has
the computational complexity with a quadratic dependence
on patch number N , it is difficult to learn the inter-patch
interactions, especially for the lower layers of pyramidal ar-
chitectures where the small patch size p leads to huge N .
However, under the global reconstruction loss, the inter-
patch interaction at lower layers is not explicitly guided,
and the simple task of calculating new activations is not suf-
ficient to guide it. As a result, it is hard for the patches at
lower layers to learn inter-patch relations. Concretely, we
examine Normalized Mutual Information (NMI) [49] be-
tween query and key patches at each layer, where the high
NMI value means the attention maps strongly depend on the
query patches. Intuitively, the semantical representations
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Figure 3. Normalized Mutual Information (NMI) between query
and key patches at each layer of a pre-trained ViT-B.

should have highly query-adaptive attentions, i.e., the dif-
ferent query patches faithfully attend to their semantically
related regions. This is an advantage of the self-attention
mechanism. As shown in Fig. 3, existing MIM models with
global loss have small NMI value at lower layers, which
means their patches have less query-adaptive attentions.

The reconstruction task requires holistic reasoning
among patches to predict the masked signals and thus ob-
tains semantic understanding to the input. Since this chal-
lenging task facilitates non-trivial inter-patch interactions,
we apply it at multiple local layers, including both lower
and upper ones to explicitly guide them all.

3.3. Local multi-scale reconstruction

In MIM, the supervision signals for a reconstruction
task are directly calculated from the input. Concretely, we
evenly divide the input image x ∈ RH×W×C into non-
overlapping regions {xi ∈ Rp×p×C}HW/p2

i=1 and use some
feature descriptor π to extract the supervision signal yi =
π(xi). To learn generalizing representations, many feature
descriptors have been designed, such as pixel normaliza-
tion [24, 60], HOG [57] and the pre-trained or momentum
teacher [1,2,17,67]. We define the scale of supervision y as
its spatial size H

p × W
p . For a given input, the fine-scale su-

pervisions from finely-divided input regions typically con-
tain the low-level semantical information of the input, like
corners, edges or textures. Relatively, the coarse-scale su-
pervisions capture high-level semantical information of the
input, like the shape of partial or whole object. Intuitively,
multi-scale supervisions can guide representation learning
better than the common single-scale ones due to their richer
semantic information. In this work, we mainly consider the
feature descriptors which are readily available without extra
pre-training burden and costly forward inference of teacher
networks, e.g., pixel normalization and HOG.

As shown in Table 4f, directly applying the top-layer re-
construction task at carefully chosen local layers of ViT can
not achieve meaningful improvement, where each local task
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Model Backbone # Params PT Epoch GPU Hours/Ep. Total GPU Hours Acc

Scratch, ViT ViT-B 86M 0 1.5 - 82.3
Scratch, Swin Swin-B 88M 0 2.4 - 83.5
MoCo v3 [12] ViT-B 86M 600 - - 83.2
DINO [7] ViT-B 86M 300 - - 82.8
BEiT [2] ViT-B 86M 800 2.4 1920 83.2
iBOT [67] ViT-B 86M 400 10.1 4040 83.8
MAE [24] ViT-B 86M 800 1.1 880 83.3
MAE [24] ViT-B 86M 1600 1.1 1760 83.6
MAE [24] ViT-L 307M 1600 1.7 2720 85.9
MaskFeat [57] ViT-B 86M 1600 3.9 6240 84.0
CAE [11] ViT-B 86M 800 2.8 2240 83.6
LoMaR† [8] ViT-B 86M 1600 1.4 2240 84.1
data2Vec† [1] ViT-B 86M 800 3.0 2400 84.2
PeCo [17] ViT-B 86M 800 - - 84.5
LocalMIM-HOG ViT-B 86M 100 0.7 70 83.3
LocalMIM-HOG ViT-B 86M 1600 0.7 1120 84.0
LocalMIM-HOG ViT-L 307M 800 1.0 800 85.8
SimMIM192 [60] Swin-B 88M 800 1.8 1440 84.0
SimMIM192 [60] Swin-L 197M 800 3.0 2400 85.4
GreenMIM [31] Swin-B 88M 800 0.8 640 83.7
GreenMIM [31] Swin-L 197M 800 1.4 1120 85.1
LocalMIM-Pixel Swin-B 88M 100 1.0 100 83.7
LocalMIM-HOG Swin-B 88M 100 1.1 110 83.8
LocalMIM-Pixel Swin-B 88M 400 1.0 400 84.0
LocalMIM-HOG Swin-B 88M 400 1.1 440 84.1
LocalMIM-HOG Swin-L 197M 800 1.6 1280 85.6

Table 1. Top-1 fine-tuning accuracy on ImageNet-1K. All models are pre-trained and fine-tuned under 224 × 224 resolution except that
SimMIM192 uses 192× 192 resolution for pre-training. † means using the relative positional encoding.

predicts the supervisions of same scale. In fact, the lower
and upper layers expect to learning low-level and high-level
information respectively [20, 44], so it is not appropriate to
use the single-scale supervisions to guide multiple local lay-
ers, even for the columnar architectures with feature maps
of the same scale at all layers. To this end, we make the
lower layers to reconstruct fine-scale supervisions and the
upper ones to reconstruct coarse-scale supervisions. Spe-
cially, for the pyramidal architectures which already hard-
code the multi-scale property to the features by setting their
spatial sizes, we use the supervisions with same scale as the
feature maps at the chosen layers for compatibility.

The decoding process under a specific scale is illustrated
in Fig. 2 (b). The decoder consists of three parts: Trans-
former blocks for reasoning, (optional) Deconvolution/Pool
for rescaling and Multilayer perceptron for prediction. Con-
cretely, based on the encoded visible patches zlv from l-th
layer and the mask tokens {el[M]|m

l
i = 1}, a decoder out-

puts prediction ŷl that has the same scale as feature map
zlv . When the supervision yl has different scale with the
feature map zlv (e.g., in the columnar architectures), the de-

coded prediction can not match the supervision. To this
end, we use the deconvolution/pool operations to rescale
the prediction ŷl for matching the supervision yl. For ex-
ample, we can rescale the 14 × 14 prediction to the scale
of 56 × 56 with twice deconvolution operations or to the
scale of 7 × 7 with average pool. To avoid excessive com-
putational overhead, we use tiny decoders containing one
Transformer block with small embedding dimension.

The training loss is the weighted summation of the re-
construction losses at the chosen layers

LLocalMIM = −
∑
l∈I

wl ·
Nl∑
i=1

ml
i · lnP (yli|ŷli) (2)

where I is the set of chosen layers, wl is the coefficient
of each local loss, and mask ml is calculated by up/down-
sampling the initial mask m. These local losses guide the
patches at multiple chosen layers to conduct semantic inter-
actions under different scales, which not only accelerates
the learning of multiple layers but also facilitates multi-
scale semantical understanding to the input. As shown in
Fig. 3, compared with existing models, our LocalMIM has
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Model PT Epoch PT Hours mIoU

Supervised - - 47.4
MoCo v3 [12] 300 - 47.3
BEiT [2] 800 1920 47.1
MAE [24] 1600 1760 48.1
MaskFeat [57] 1600 6240 48.8
PeCo [17] 800 - 48.5
CAE [11] 800 2240 48.8
LocalMIM-HOG 1600 1120 49.5

Table 2. Semantic segmentation on ADE20K using UperNet with
ViT-B backbone. Our LocalMIM achieves better results than pre-
vious MIM models with less pre-training duration.

larger NMI values at lower layers, which means the atten-
tion maps depend more strongly on the query patches.

4. Experiments

In this section, we first evaluate our LocalMIM model on
classification, detection and segmentation tasks, and then
provide some ablation studies for deep understanding.

4.1. Classification on ImageNet-1K

Settings. Both pre-training and fine-tuning are conducted
on ImageNet-1K [48] dataset under the 224 × 224 reso-
lution. We mainly examine two representative architec-
tures, columnar ViT [18] and pyramidal Swin [39]. The
input images are patchified with patch size p = 16 for ViT
and p = 4 for Swin, and the obtained patches are ran-
domly masked with ratio r = 0.75 by default. We use
both HOG feature [57] and normalized pixels [24] as the
supervision signals. For Swin, we introduce the reconstruc-
tion task after each stage and the supervision signals have
the same scale with the output feature maps, e.g., the cho-
sen layers I = {2, 4, 22, 24} and the scales of supervi-
sion are {282, 142, 72, 72} on Swin-B. Each decoder con-
tains one transformer block with the embedding dimension
of 128 and 4 attention heads. For ViT, the chosen layers
I = {2, 4, 4 + n, 6 + n}, e.g., n = 6 on ViT-B and n = 18
on ViT-L. The scales of supervision are {562, 282, 142, 72}.
Each decoder contains one transformer block with the em-
bedding dimension of 256 and 8 attention heads. The pre-
training and fine-tuning schedules mostly follow [24, 31],
and more detailed settings can be found in Appendix C.

Results. We compare our LocalMIM with existing MIM
models and examine both pre-training efficiency and top-1
fine-tuning accuracy on ImageNet-1K. The results are pro-
vided in Fig. 1 and Table 1. For fair comparison, we es-
timate the pre-training duration of each model on the same
machine with one Tesla V100-32G GPU, CUDA 10.2 and
Pytorch 1.8. We report the running time on single GPU,

Model PT Epoch PT Hours APb APm

Supervised 300 840 48.5 43.2
SimMIM192 [60] 800 1440 50.4 44.4
GreenMIM [31] 800 640 50.0 44.1
LocalMIM-HOG 400 440 50.7 44.9

Table 3. Object detection and instance segmentation on COCO.
We fine-tune Mask R-CNN end-to-end with Swin-B backbone.

denoted as ‘GPU Hours’, see Appendix B for more de-
tails. On ViT-B, LocalMIM achieves the best results of
MAE [24] and MaskFeat [57] with 3.1× and 5.6× accel-
eration respectively. On Swin-B, LocalMIM achieves those
of SimMIM192 [60] and GreenMIM [31] with 3.6× and
6.4× acceleration respectively. In terms of final top-1 fine-
tuning accuracy, LocalMIM achieves 84.0% with ViT-B and
84.1% with Swin-B. Compared with previous best results,
LocalMIM achieves comparable performance with signifi-
cantly less pre-training duration. Note that PeCo [17] uses
more advanced feature descriptor, a pre-trained codebook,
which introduces additional pre-training burden. Besides,
on Swin-B, with 100 epochs pre-training and 100 epochs
supervised fine-tuning LocalMIM achieves 83.8% top-1 ac-
curacy and takes about 350 GPU Hours, while 300 epochs
supervised training from scratch only achieves 83.5% top-1
accuracy and takes about 720 GPU Hours. This means even
for the high-level classification task, self-supervision learn-
ing is more efficient and effective than supervised learning.
Similar results can also be found on ViT.

4.2. Downstream tasks

We transfer our pre-trained backbone to semantic seg-
mentation on ADE20K [66] and object detection and seg-
mentation on COCO [37].

Semantic segmentation on ADE20K. We conduct seman-
tic segmentation on ADE20K using UperNet [58] and fol-
lowing the code in [2, 24]. See Appendix C for fine-tuning
details. The results are shown in Table 2. With signif-
icantly less computation burden, LocalMIM outperforms
the state-of-the-art result by 0.7. Besides, LocalMIM has
the same top-1 fine-tuning accuracy with MaskFeat [57] on
ImageNet-1K, but has better semantic segmentation perfor-
mance, which means our local multi-scale reconstruction
facilitates the learning of multi-scale semantic knowledge.

Object detection and instance segmentation on COCO.
We fine-tune Mask R-CNN [26] on COCO with Swin-B
backbone. Following [31], we also use the code base and
3× fine-tuning schedule from the supervised Swin, where
the model is fine-tuned for 36 epochs. See Appendix C for
fine-tuning details. We report box AP (APb) for object de-
tection and mask AP (APm) for instance segmentation. The
results are shown in Table 3. With no labeling burden, our
LocalMIM outperforms supervised pre-training by 2.2 APb
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target ViT-B Swin-B
baselines 82.9 83.2
Pixels 83.0 83.7
HOG 83.3 83.8

(a) Reconstruction target. HOG is more suit-
able as multi-scale supervisions than pixels.

ratio ViT-B Swin-B
0.40 83.2 83.7
0.60 83.1 83.7
0.75 83.3 83.8
0.90 83.0 83.5

(b) Mask ratio. Masking 75% patches works
the best for both ViT and Swin.

decoder ViT-B Swin-B
512D - 16H 83.3 (1.0h) 83.8 (1.6h)
256D - 8H 83.3 (0.7h) 83.7 (1.3h)
128D - 4H 83.2 (0.6h) 83.8 (1.1h)

(c) Decoder design. A tiny decoder performs
as well as the larger one but is more efficient.

locations backbone acc
GreenMIM Swin-B 83.2
[24]

Swin-B

83.3
[22, 24] 83.4
[4, 22, 24] 83.6
[2, 4, 22, 24] 83.8
fusion 83.5

(d) Locations for Swin. Applying reconstruc-
tions at all stages mostly accelerates learning.

locations backbone acc
MAE ViT-B 82.9
[12]

ViT-B

83.0
[3, 6, 9, 12] 83.1
[2, 4, 10, 12] 83.3
[1, 2, 11, 12] 82.9

(e) Locations for ViT. The chosen layers for
local losses obviously affect performance.

scales backbone acc
MAE ViT-B 82.9
[142, 142, 142, 142]

ViT-B

83.0
[282, 142, 72, 72] 83.2
[562, 282, 142, 72] 83.3
[72, 142, 282, 562] 83.1

(f) Scales for ViT. Using the supervisions from
fine-scale to coarse-scale works the best.

Table 4. Ablation studies with ViT-B and Swin-B on ImageNet-1K. We report the top-1 fine-tuning accuracy (%) and the default setting
is: the reconstruction target is HOG feature, the mask ratio is 75%, the decoder contains one Transformer block with dimension 256 and 8
heads for ViT and dimension 128 and 4 heads for Swin, the local reconstructions are applied at all stages of Swin and [2, 4, 10, 12]-th layer
of ViT, the scales of supervision are [282, 142, 72, 72] for Swin and [562, 282, 142, 72] for ViT, and the pre-training length is 100 epochs.

and 1.7 APm. Compared to SimMIM192 and GreenMIM,
our LocalMIM achieves +0.3 and +0.7 gain respectively
for detection, and +0.5 and +0.8 gain for segmentation
with significantly less pre-training duration.

4.3. Ablation studies

We ablate our LocalMIM using the default setting in Ta-
ble 4. MAE [24] and GreenMIM [31] are our main base-
lines on ViT and Swin respectively, since we all adopt the
asymmetric encoder-decoder strategy.

Reconstruction target. We examine two types of signal as
supervisions: HOG feature [57] and normalized pixel [24],
and the results are shown in Table 4a. HOG feature is more
suitable as multi-scale supervisions than normalized pixel
on both ViT and Swin, since it contains more refined seman-
tic information. Compared to the columnar ViT with single-
scale feature maps, our multi-scale supervisions achieve
more improvement on the pyramidal Swin. Since we need
to rescale the predictions in the columnar architectures, it
is harder to guide the learning of multi-scale information,
e.g., we need more information-refined signals (HOG) and
obtain relatively less improvement.

Mask ratio. We explore different mask ratios, ranging from
0.4 to 0.9, and the results are provided in Table 4b. Similar
to [24, 31], our LocalMIM is robust to the mask ratio from
0.4 to 0.75, and excessively large one (0.9) harms the per-
formance since it over-complicates the reconstruction tasks.

Decoder design. As shown in [24, 31], a small single-
block decoder can achieve the similar fine-tuning accuracy
to the heavier one with multiple blocks. However, since
we need to use the decoder for each reconstruction task to
process the signals of specified scale, their decoder which

has the embedding dimension of 512 and 16 attention heads
is still heavy. To this end, we explore whether a smaller
decoder can still handle the local reconstruction tasks for
learning good representations. One Transformer block is
the minimal requirement to propagate information from vis-
ible patches to mask tokens, so we still use one Transformer
block but narrow the embedding dimension and reduce the
number of attention heads. The results (top-1 fine-tuning
accuracy and GPU Hours per epoch) are shown in Table 4c,
where ‘dD - hH’ represents the decoder with the embed-
ding dimension of d and h attention heads. Surprisingly, a
tiny decoder can achieve the same even better fine-tuning
performance, but is significantly more efficient.

Locations for local reconstructions. An important design
of our LocalMIM is the locations in the encoder where we
introduce local reconstructions. Many pyramidal architec-
tures like Swin already divide the entire backbone into mul-
tiple stages, so we introduce multi-scale reconstructions at
their output locations. From the last stage, we gradually in-
clude the lower stages and the results are shown in Table 4d.
Note that the 2-th, 4-th, 22-th and 24-th layer correspond to
the output location of the four stages respectively. We also
provide the result of fusion method [20] which fuses the
output features from each stage for reconstruction. As we
can see, introducing reconstructions at local stages can ac-
celerate representation learning, and applying to all stages
works the best. Our LocalMIM also outperforms the fusion
method which only uses the single-scale reconstruction, and
this verifies the importance of multi-scale reconstructions.
Further, for the columnar ViT, we follow the experience
from Swin and also select four local layers. Concretely, we
consider the uniform division [3, 6, 9, 12], Swin-style divi-
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2-th 4-th 12-th10-thInput

Figure 4. Visualization of the attention maps for different query
points, marked with red boxes. LocalMIM can distinguish seman-
tical regions using self-attention mechanism.

sion [2, 4, 10, 12] and a extreme division [1, 2, 11, 12]. The
results are shown in Table 4e. The performance on colum-
nar ViT is sensitive to the chosen local layers, and the Swin-
style division [2, 4, 4 + n, 6 + n] works the best.

Scales of supervisions. Since the pyramidal architectures
hard-code the multi-scale property of the feature maps, we
directly use the supervisions of same scale as the feature
maps for compatibility, i.e., we use [282, 142, 72, 72] for
Swin. For columnar ViT, we consider single-scale supervi-
sions [142, 142, 142, 142], fine-to-coarse multi-scale super-
visions [282, 142, 72, 72] and [562, 282, 142, 72], and coarse-
to-fine multi-scale supervisions [72, 142, 282, 562]. The re-
sults are shown in Table 4f. The multi-scale supervisions
achieve better fine-tuning accuracy than the single-scale
ones, which means the multiple local layers require the su-
pervision of different scales. Further, the fine-to-coarse su-
pervisions outperform the coarse-to-fine ones, which is con-
sistent with the design priors for visual architectures [39]
and biological visual processing [33].

Analysis of self-attention mechanism. To qualitatively
illustrate the behavior of self-attention mechanism in Lo-
calMIM, we visualize the attention maps for different query
positions within an image, as shown in Fig. 4. We use each
chosen patch as query and show the patches it attends to.

model backbone GPU Hours/Ep. acc
LocalMIM ViT-B 0.7 83.3
w/ isolated grad 0.7 83.0
LocalMIM Swin-B 1.1 83.8
w/ isolated grad 1.1 83.7

Table 5. Training LocalMIM with isolated gradients achieves sim-
ilar performance with global back-propagation.

We select the attention maps at 2-th, 4-th, 10-th and 12-
th layers of a pre-trained ViT-B/16 backbone to show their
changes during forward inference. For object-centric im-
ages, LocalMIM can distinguish the foreground object from
the background. For more complex multi-object images,
LocalMIM can effectively separate different objects with-
out any task-specific supervision, which means the attention
maps are query-adaptive. On the other hand, the patches
at lower layers typically more focus on their neighboring
regions and capture low-level information, while those at
upper layers attend to a wide range of semantically related
regions and capture high-level shape information.

Gradient-isolated training. Inspired by locally supervised
learning [42, 43], we remove global back-propagation and
stop the gradients after each chosen local layer used for re-
construction. The entire backbone is thus divided into mul-
tiple gradient-isolated parts. The results are shown in Table
5. Surprisingly, the gradient-isolated training achieves sim-
ilar performance to global back-propagation, which further
verifies the effectiveness of our multi-scale reconstructions
for guiding the local layers. It even requires no gradient
information from the upper layers. This observation also
shows the promise of our local multi-scale reconstruction
for the decoupled training of neural networks, which allows
for training very deep networks without memory concern
and reduces explosive or vanishing gradients.

5. Conclusions
We present a novel and efficient pretext task, local multi-

scale reconstruction, where the lower layers and upper lay-
ers reconstruct the fine-scale and coarse-scale supervisions
from the input respectively. We obtain the multi-scale su-
pervisions by first dividing the input under different scales
and then extracting supervisions with appropriate feature
descriptors. Our model needs no extra pre-trained code-
book and no costly forward inference of teacher networks
during pre-training. The asymmetric encoder-decoder strat-
egy with tiny encoders also have small computational bur-
den, our model thus can be trained quickly. The novel pre-
text task further accelerates the representation learning, es-
pecially for the pyramidal architectures. All these designs
allow our model to achieve comparable performance to ex-
isting models but with significantly less pre-training burden.
The gradient-isolated training also verifies the effectiveness
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of our novel task design in guiding the local layers.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650–9660, 2021. 5

[8] Jun Chen, Ming Hu, Boyang Li, and Mohamed Elho-
seiny. Efficient self-supervised vision pretraining with local
masked reconstruction. arXiv preprint arXiv:2206.00790,
2022. 1, 2, 5

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 3

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2

[11] Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin,
Shentong Mo, Yunhao Wang, Shumin Han, Ping Luo,
Gang Zeng, and Jingdong Wang. Context autoencoder
for self-supervised representation learning. arXiv preprint
arXiv:2202.03026, 2022. 5, 6

[12] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9640–9649, 2021. 5, 6

[13] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christo-
pher D. Manning. ELECTRA: pre-training text encoders as
discriminators rather than generators. In ICLR, 2020. 13

[14] Francis Crick. The recent excitement about neural networks.
Nature, 337(6203):129–132, 1989. 3

[15] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 13

[16] Yang Dan and Mu-ming Poo. Spike timing-dependent plas-
ticity of neural circuits. Neuron, 44(1):23–30, 2004. 3

[17] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen,
Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, and
Nenghai Yu. Peco: Perceptual codebook for bert pre-training
of vision transformers. arXiv preprint arXiv:2111.12710,
2021. 1, 2, 4, 5, 6

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1, 2, 3, 6, 12, 13

[19] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 6824–6835, 2021. 3

[20] Peng Gao, Teli Ma, Hongsheng Li, Jifeng Dai, and Yu Qiao.
Convmae: Masked convolution meets masked autoencoders.
arXiv preprint arXiv:2205.03892, 2022. 2, 3, 5, 7, 12

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 13

[22] Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Yunhe Wang,
and Chang Xu. Fastmim: Expediting masked image model-
ing pre-training for vision. arXiv preprint arXiv:2212.06593,
2022. 1

[23] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. Advances
in Neural Information Processing Systems, 34:15908–15919,
2021. 2

[24] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 1, 2, 3, 4, 5, 6, 7, 13

[25] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 2

[26] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international

9



conference on computer vision, pages 2961–2969, 2017. 3,
6, 14

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 12

[28] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No-
jun Kwak, and Jin Young Choi. A comprehensive overhaul
of feature distillation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1921–1930,
2019. 3

[29] Jeremy Howard and Sebastian Ruder. Universal language
model fine-tuning for text classification. In ACL, 2018. 1, 4

[30] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European conference on computer vision, pages 646–661.
Springer, 2016. 13

[31] Lang Huang, Shan You, Mingkai Zheng, Fei Wang, Chen
Qian, and Toshihiko Yamasaki. Green hierarchical vision
transformer for masked image modeling. arXiv preprint
arXiv:2205.13515, 2022. 1, 2, 3, 4, 5, 6, 7, 13, 14

[32] Huawei. Mindspore. https://www.mindspore.cn/,
2020. 9

[33] DH Hubel and TN Wiesel. Receptive fields of optic nerve
fibres in the spider monkey. The Journal of physiology,
154(3):572, 1960. 3, 8

[34] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019. 1

[35] Xiang Li, Wenhai Wang, Lingfeng Yang, and Jian Yang.
Uniform masking: Enabling mae pre-training for pyramid-
based vision transformers with locality. arXiv preprint
arXiv:2205.10063, 2022. 1, 2, 4

[36] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 14

[37] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6, 14

[38] Hao Liu, Xinghua Jiang, Xin Li, Antai Guo, Deqiang Jiang,
and Bo Ren. The devil is in the frequency: Geminated gestalt
autoencoder for self-supervised visual pre-training. arXiv
preprint arXiv:2204.08227, 2022. 1, 2

[39] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 1, 2, 3, 6, 8,
12, 14

[40] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with warm restarts. In ICLR, 2017. 13

[41] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 13

[42] Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting
an end to end-to-end: Gradient-isolated learning of represen-
tations. Advances in neural information processing systems,
32, 2019. 2, 8

[43] Arild Nøkland and Lars Hiller Eidnes. Training neural net-
works with local error signals. In International conference
on machine learning, pages 4839–4850. PMLR, 2019. 2, 8

[44] Namuk Park and Songkuk Kim. How do vision transformers
work? In International Conference on Learning Represen-
tations, 2022. 2, 5

[45] Myeongjang Pyeon, Jihwan Moon, Taeyoung Hahn, and
Gunhee Kim. Sedona: Search for decoupled neural networks
toward greedy block-wise learning. In International Confer-
ence on Learning Representations, 2021. 2

[46] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 3

[47] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. In ICLR, 2015. 3

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 6

[49] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a
knowledge reuse framework for combining multiple parti-
tions. Journal of machine learning research, 3(Dec):583–
617, 2002. 4, 12

[50] Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and
Zhihong Deng. Fast structured decoding for sequence mod-
els. Advances in Neural Information Processing Systems, 32,
2019. 2

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016. 13

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 12

[53] Haoqing Wang and Zhi-Hong Deng. Cross-domain few-shot
classification via adversarial task augmentation. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pages 1075–
1081. International Joint Conferences on Artificial Intelli-
gence Organization, 2021. Main Track. 3

[54] Haoqing Wang, Xun Guo, Zhi-Hong Deng, and Yan Lu.
Rethinking minimal sufficient representation in contrastive
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16041–
16050, 2022. 2

[55] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense

10

https://www.mindspore.cn/


prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021. 1, 2, 3

[56] Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang.
Revisiting locally supervised learning: an alternative to end-
to-end training. In International Conference on Learning
Representations, 2021. 2

[57] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan
Yuille, and Christoph Feichtenhofer. Masked feature predic-
tion for self-supervised visual pre-training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14668–14678, 2022. 1, 2, 4, 5, 6,
7

[58] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European conference on computer
vision (ECCV), pages 418–434, 2018. 6, 13

[59] Jiahao Xie, Wei Li, Xiaohang Zhan, Ziwei Liu, Yew Soon
Ong, and Chen Change Loy. Masked frequency model-
ing for self-supervised visual pre-training. arXiv preprint
arXiv:2206.07706, 2022. 1, 2

[60] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653–9663, 2022. 1, 2, 4, 5, 6

[61] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10819–10829, 2022. 12

[62] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 13

[63] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
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single-scale multi-scale

global 83.0 82.8
local 83.0 83.3

(a) ViT-B

single-scale multi-scale

global 83.3 82.9
local 83.6 83.8

(b) Swin-B

Table 6. Decoupling local reconstruction and multi-scale supervi-
sions. We report the top-1 fine-tuning accuracy on ImageNet-1K.

A. More experiments
In this section, we provide more experiments to support

our work.

A.1. Decoupling local and multi-scale

To effectively guide the local layers, we propose multi-
scale supervisions for multiple local reconstruction tasks.
Here we decouple the local (or global) reconstruction and
multi-scale (or single-scale) supervisions to further under-
stand their relations. For global multi-scale reconstruction,
we conduct at the top layer of encoder and use separate de-
coders to predict multiple supervisions of different scales.
When the predictions have different scale with supervisions,
we use deconvolution/pooling options to rescale them for
matching supervisions. The results are shown in Table 6 and
the pre-training length is 100 epochs. As we can see, global
reconstruction prefers to single-scale supervisions, and us-
ing the supervisions of different scales to guide the same
layer could make confusion. Conversely, local reconstruc-
tion prefers to multi-scale supervisions, and multiple local
layers expect to learn the information of different scales.
Local reconstruction can achieve better performance than
the global one in most cases, and the gain increases when
using multi-scale supervisions.

A.2. Comparison with feature fusion

To explicitly guide the lower layers, we conduct recon-
struction task at multiple chosen local layers. The other
method is fusing the features of multiple local layers to the
top layer for global reconstruction [20]. It uses single-scale
supervision for avoiding confusion. We compare our local
reconstruction with this feature fusion method, and the re-
sults are shown in Table 7. Local reconstruction achieves
consistently better performance than feature fusion on both
columnar ViT [18] and pyramidal Swin [39]. For further
exploration, we examine the gradient norm of each layer in
the encoder during training process. Concretely, we load
the checkpoint (state) of the median epoch in a complete
training schedule and then calculate the gradient norm of
parameters in each layer under this state. The results are
shown in Fig. 5. For other middle epochs, we observe the
same results. The lower layers have larger gradient norm
than the upper ones due to the skip-connections in vision
transformers. The skip-connections allow the lower layers

method acc

global 83.0
global with fusion 83.0

local 83.3

(a) ViT-B

method acc

global 83.3
global with fusion 83.5

local 83.8

(b) Swin-B

Table 7. Top-1 fine-tuning accuracy on ImageNet-1K. We com-
pare the global reconstruction, the global reconstruction with fea-
ture fusion and our local reconstruction.

to learn more quickly than the upper ones, which may be
one reason for its significant effectiveness in various archi-
tectures [27,52,61]. Our local reconstruction can strengthen
this characteristic and thus obtain better performance. Fea-
ture fusion essentially has the similar effect with the skip-
connections. Besides, another advantage of our local con-
struction is that it is compatible with multi-scale supervi-
sions and thus can take advantage of richer information.

A.3. Query-adaptive attention

In the main text, we use Normalized Mutual Informa-
tion (NMI) [49] between query and key patches to examine
how much the attention map depends on the query patch.
Here we use another metric, the Kullback-Leibler diver-
gence between the attention distributions of different query
patches. Intuitively, when the attention map strongly de-
pends on the query patch, the attention distributions of a
pair of query patches should have large KL divergence. We
calculate the average on all pairs of query patches at each
layer and the results are shown in Fig. 6. As we expect,
existing MIM models with global loss have small KL diver-
gence at lower layers, which means the patches there have
less query-adaptive attention. Relatively, the lower layers in
our LocalMIM have larger KL divergence and the attention
maps depend more strongly on the query patches.

B. GPU Hours

‘GPU Hours’ denotes the running time on single Tesla
V100-32G GPU. For fair comparison, we estimate that of
each model at the same machine with one Tesla V100-32G
GPU, CUDA 10.2 and PyTorch 1.8. We pre-train each
model for 10 epochs using its official released codes and de-
fault hyper-parameters, and then calculate the average run-
ning time per epoch. We find that each epoch takes simi-
lar time with each other during estimation, so pre-training
10 epochs is enough to estimate the GPU Hours per epoch.
The batch size is an important factor that affects the run-
ning time, and we choose it from {32, 48, 64, 128, 256} to
take full advantage of GPU memory and computing capa-
bility. This estimation method avoids the interference of the
communication time among multiple GPUs.
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(a) ViT-B
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Figure 5. Gradient norm of each layer in the encoder. We compare the global reconstruction, the global reconstruction with feature fusion
and our local reconstruction, which are denoted as ‘Global’, ‘Fusion’ and ‘Local’ respectively.
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Figure 6. The KL divergence between attention distributions of
different query patches at each layer of a pre-trained ViT-B back-
bone, averaged on all pairs of query patches.

C. Implementation details

For ViT [18], we use the standard architecture with the
sine-cosine positional embeddings and do not use relative
positional encoding or layer scaling. For HOG feature, we
set the number of orientation bins #bins = 18 and the cell
size is the same as the divided regions. We set the same
weight to each local loss for simplicity. The pre-training
and fine-tuning schedules mostly follow [24, 31].

Pre-training. The default setting is shown in Table 8. We
use the simple data augmentation and do not use drop path
or gradient clip. We use the linear learning rate scaling rule
[21]: lr = base lr × batch size/256. The warmup epoch
[21] is set to 10 for pre-training 100 epochs, 40 for pre-
training 400, 800 and 1600 epochs.

Fine-tuning on ImageNet-1K. The default fine-tuning set-
ting is shown in Table 9. Most of the hyper-parameters are
shared, except the peak learning rate, layer-wise learning
rate decay and drop path rate, which are influenced by the

config ViT Swin
optimizer AdamW [41]
base learning rate 2e−4 1e−4

weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 2048 (B) / 4096 (L)
learning rate schedule cosine decay [40]
augmentation RandomResizedCrop
input resolution 224× 224

Table 8. Pre-training setting on ImageNet-1K.

config ViT Swin
ViT-B ViT-L Swin-B Swin-L

optimizer AdamW
peak learning rate {2e−3, 3e−3, 4e−3} {3e−3, 4e−3, 5e−3}
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay [13] {0.65, 0.75} {0.80, 0.90}
batch size 1024 (B) / 4096 (L)
learning rate schedule cosine decay
fine-tuning epochs 100 50 100 100
warmup epochs 20 5 20 20
drop path [30] 0.1 0.2 0.1 0.3
augmentation RandAug (9, 0.5) [15]
label smoothing [51] 0.1
mixup [63] 0.8
cutmix [62] 1.0
input resolution 224× 224

Table 9. Fine-tuning setting on ImageNet-1K.

backbones and the number of pre-training epochs.

Semantic segmentation on ADE20K. We use UperNet
[58] with ViT-B backbone and follow the semantic segmen-
tation code of [2, 24]. Concretely, we fine-tune end-to-end
for 160K iterations using AdamW optimizer with the peak
learning rate of 4e−4, weight decay of 0.05 and batch size
of 16. The learning rate warmups with 1500 iterations and
then decays with linear strategy. The model is trained with
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input resolution of 512 × 512 and uses bilinear positional
embedding interpolate. We choose the out indices of fea-
ture maps as [2, 4, 10, 12] and use FPN [36] to rescale them.

Object detection and segmentation on COCO. We fine-
tune Mask R-CNN [26] on COCO [37] with Swin-B back-
bone. Following [31], we also use the code base and sched-
ule from [39]. Concretely, the model is fine-tuned on COCO
2017 train split and evaluated on 2017 val split. We adopt
the 3× fine-tuning schedule which trains the model for 36
epochs in total and decays the learning rate at the 27-th and
33-th epoch by a factor of 10. We use AdamW optimizer
with the learning rate of 1e−4 and weight decay of 0.05.
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