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Abstract

For the Vvisible-infrared person re-identification
(VIReID) task, one of the major challenges is the
modality gaps between visible (VIS) and infrared (IR)
images. However, the training samples are usually lim-
ited, while the modality gaps are too large, which leads
that the existing methods cannot effectively mine diverse
cross-modality clues. To handle this limitation, we propose
a novel augmentation network in the embedding space,
called diverse embedding expansion network (DEEN).
The proposed DEEN can effectively generate diverse em-
beddings to learn the informative feature representations
and reduce the modality discrepancy between the VIS
and IR images. Moreover, the VIRelD model may be
seriously affected by drastic illumination changes, while
all the existing VIRelD datasets are captured under suffi-
cient illumination without significant light changes. Thus,
we provide a low-light cross-modality (LLCM) dataset,
which contains 46,767 bounding boxes of 1,064 identities
captured by 9 RGB/IR cameras. Extensive experiments
on the SYSU-MMOI, RegDB and LLCM datasets show
the superiority of the proposed DEEN over several other
state-of-the-art methods. The code and dataset are released
at: https://github.com/ZYK100/LLCM

1. Introduction

Person re-identification (ReID) aims to match a given
person with gallery images captured by different cameras
[3,9,52]. Most existing ReID methods [22, 24, 30, 38, 50]
only focus on matching RGB images captured by visible
cameras at daytime. However, these methods may fail
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Figure 1. Motivation of the proposed DEEN, which aims to gen-
erate diverse embeddings to make the network focus on learning
with the informative feature representations to reduce the modality
gaps between the VIS and IR images.

to achieve encouraging results when visible cameras can-
not effectively capture person’s information under complex
conditions, such as at night or low-light environments. To
solve this problem, some visible (VIS)-infrared (IR) per-
son re-identification (VIReID) methods [15,39,41,48] have
been proposed to retrieve the VIS (IR) images according to
the corresponding IR (VIS) images.

Compared with the widely studied person RelD task,
the VIReID task is much more challenging due to the ad-
ditional cross-modality discrepancy between the VIS and
IR images [33,45,49,51]. Typically, there are two popu-
lar types of methods to reduce this modality discrepancy.
One type is the feature-level methods [5, 1 1, 16,35,40,42],
which try to project the VIS and IR features into a common
embedding space, where the modality discrepancy can be
minimized. However, the large modality discrepancy makes
these methods difficult to project the cross-modality images
into a common feature space directly. The other type is the
image-level methods [4,28,29,32], which aim to reduce the
modality discrepancy by translating an IR (or VIS) image
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Figure 2. Comparison of person images on the SYSU-MMO1 (1st
row), RegDB (2nd row), and LLCM (3rd-5th rows) datasets. Each
row shows four VIS images and four IR images of two identities.
It is obvious that our LLCM contains a more challenging and real-
istic VIReID environment.

into its VIS (or IR) counterpart by using the GANs [&]. De-
spite their success in reducing the modality gaps, the gen-
erated cross-modality images are usually accompanied by
some noises due to the lack of the VIS-IR image pairs.

In this paper, we propose a novel augmentation network
in the embedding space for the VIRelD task, called diverse
embedding expansion network (DEEN), which consists of
a diverse embedding expansion (DEE) module and a multi-
stage feature aggregation (MFA) block. The proposed DEE
module can generate more embeddings followed by a novel
center-guided pair mining (CPM) loss to drive the DEE
module to focus on learning with the diverse feature rep-
resentations. As illustrated in Fig. 1, by exploiting the gen-
erated embeddings with diverse information, the proposed
DEE module can achieve the performance improvement by
using more diverse embeddings. The proposed MFA block
can aggregate the features from different stages for mining
potential channel-wise and spatial feature representations,
which increases the network’s capacity for mining different-
level diverse embeddings.

Moreover, we observe that the existing VIReID datasets
are captured under the environments with sufficient illumi-
nation. However, the performance of the VIReID methods
may be seriously affected by drastic illumination changes or
low illuminations. Therefore, we collect a challenging low-
light cross-modality dataset, called LLCM dataset, which is
shown in Fig. 2. Compared with the other VIReID datasets,
the LLCM dataset contains a larger number of identities and
images captured under low-light scenes, which introduces
more challenges to the real-world VIReID task.

In summary, the main contributions are as follows:

e We propose a novel diverse embedding expansion
(DEE) module with a center-guided pair mining (CPM) loss
to generate more embeddings for learning the diverse fea-

ture representations. We are the first to augment the embed-
dings in the embedding space in VIReID. Besides, we also
propose an effective multistage feature aggregation (MFA)
block to mine potential channel-wise and spatial feature
representations.

e With the incorporation of DEE, CPM loss and MFA
into an end-to-end learning framework, we propose an
effective diverse embedding expansion network (DEEN),
which can effectively reduce the modality discrepancy be-
tween the VIS and IR images.

o We collect a low-light cross-modality (LLCM) dataset,
which contains 46,767 images of 1,064 identities captured
under the environments with illumination changes and low
illuminations. The LLCM dataset has more new and impor-
tant features, which can facilitate the research of VIReID
towards practical applications.

e Extensive experiments show that the proposed DEEN
outperforms the other state-of-the-art methods for the
VIReID task on three challenging datasets.

2. Related Work

Generally speaking, there are two main categories of
methods in VIReID: the image-level methods and the
feature-level methods.

The image-level VIReID methods try to transform one
modality into the other for reducing the modality discrep-
ancy between the VIS and IR images in the image space.
For this purpose, some GANs-based [4, 28, 29, 32] meth-
ods are proposed to perform identity-preserving person im-
age style transformation for aligning cross-modality images
and alleviating the problem of limited data. These meth-
ods often design complex generative models to align cross-
modality images. However, due to the lack of VIS-IR im-
age pairs, the generated images are unavoidably accompa-
nied by some noises. X-modality [14] and its variations
[34,49] apply a lightweight network to introduce an aux-
iliary middle modality to assist the cross-modality search
task. However, there is still a modality gap between this
middle modality and the VIS / IR modality.

The feature-level methods aim to find a modality-shared
and modality-specific feature space, where the modality
gaps can be minimized. For this purpose, MAUM [15]
tries to learn cross-modality metrics in two uni-directions
to further enhance them with memory-based augmentation.
RFM [25] introduces a cross-center loss to explore a more
compact intra-class distribution. DCLNet [23] encourages
the positive pixels with the same semantic information to
be close, while it simultaneously pushes the negative pixels
away. cmGAN [5] designs a cutting-edge discriminator to
learn discriminative representations from different modali-
ties. However, the large modality gaps between the VIS and
IR images make it difficult to project the cross-modality im-
ages into a common space directly [7, 18,21,26].
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Figure 3. The pipeline of the proposed network, which includes a DEE module and a MFA block. The DEE module can generate more
embeddings with a novel CPM loss to learn diverse feature representations. The MFA block can aggregate the embeddings from different
stages for mining diverse channel-wise and spatial feature representations.

3. Method
3.1. Model Architecture

Fig. 3 provides an overview of the proposed diverse
embedding expansion network (DEEN), which utilizes a
two-stream ResNet-50 network [12, 44] as the backbone.
The VIS-IR features are fed into the proposed diverse em-
bedding expansion (DEE) module to generate more em-
beddings. Then, a center-guided pair mining (CPM) loss
is proposed to make the generated embeddings as diverse
as possible for learning informative feature representations.
Besides, we incorporate an effective MFA block to aggre-
gate the features from different stages for mining diverse
channel-wise and spatial feature representations. During the
training stage, all the features before and after the batch nor-
malization (BN) layer are fed into different losses to jointly
optimize DEEN.

3.2. Diverse Embedding Expansion Module

The proposed DEE module is used to generate more em-
beddings to alleviate the problem of insufficient training
data by using a multi-branch convolutional generation struc-
ture. Specifically, for each branch of DEE, we firstly use
three 3 x 3 dilated convolutional layers ¢35, ©3. 5, ©3. 5
with different dilation ratios (1,2, 3) to reduce the number
of feature maps f to 1 /4 of its own size, and then we obtain
the feature maps by combining them into one feature map,
followed by a ReLU activation layer Fr. 1y to improve the
non-linear representation capability of the DEE. Then, an-
other convolutional layer 6; 1 with a kernel in size of 1 x 1
is applied to the obtained feature map to change its dimen-
sion as same as f. Thus, the generated embeddings f’, of the

i-th branch can be written as follows:

£ = 011 (Freru (033 (F) + 0353 (F) + 03x3()). (1)

Then, all the generated embeddings are concatenated to-
gether and used as the input to the next stage of the back-
bone network.

3.3. Center-Guided Pair Mining Loss

As we can see from the above operation, the DEE mod-

ule can only generate more embeddings using a multi-
branch convolutional block. However, this operation can-
not effectively obtain diverse embeddings. Thus, we ap-
ply the following three properties to constrain the generated
embeddings as diverse as possible to effectively reduce the
modality discrepancy between the VIS and IR images:
Property 1: The generated embeddings should be as di-
verse as possible to effectively learn the informative fea-
ture representations. This means that we need to push
away the distances between the generated embeddings and
the original embeddings to learn diverse features and mine
diverse cross-modality clues.
Property 2: The generated embeddings should facili-
tate reducing the modality discrepancy between the VIS
and IR images. This means that we need to pull close the
distances between the embeddings generated from the VIS
modality and the original IR embeddings. Similarly, we
also need to pull close the distances between the embed-
dings generated from the IR modality and the original VIS
embeddings.



VIS Embeddings Generated Embeddings IR Embeddings
® 3 DEE SO -j—:*“ DEE 7% 3
’ o BRI S Dbb oy \
» x {10 %O i S \
() 9 ‘. 00 o ’

<«— Pull close <«— Push away

Figure 4. Illustration of the proposed CPM loss for DEE.

Property 3: The intra-class distance should be less than
the inter-class one. By Property 2, it pushes close the
distance between the generated embeddings and the original
ones, which may cause the embeddings of different classes
to become close. Thus, it is necessary to keep the intra-class
distance less than the inter-class distance.

As shown in Fig. 4, for embeddings generated from the
VIS modality, the CPM loss can be formulated as follows:

Lt £, £,) = D, £]) —D(E,£57) — D, £)] 1, ()

where D(-, -) is the Euclidean distance between two embed-
dings. f, and f,, are the original embeddings from the VIS
and IR modalities, and f; . is the embeddings generated
from the ¢-th branch of the VIS modality. j,k are differ-
ent identities in a minibatch and [z]4 = maz(z,0). In Eq.
(2), the first term can pull the generated embeddings fj} 4 to-
wards the original IR’s embeddings f;, to reduce the modal-
ity discrepancy between f;7 and fZL. The second term can
push the generated embeddings f,; away from the VIS’s
embeddings f, to enable f,; to learn informative feature
representations. The third term can make the intra-class dis-
tance less than the inter-class distance.

Then, we use the embedding centers ¢, and ¢, of each
class to make the centers of generated embeddings ¢;,, and
cil . more discriminative, and introduce a margin term « to
balance the three terms in Eq. (2). Thus, for the embeddings
from VIS, the CPM loss is formulated as follows:

ﬁ(cmcn:czﬂr) = [D(Cﬁyc;’i) _D(Cgvcj;—{-) —D(C{,,Cﬁ) + ()é]+.
(3)

Similarly, for the class centers ¢, . of embeddings gener-
ated from IR, we have:

L(ev, n,¢ry) = [D(c],¢i}) — D(c),¢;%) —D(c), cp) + ol 4.

@

Thus, the final CPM loss can be formulated as follows:

Ecpn’L = E(Cv,cn,ci+) + E(cv7cn7ci+)- (5)

Besides, to ensure that the generated embeddings from
different branches can capture different informative feature

representations, we force these different embeddings gener-
ated by different branches orthogonal to minimize the over-
lapping elements. Therefore, the orthogonal loss can be for-
mulated as follows:

i—1 1
Lope =Y > (f771y), (6)

m=1n=m+1

where m and n are the m-th and n-th generated embeddings
from the original embeddings, respectively. The orthogonal
loss can enforce the generated embeddings to learn more
informative feature representations.

3.4. Multistage Feature Aggregation Block

Features aggregation of different levels has been demon-
strated to be helpful to semantic segmentation, classifica-
tion and detection task [1,54,55]. To aggregate the features
from different stages for mining diverse channel-wise and
spatial feature representations, we incorporate an effective
channel-spatial multistage feature aggregation (MFA) block
to aggregate multi-stage features inspired by [31].

Next, we elaborate on the detail of the MFA block, which
is shown in Fig. 3. Specifically, we consider two types of
source features for the channel-spatial aggregation block in
each stage of the backbone network: low-level feature maps
f; € RE>HixWi pefore the stage and high-level feature
maps f;, € RE»>*HnxWh after the stage, where C, W and
H denote the number of the channel, width and height of
features, respectively. First, we employ three 1x1 convolu-
tional layers ¥}, 1y, 4} to transform f into three compact

embeddings: ¢} (fy) , ¢y (f;) and ¢} (f;) . Then, we com-

pute the channel-wise similarity matrix M¢ € R¢ ¢ by
matrix multiplication followed by softmax:

M = Fsoftmax (ZD; (fh) X wi (fl)) (7)

Consequently, we implement the channel-wise multi-
stage feature aggregation by restoring the channel dimen-
sion by the matrix multiplication of v (f;) and M°. After
that, another 1 x 1 convolutional layer w€ is applied to trans-
form the size of the above feature maps to that of f;,. Finally,
we get the output by adding f}, to it by matrix addition:

£ = w (o (£) x M) + 1. ®)

After that, f; obtained from the above operations and the
low-level feature map f; are used to perform the spatial fea-
ture aggregation operation, which is similar to the channel-
wise multistage feature aggregation operation. Finally, we
get the MFA’s output as follows:

£, = w’ (¢ () x M®) + 1, ©)

where w?® and 1/)3 are two 1 x 1 convolutional layers, and
M? is the spatial similarity matrix.



Figure 5. The distribution of the LLCM’s images in the 2D space.
It can be seen that the images under different light conditions
present different styles, which further increases the modality dis-
crepancy between the VIS and IR images.

3.5. Multi-Loss Optimization

Besides the proposed L, and Lo+, we also combine
the cross-entropy loss L. [17] and the triplet loss L;,; [13]
to jointly optimize the network in an end-to-end manner by
minimizing the sum of these four losses Lytq;, Which can
be formulated as follows:

['total = Ece + l:tri + A1Acc;mn + )\QACort, (10)

where A\ and )\, are the coefficients to control the relative
importance of the loss terms.

4. LLCM Dataset
4.1. Dataset Description

In this paper, we collect a new challenging low-light
cross-modality dataset, called LLCM dataset. The LLCM
dataset utilizes a 9-camera network deployed in low-light
environments, which can capture the VIS images in day-
time and capture the IR images at night. For protecting
the personal privacy information, we utilize MTCNN [47]
to get the bounding boxes of persons’ faces and blur those
regions. We make sure that each annotated identity is cap-
tured by both the VIS and IR cameras. Some examples from
the LLCM dataset are shown in Fig. 2. As shown in Tab.
1, compared with the existing VIReID datasets, the LLCM
dataset has the following new and important features:

First, the images in the LLCM dataset are captured un-
der complex low-light environment for both the VIS and IR
modalities, which contains severe illumination changes and
is a common problem in the real scenes. As Fig. 2 and
Fig. 5 shown, the severe light conditions can change the
color of persons’ clothes and cause the loss of texture in-
formation of the clothes, which introduces great challenges
to VIRelID. Second, the LLCM dataset has a larger num-
ber of identities and bounding boxes. This dataset contains
46,767 bounding boxes of 1,064 identities, making it the

Datasets IDs Images  VIS/IR cam.  low-light
RegDB [19] 412 8,240 1/1 X
SYSU-MMOL1 [36] 491 38,271 4/2 X
LLCM 1,064 46,767 9/9 v

Table 1. Comparison between the LLCM and other two popular
VIRelD datasets.

largest VIReID dataset at present (see Tab 1). Third, the
LLCM dataset is collected in over 100 days from January
to April, and different climate conditions and cloth styles
are considered. Long-term data collection helps to study
the VIRelD task in different climates and clothing styles,
which increases the generalization of the VIReID model.

Besides, considering the real-world applications, the
LLCM dataset also contains many images that suffer from
various challenges, such as motion bluring, pose variation,
camera view changes, occlusion, low resolution and others.
All in all, the LLCM dataset is a challenging dataset for
the VIReID task, which can further facilitate the research
of VIReID towards practical applications.

4.2. Evaluation Protocol

We divide the LLCM dataset into a training set and a test-
ing set at a ratio about 2:1. The training set contains 30,921
bounding boxes of 713 identities (16,946 bounding boxes
are from the VIS modality and 13,975 bounding boxes are
from the IR modality), and the testing set contains 13,909
bounding boxes of 351 identities (8,680 bounding boxes are
from the VIS modality and 7,166 bounding boxes are from
the IR modality). Similar to the RegDB [19] dataset, both
the VIS to IR mode and the IR to VIS mode are used to
evaluate the performance of the VIReID models. During
the testing stage, for each camera, we randomly choose one
image from the images of each identity to form the gallery
set for evaluation the performance of the models. We re-
peat the above evaluation 10 times with random split of the
gallery set and report the average performance.

5. Experiments
5.1. Datasets

The SYSU-MMOI1 dataset [36] contains 491 identities
captured by 4 VIS cameras and 2 IR cameras, including the
All-Search and Indoor-Search modes. For the All-Search
mode, all the images captured by all the VIS cameras are
used as the gallery set. For the Indoor-Search mode, only
the images captured by two indoor VIS cameras are used
as the gallery set. The RegDB dataset [19] consists of 412
identities, and each identity has 10 VIS images and 10 IR
images captured by a pair of overlapping cameras.

5.2. Implementation Details

All the input images are firstly resized to 3 x 384 x 144,
and the random horizontal flip and random erasing [53]



SYSU-MMO1 RegDB

Methods All Search Indoor Search VIS to IR IR to VIS

R-1 R-10 R-20 mAP | R-1 R-10 R-20 mAP | R-1 R-10 R-20 mAP | R-1 R-10 R-20 mAP
BDTR [46] 17.0 554 72.0 19.7 - - - - 33.6 58.6 67.4 32.8 | 329 585 68.4 32.0
D2RL [32] 289  70.6 82.4 29.2 - - - - 434  66.1 76.3 44.1 - - - -
Hi-CMD [4] 349 71.6 - 35.9 - - - - 709  86.4 - 66.0 - - - -
JSTA-ReID [29] 38.1 80.7 89.9 369 | 43.8 86.2 94.2 529 | 48.1 - - 489 | 485 - - 49.3
AlignGAN [28] 424  85.0 93.7 40.7 | 459 87.6 94.4 543 | 579 53.6 | 56.3 - - 53.4

X-Modality [14] | 499 898 96.0  50.7

DDAG [44] 548 904 958 53.0 | 61.0 941 98.4

- 622  83.1 91.7 60.2 - - - -
68.0 | 69.3 862 915 635 | 68.1 852 903 618

LbA [20] 55.4 - - 54.1 58.5 - - 663 | 74.2 - - 67.6 | 67.5 - - 72.4
NFS [2] 569 913 965 555 | 628 965  99.1 69.8 | 805 91.6 951 72.1 | 780 905 93,6  69.8
CM-NAS [6] 60.8  92.1 968 589 | 680 948 979 524 | 828 951 97.7 793 | 81.7 94.1 9.9 776
MCLNet [10] 654 933 971 620 | 726 970 992 76.6 | 803 927 960 731 | 759 909 946 695
FMCNet [48] 66.3 - - 62.5 | 68.2 - - 74.1 89.1 - - 84.4 | 88.4 - - 83.9
SMCL [34] 674 929 968 618 | 688 966 988 756 | 839 - - 79.8 | 83.1 - - 78.6
DART [41] 687 964 990 663 | 725 97.8 995 782 | 83.6 - - 757 | 82.0 - - 73.8
CAJ [43] 699 957 985 669 | 763 979 995 80.4 | 8.0 955 975 79.1 | 848 953 975 71.8
MPANet [37] 706 962 988 682 | 767 982  99.6 81.0 | 828 - - 80.7 | 83.7 - - 80.9
MMN [49] 706 962 990 669 | 762 972 993 796 | 91.6 977  98.9 84.1 | 875 960 98.1 80.5
DCLNet [23] 70.8 - - 653 | 735 - - 76.8 | 81.2 - - 743 | 78.0 - - 70.6
MAUM [15] 71.7 - - 68.8 | 77.0 - - 819 | 879 - - 85.1 | 87.0 - - 84.3
DEEN (ours) 747 976 992 718 | 80.3 990 998 833 | 911 978 989 851 | 895 968 984 834

Table 2. Comparisons between the proposed DEEN and some state-of-the-art methods on the SYSU-MMO1 and RegDB datasets.

techniques are adopted during the training phase. The ini-
tial learning rate is set to 1 x 102 and then it increases to
1 x 107! after 10 epochs with a warm-up strategy. After
that, we decay the learning rate to 1 x 1072 at 20 epoch,
and further decay to 1 x 1073 and 1 x 10~* at epoch 60
and epoch 120, respectively, until a total of 150 epochs. In
each mini-batch, we randomly select 4 VIS images and 4
IR images of 6 identities for training. The SGD optimizer is
adopted for training, where the momentum is set to 0.9. For
the RegDB dataset, we remove stage-4 and plug the pro-
posed DEE module into the DEEN after stage-2.

5.3. Comparison with State-of-the-art Methods

We firstly compare the proposed DEEN with several
state-of-the-art methods to demonstrate the superiority of
our method. The experimental results on the SYSU-MMO01
and RegDB datasets are reported in Tab. 2, and the results
on our LLCM dataset are reported in Tab. 3.

SYSU-MMO01 and RegDB: From Tab. 2, we can see
that the results on the two datasets show that the proposed
DEEN achieves the best performance against all other state-
of-the-art methods. Specifically, for the All-Search mode on
SYSU-MMO1, DEEN achieves 74.7% Rank-1 accuracy and
71.8% mAP. For the Indoor-Search mode, DEEN achieves
80.3% Rank-1 accuracy and 83.3% mAP. For the VIS to
IR mode on RegDB, DEEN achieves 91.1% Rank-1 accu-
racy and 85.1% mAP. For the IR to VIS mode, the proposed
DEEN also obtains 89.5% Rank-1 accuracy and 83.4%
mAP. The results validate the effectiveness of our method.
Moreover, the results also demonstrate that the proposed
DEEN can effectively reduce the modality discrepancy be-
tween the VIS and IR modalities.

LLCM: Tab. 3 shows the results on our LLCM dataset.

LLCM

Model IR to VIS VIS to IR

R-1 R-10 R-20 mAP | R-1 R-10 R-20 mAP

DDAG [44] | 403 714 79.6 484 | 480 79.2 86.1 523
DDAG* [44] | 41.0 734 819 49.6 | 485 81.0 878 53.0
AGW [45] 43.6 746 824 51.8 |515 815 879 553

LbA [20] 438 782 86.6 53.1 |50.8 843 O91.1 556
LbA* [20] 446 782 868 538 |50.8 846 9.1 559
AGW* [45] | 464 77.8 852 548 | 560 849 90.6 59.1
CAJ [43] 488 795 853 56.6 | 565 853 909 59.8

DART [41] 522 80.7 870 598 |604 871 919 632
MMN [49] 525 81.6 884 589|599 885 93.6 62.7

DEEN (ours) | 549 849 909 629 | 62.5 903 94.7 65.8

Table 3. Performance obtained by the competing methods on our
LLCM dataset. The symbol of “*” represents the methods that we
reproduced with the random erasing technique.

Here, we use several representative open-source methods
to evaluate our LLCM dataset and compare them with our
method. From Tab. 3 we can draw the following conclu-
sions: the best method only obtains 54.9% Rank-1 accuracy
and 62.9% mAP under the IR to VIS mode. The results of
the existing methods on our LLCM dataset are generally
unsatisfactory. This shows that, on one hand, our LLCM
dataset is a very challenging dataset. On the other hand,
the change of light has serious influence on the VIRelD
model. Besides, the proposed DEEN achieves the best per-
formance under both the VIS to IR mode and the IR to VIS
mode, which demonstrates the effectiveness of the proposed
DEEN to reduce the modality gaps between the VIS and IR
images.

5.4. Ablation Studies

Effectiveness of each component: To evaluate the con-
tribution of each component to DEEN, we conduct some
ablation studies on the LLCM and SYSU-MMO1 datasets



Settings LLCM SYSU-MMO1
DEE ZLc.pm Lot MFA | R-T mAP | R-T mAP
454 536 | 60.7 57.7

v 505  59.0 | 647  62.0
v v 53.1 611 | 692  66.2
v v 515  60.1 | 653 632
v v v 539 623 | 69.8  66.7

v | 512 596 | 647 620
v v v vV | 549 629 | 747 718

Table 4. The influence of each component on the performance of
the proposed DEEN.

Methods LLCM SYSU-MMO1

R-1 mAP | R-1 mAP
DEE after stage-0 | 48.5  57.1 63.4 59.4
DEE after stage-1 | 494  57.8 | 63.7 60.8
DEE after stage-2 | 49.6 579 | 65.3 61.7
DEE after stage-3 | 53.9  62.3 | 69.8 66.7
DEE after stage-4 | 509 59.6 | 60.0 58.0

Table 5. The influence of which stage of ResNet-50 to plug the
DEE module.

LLCM SYSU-MMO1
R-1 mAP R-1 mAP
Two branches 52.6 60.9 67.5 64.6
Three branches | 53.9 62.3 69.2 66.2
Four branches 524 60.7 67.6 64.6

Methods

Table 6. Study about how many branches are suitable for DEE.

Methods LLCM SYSU-MMOI

R-T mAP | R-1 mAP
NL 50. 574 | 638 60.7
MFA 51.2 59.6 | 64.7 62.0
NL + DEE 542 624 | 734 70.3
MFA+DEE | 549 629 | 74.7 71.8

Table 7. Comparison with the Non-Local (NL) block.

by removing certain modules from DEEN and evaluate the
influence on the performance. The overall settings remain
the same, while only the module under evaluation is used in
or removed from DEEN. As shown in Tab. 4, although the
DEE module can generate more embeddings using a multi-
branch convolutional block, which slightly improves the
performance of the baseline, the results are not satisfactory.
After being constrained by the proposed CPM loss to gener-
ate diverse embeddings, DEE can greatly improve the per-
formance of the model and effectively reduce the modality
discrepancy between the VIS and IR images. Besides, the
proposed MFA block can improve the performance of the
baseline by aggregating the features from different stages
for mining diverse channel-wise and spatial feature repre-
sentations. With the incorporation of DEE, CPM and MFA
into an end-to-end learning framework, DEEN achieves an
impressive performance improvement on two challenging
VIRelID datasets, which shows DEE and MFA can benefit
from each other for generating diverse embeddings.

The influence of which stage of ResNet-50 to plug the
DEE module. The proposed DEE can be plugged after any
stage of the backbone network. In our experiments, we use
ResNet-50 as the backbone, which has five stages: stage-
0 to stage-4. We plug DEE after different stages of the
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Figure 6. Influence of different A1, A2 and o values on our LLCM.

ResNet-50 to study how it will affect the performance of
the DEEN. As shown in Tab. 5, when DEE is plugged af-
ter stage-0 to stage-3, the performance gradually increases,
which shows the modality gaps become smaller and the
generative ability of DEE becomes stronger at deeper layers
of the network. When DEE is plugged after stage-3, it can
achieve the best results on both LLCM and SYSU-MMOL.
However, when DEE is plugged after stage-4, the perfor-
mance drops rapidly because the CPM loss works directly
on the embeddings, enlarging the distances between the
generated embeddings and the original embeddings, which
increases the difficulty of model optimization. Based on the
above analysis, we plug DEE after stage-3 of the backbone
if not specified.

Effectiveness on how many branches are more suit-
able for DEE. The proposed DEE module utilizes a multi-
branch convolutional block to generate diverse embeddings.
Here, we study how many branches are suitable for DEE. As
shown in Tab. 6, with the increase of the number of DEE’s
branches from 2 to 3, more embeddings are generated to
reduce the modality gaps, so the performance gradually in-
creases. However, the increase of performance has an upper
limit when the number of branches is more than 3, because
DEE generates too many redundant features, which leads
to the drop of performance. As a result, DEE with three
branches can achieve the best performances both on the
LLCM and SYSU-MMOI datasets. It indicates that DEE
with 3 branches is more suitable for generating diverse em-
beddings. Thus, we use 3 branches for DEE if not specified.

Comparison with the Non-Local block. In this pa-
per, we propose a MFA block to mine diverse channel-wise
and spatial feature representations inspired by the Non-local
(NL) block in [31]. Thus, we compare these two blocks to
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Rank-8 ranking Rank-8 ranking

DEEN

Baseline

Figure 8. Some Rank-8 retrieval results obtained by the baseline
and the proposed DEEN on our LLCM dataset.

investigate which block is more effective. As shown in Tab.
7, the MFA block outperforms the NL block by 1.1% Rank-
1 accuracy and 2.2% mAP, respectively. The results validate
the effectiveness of our MFA block. Moreover, the results
also show that the MFA block and the DEE module are com-
plementary for generating diverse embeddings to reduce the
modality gaps between the VIS and IR images.

The influence of the hyperparameters \;, A5 and «.
To evaluate the influence of the three hyperparameters, we
give quantitative comparisons and report the results in Fig.
6. As we can see, the best performance is achieved when ¢
is set to 0.8, Ao is set to 0.1 and « is set to 0.2, respectively.

5.5. Visualization

Feature distribution. To investigate the reason why
DEEN is effective, we visualize the inter-class and intra-
class distances on our LLCM dataset as shown in Fig. 7 (a-
e). Comparing Fig. 7 (c-e) with Fig. 7 (a-b), the means (i.e.,
the vertical lines) of inter-class and intra-class distances are

pushed away by MFA, DEE and DEEN, where §; <d5 <03
and 07 <do <04 <d5. This shows that the intra-class dis-
tance of DEEN is significantly reduced compared with the
intra-class distance of the initial features (Fig. 7 (a)) and the
baseline features (Fig. 7 (b)). Thus, DEEN can effectively
reduce the modality discrepancy between the VIS and the
IR images. Meanwhile, we also visualize the feature dis-
tribution with t-SNE [27] in the 2D feature space in Fig. 7
(f-j), which shows that MFA, DEE and DEEN can effec-
tively discriminate and aggregate feature embeddings of the
same person, and reduce the modality discrepancy.

Retrieval result. To further show the effectiveness of
DEEN, we also show some retrieval results of DEEN on
our LLCM dataset in Fig. 8. For each retrieval case, the re-
trieved images with green boxes mean the correct matches
corresponding the given query, while the red ones mean the
incorrect matches. In general, DEEN can effectively im-
prove the ranking results with more correctly matched im-
ages ranked in the top positions than the baseline.

6. CONCLUSION

In this paper, we propose a novel diverse embedding ex-
pansion network (DEEN) in the embedding space for the
VIReID task. The proposed DEEN can generate diverse
embeddings and mine diverse channel-wise and spatial em-
beddings to learn the informative feature representations for
reducing the modality discrepancy between the VIS and IR
images. Moreover, we also provide a challenging low-light
cross-modality (LLCM) dataset, which has more new and
important features and can further facilitate the research of
VIReID towards practical applications. Extensive experi-
ments on the SYSU-MMOI, RegDB and LLCM datasets



show the superiority of the proposed DEEN over several
other state-of-the-art methods.
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