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Abstract

Different video understanding tasks are typically treated
in isolation, and even with distinct types of curated data
(e.g., classifying sports in one dataset, tracking animals
in another). However, in wearable cameras, the immer-
sive egocentric perspective of a person engaging with the
world around them presents an interconnected web of video
understanding tasks—hand-object manipulations, naviga-
tion in the space, or human-human interactions—that un-
fold continuously, driven by the person’s goals. We argue
that this calls for a much more unified approach. We pro-
pose EgoTask Translation (EgoT2), which takes a collec-
tion of models optimized on separate tasks and learns to
translate their outputs for improved performance on any or
all of them at once. Unlike traditional transfer or multi-
task learning, EgoT2’s “flipped design” entails separate
task-specific backbones and a task translator shared across
all tasks, which captures synergies between even heteroge-
neous tasks and mitigates task competition. Demonstrat-
ing our model on a wide array of video tasks from Ego4D,
we show its advantages over existing transfer paradigms
and achieve top-ranked results on four of the Ego4D 2022
benchmark challenges.1

1. Introduction
In recent years, the introduction of large-scale

video datasets (e.g., Kinetics [6, 33] and Something-
Something [22]) have enabled the application of powerful
deep learning models to video understanding and have
led to dramatic advances. These third-person datasets,
however, have overwhelmingly focused on the single task
of action recognition in trimmed clips [12, 36, 47, 64].
Unlike curated third-person videos, our daily life involves
frequent and heterogeneous interactions with other hu-
mans, objects, and environments in the wild. First-person
videos from wearable cameras capture the observer’s
perspective and attention as a continuous stream. As such,

*Work done during an internship at FAIR, Meta AI.
1Project webpage: https://vision.cs.utexas.edu/

projects/egot2/.
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Figure 1. Given a set of diverse egocentric video tasks, the pro-
posed EgoT2 leverages synergies among the tasks to improve each
individual task performance. The attention maps produced by
EgoT2 offer good interpretability on inherent task relations.

they are better equipped to reveal these multi-faceted,
spontaneous interactions. Indeed egocentric datasets, such
as EPIC-Kitchens [9] and Ego4D [23], provide suites
of tasks associated with varied interactions. However,
while these benchmarks have promoted a broader and
more heterogeneous view of video understanding, they
risk perpetuating the fragmented development of models
specialized for each individual task.

In this work, we argue that the egocentric perspective
offers an opportunity for holistic perception that can ben-
eficially leverage synergies among video tasks to solve all
problems in a unified manner. See Figure 1.

Imagine a cooking scenario where the camera wearer ac-
tively interacts with objects and other people in an environ-
ment while preparing dinner. These interactions relate to
each other: a hand grasping a knife suggests the upcoming
action of cutting; the view of a tomato on a cutting board
suggests that the object is likely to undergo a state transi-
tion from whole to chopped; the conversation may further
reveal the camera wearer’s ongoing and planned actions.
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Apart from the natural relation among these tasks, egocen-
tric video’s partial observability (i.e., the camera wearer is
largely out of the field of view) further motivates us to seek
synergistic, comprehensive video understanding to leverage
complementary cues among multiple tasks.

Our goal presents several technical challenges for con-
ventional transfer learning (TL) [65] and multi-task learn-
ing (MTL) [63]. First, MTL requires training sets where
each sample includes annotations for all tasks [15, 24, 48,
53, 55, 62], which is often impractical. Second, egocen-
tric video tasks are heterogeneous in nature, requiring dif-
ferent modalities (audio, visual, motion), diverse labels
(e.g., temporal, spatial or semantic), and different tem-
poral granularities (e.g., action anticipation requires long-
term observations, but object state recognition operates at
a few sparsely sampled frames)—all of which makes a
unified model design problematic and fosters specializa-
tion. Finally, while existing work advocates the use of
a shared encoder across tasks to learn general representa-
tions [3, 18, 26, 32, 39, 44, 45, 51], the diverse span of ego-
centric tasks poses a hazard to parameter sharing which can
lead to negative transfer [21, 24, 38, 53].

To address the above limitations, we propose EgoTask
Translation (EgoT2), a unified learning framework to ad-
dress a diverse set of egocentric video tasks together. EgoT2
is flexible and general in that it can handle separate datasets
for the different tasks; it takes video heterogeneity into ac-
count; and it mitigates negative transfer when tasks are not
strongly related. To be specific, EgoT2 consists of special-
ized models developed for individual tasks and a task trans-
lator that explicitly models inter-task and inter-frame rela-
tions. We propose two distinct designs: (1) task-specific
EgoT2 (EgoT2-s) optimizes a given primary task with the
assistance of auxiliary tasks (Figure 2(c)) while (2) task-
general EgoT2 (EgoT2-g) supports task translation for mul-
tiple tasks at the same time (Figure 2(d)).

Compared with a unified backbone across tasks [62],
adopting task-specific backbones preserves peculiarities of
each task (e.g. different temporal granularities) and miti-
gates negative transfer since each backbone is optimized on
one task. Furthermore, unlike traditional parameter shar-
ing [51], the proposed task translator learns to “translate”
all task features into predictions for the target task by se-
lectively activating useful features and discarding irrelevant
ones. The task translator also facilitates interpretability by
explicitly revealing which temporal segments and which
subsets of tasks contribute to improving a given task.

We evaluate EgoT2 on a diverse set of 7 egocentric
perception tasks from the world’s largest egocentric video
benchmark, Ego4D [23]. Its heterogeneous tasks extend
beyond mere action recognition to speaker/listener identi-
fication, keyframe localization, object state change classifi-
cation, long-term action anticipation, and others, and pro-

Shared 

Backbone

Head A Head B Head C

Task A Task B Task C

Backbone
pretrained 

on Task A

Transfer Layers

Task B

 Backbone A


Shared Task
Translator

Task A Task B Task C

 Backbone B
  Backbone C


(c) EgoT2-s

(a) conventional TL

(d) EgoT2-g

 Backbone A


Task Translator


Task B

 Backbone B
  Backbone C


(b) conventional MTL

Figure 2. (a) Conventional TL uses a backbone pretrained on the
source task followed by a head transferring supervision to the tar-
get task; (b) Traditional MTL consists of a shared backbone and
several task-specific heads; (c) EgoT2-s adopts task-specific back-
bones and optimizes the task translator for a given primary task;
(d) EgoT2-g jointly optimizes the task translator for all tasks.

vide a perfect fit for our study. Our results reveal inher-
ent task synergies, demonstrate consistent performance im-
provement across tasks, and offer good interpretability in
task translation. Among all four Ego4D challenges involved
in our task setup, EgoT2 outperforms all submissions to
three Ego4D-CVPR’22 challenges and achieves state-of-
the-art performance in one Ego4D-ECCV’22 challenge.

2. Related Work
Transfer Learning. TL [65] aims at transferring knowl-

edge from a source domain to improve the performance
in a target domain. The most widely adopted approach
is to pretrain a model on a source task then finetune on
the target task, as shown in Figure 2(a). Following this
paradigm, many video classification models [1, 5, 42, 59]
are initialized from models pretrained on ImageNet [11].
In addition, many works propose to transfer knowledge
from a large-scale video dataset (e.g., Kinetics [6, 33])
to benefit action recognition in smaller-scale datasets [54]
such as UCF-101 [52] and HMDB-51 [37] or to improve
other video tasks, such as spatiotemporal action localiza-
tion [2,17,19,27,49] and video anomaly detection [25,41].
While this technique is ubiquitous in video understanding,
prior approaches only consider the transfer from one sin-
gle source task (dataset) and are thus unable to model the
relations among multiple video tasks simultaneously.

Taskonomy [62] presents task transfer with a thorough
analysis on the structure of multiple visual tasks. Many
works [15, 48, 53, 61] continue along this direction and ex-
plore visual task relations, yet they limit the discussion to
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static images and generally require a unified design across
all tasks. In contrast, we consider a diverse set of egocen-
tric video tasks, which are addressed with a heterogeneous
set of task-specific video architectures (e.g., accommodat-
ing different time, space, or multimodality). Clearly, forc-
ing the same network architecture across all tasks can be
suboptimal for each individual task. This motivates our pro-
posed EgoT2-s (Figure 2(c)), where we preserve the hetero-
geneous backbones developed for each task and build a task
translator on top of the task-specific models.

Multi-task Learning. In MTL [63], a single model is
trained to address multiple tasks simultaneously in order to
capture synergistic supervision across tasks. As depicted
in Figure 2(b), hard parameter sharing [51] (i.e., sharing a
backbone among tasks and keeping one separate head for
each task) is the most commonly used technique within this
genre. Although MTL has shown to be beneficial of video
analysis [3, 18, 26, 32, 39, 44, 45], there is ongoing debate
about the best strategies to determine what parameters to
share across which tasks [7, 24, 31, 53, 55]. As pointed out
in [34], when MTL is achieved by means of a single com-
mon backbone, the performance tends to decrease when the
number of tasks grows beyond a certain point. Furthermore,
many works [21,24,38,53] observe that over-sharing a net-
work across unrelated tasks causes negative transfer and
hinders individual task performance. While soft parameter
sharing [14, 60] mitigates this by retaining distinct copies
of parameters, it still requires adopting the same identical
architecture and “similar” weight values across all tasks.

In the video domain, several works utilize synergies be-
tween related tasks (e.g., action recognition with gaze pre-
diction [18, 26, 39] or body pose estimation [44]). How-
ever, when selected tasks are not strongly related, prior ap-
proaches that split the learning capacity of a shared back-
bone over multiple tasks can suffer from task competi-
tion and inferior performance. In the image domain, with
the great advancement of transformers [58], training with
multiple datasets together for a generalist model is gain-
ing popularity. Recent work [8, 20, 29, 30, 35, 43] inves-
tigates a unified transformer architecture across a diverse
set of tasks. Our variant EgoT2-g (Figure 2(d)) is moti-
vated by the desiderata of shared knowledge encapsulated
by MTL and of a generalist model. Unlike previous learn-
ing paradigms, we adopt a “flipped design” involving sep-
arate task-specific backbones and a task translator shared
across all tasks. This effectively mitigates task competition
and achieves task translation for all tasks simultaneously.

3. Approach
We are given K video tasks, Tk for k = 1, · · · ,K. We

note that our approach does not require a common training
set with annotations for all tasks. Let the dataset for task Tk
be DTk = {(xTk

i , yTk
i )}Nk

i=1, where (xTk
i , yTk

i ) denotes the

i-th pair of (input video, output label) and Nk represents
the number of given examples. Note that “labels” yTk

i can
be a variety of output types, and are not limited to category
labels. For simplicity we omit the subscript i hereafter.

We consider two formulations with distinct advantages:
(1) task-specific translation, where we partition the tasks
into one primary task Tp and K − 1 auxiliary tasks, and
optimize the objective to improve performance on Tp with
the assistance of the auxiliary tasks (EgoT2-s, Sec. 3.1); (2)
task-general translation, where we treat all K tasks equally,
and the goal is to maximize the collective performance of all
the tasks (EgoT2-g, Sec. 3.2). As demonstrated in our ex-
periments, objective (1) leads to the strongest performance
on the primary task, while objective (2) offers the benefit of
a single unified model addressing all tasks at once.

3.1. Task-Specific Translation: EgoT2-s

The training of EgoT2-s is split over two stages.
Stage I: Individual-Task Training. We train a separate
model fk on each individual task dataset DTk , obtaining K
task-specific models {fk}Kk=1. We do not place any restric-
tions on the task-specific model designs, nor do we require a
unified design (i.e., identical encoder-decoder architecture)
across tasks. Therefore, any available model checkpoint de-
veloped for task Tk can be adopted as fk within our frame-
work, offering maximum flexibility.
Stage II: Task-Specific Translation. We train a task trans-
lator that takes features produced by task-specific models
as input and outputs predictions for the primary task. For-
mally, let hk ∈ RTk×Dk be features produced by the k-th
task-specific model fk, where Tk is the temporal dimension
and Dk is the per-frame feature dimension for model fk.
Following the feature extraction step, we design a projec-
tion layer Pk ∈ RDk×D for each fk to map task-specific
features to a shared latent feature space. This yields a tem-
poral sequence of task-specific tokens h̃k ∈ RTk×D.

We process this collection of task-specific temporal
sequences using a transformer encoder [58] of L lay-
ers to capture both inter-frame and inter-task dependen-
cies. We denote the propagation rule of layer l by
zl+1 = Encoderl(zl). Finally, we adopt a decoder head
DecoderTp to obtain predictions for the primary task Tp.

In all, this stage has four major steps: (1) feature ex-
traction; (2) feature projection; (3) transformer fusion; and
(4) feature decoding. The procedure is summarized below:

hk = fk(x
Tp), ∀k ∈ {1, 2, · · · ,K} (1)

h̃k = Pkhk, ∀k ∈ {1, 2, · · · ,K} (2)

z0 = [h̃1, h̃2, · · · , h̃K ]

zl+1 = Encoderl(zl),∀l ∈ {0, 1, · · · , L− 1}
(3)

y
Tp

pred = DecoderTp(zL) (4)
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Figure 3. An illustration of EgoT2-s (left) and EgoT2-g (right) on three candidate tasks. The left figure illustrates EgoT2-s on three social
interaction tasks, where the input to each model is unimodal (i.e., video) or multimodal (i.e., video and audio). The right figure shows
the design of EgoT2-g on three example tasks that focus on different aspects of human-object interactions (i.e., localization, object state
change classification, and action recognition). EgoT2-s learns to “translate” auxiliary task features into predictions for the primary task
and EgoT2-g conducts task translation conditioned on the task of interest.

where y
Tp

pred denotes the prediction given by EgoT2-s. Dur-
ing the second stage of training, we freeze the task-specific
models and optimize the task translator with respect to the
primary task dataset DTp .

Figure 3 (left) illustrates the design of EgoT2-s using
three social interaction tasks from Ego4D [23] as an exam-
ple. EgoT2-s allows heterogeneity in the task-specific mod-
els (i.e., f1 is unimodal while f2 and f3 are multimodal;
also the three task-specific models can be associated with
different frame rates and temporal durations) and utilizes a
transformer encoder to model inter-frame and inter-task re-
lations. The resulting EgoT2-s learns to adaptively utilize
auxiliary task features for the primary task prediction.

3.2. Task-General Translation: EgoT2-g

EgoT2-s optimizes performance for a single primary
task. Therefore, in the event all K tasks must be addressed,
it requires K separate training runs and K distinct transla-
tors. This motivates us to extend EgoT2-s to perform task
translation for all K tasks at once. In EgoT2-g, the task
translator processes features from all K tasks and learns to
“translate” features conditioned on the task of interest.

The first stage of EgoT2-g is identical to EgoT2-s. For
the second stage, we propose two main modifications. First,
we replace the task-specific decoder in EgoT2-s with a
“generalist” decoder that outputs predictions conditioned on
the task of interest. Natural language provides us with a
flexible scheme to specify all tasks as a sequence of sym-

bols. Inspired by [8], we tokenize all task outputs and
replace the original task-specific decoder with a sequence
decoder [50] for a unified interface. Specifically, we first
transform the original label yTk to a target output sequence
yTk
seq ∈ RM , where M is the target sequence length. For

the task translator to produce task-dependent outputs, we
prepend a task prompt token yprompt to the target output,
i.e., yTk

seq1 = yprompt. We then let the sequence decoder
generate a sentence answering the requested task. Figure 3
(right) illustrates how we express task outputs as sequences
of discrete tokens and attach task prompts.

With the transformed output, we treat the problem as a
language modeling task and train the task translator to pre-
dict subsequent tokens (one token at a time) conditioned on
the input video and its preceding tokens. The training objec-
tive is LTk =

∑M
j=1 wj logP (yTk

seqj |x
Tk ,yTk

seq1:j−1
). Note

that the maximum likelihood loss is weighted to mask the
loss corresponding to the task prompt token: wj is set to 0
for j = 1, and to 1 for any other j. During inference, the
task prompt is prepended, and the task translator predicts
the remaining output tokens. We use argmax sampling (i.e.,
take the token with the largest likelihood) to sample tokens
from the model likelihood and transform the output tokens
back to the original label space. Detokenization is easy as
we simply reverse the tokenization process.

The second modification lies in the training strategy.
While EgoT2-s adopts the primary task dataset for training,
EgoT2-g requires joint training on all K task datasets. Sim-
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ilar to the training strategy in [8, 20], we sample one batch
from each task, compute the task loss, aggregate the K gra-
dients, and perform model updates in one training iteration.
The final training objective is L =

∑K
k=1 LTk .

Figure 3 contrasts the design of EgoT2-s and EgoT2-g.
They both provide a flexible framework that can incorporate
multiple heterogeneous task-specific models (e.g., the three
example tasks we give here focus on different aspects of
human-object interactions). With a design and an optimiza-
tion that are specialized to a single primary task, EgoT2-s
is expected to lead to superior individual task performance
while EgoT2-g brings the efficiency and compactness ben-
efits of a single translator addressing all tasks.

4. Experiments
4.1. Experimental Setup

Dataset and Tasks. We evaluate on Ego4D [23], the
world’s largest egocentric dataset with 3,670 hours of
videos spanning hundreds of scenarios (e.g., household,
outdoor, leisure). It offers five benchmarks: episodic mem-
ory (EM), hands and objects (HO), audio-visual diariza-
tion (AV), social interactions (Social) and forecasting. For
our study, we select 7 tasks spanning 4 benchmarks, rep-
resenting a variety of tasks in egocentric perception, as il-
lustrated in Figure 4. The 7 tasks fall into two broad clus-
ters: (a) human-object interactions and (b) human-human
interactions. Table 1 summarizes our task setup. For each
cluster, we use tasks from the same benchmark as well as
tasks across benchmarks, in an attempt to reveal connec-
tions among seemingly unrelated tasks. The 7 candidate
tasks are heterogeneous in nature as they are defined on
videos of varying duration, adopt different video models
as backbones, and process unimodal (i.e., video) or mul-
timodal (i.e., video and audio) input, offering a diverse task
setup for our study. See Appendix A.2.1 for more details.
Models and Baselines. For each task, we adopt for con-
sistency the baseline models introduced with the Ego4D
dataset2 as the task-specific (TS) models in EgoT2. For
task-specific translation (Sec. 4.2), we train one task trans-
lator for each primary task and use all the other tasks in the
same cluster (either human-object interactions or human-
human interactions) as auxiliary tasks. We compare EgoT2-
s with two representative transfer learning approaches: (1)
Transfer [62] denotes finetuning a transfer function on top
of features produced by the auxiliary task models (Figure
2(a)). (2) Late Fusion [45] (LF) concatenates auxiliary
task features along with primary task features, and finetunes
a few layers that receive the concatenated features as input
for the final prediction. Furthermore, to gauge possible im-
provements over TS by increasing capacity, we consider a

2We use model checkpoints provided on the Ego4D website: https:
//github.com/EGO4D.

（a) human-object interactions

（b) human-human interactions
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At Me TTM: Talking
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ASD: Active 
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PNR: Point-of-no-return
Keyframe Localization

OSCC: Object State
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Figure 4. Task Setup. We select a broad set of egocentric video
tasks that focus on (a) human-object interactions and (b) human-
human interactions from Ego4D benchmarks.

Task Benchmark Mod.
Duration
(seconds)

Model
backbone

(a)

PNR HO V 8.0 I3D RN-50 [6]
OSCC HO V 8.0 I3D RN-50 [6]
AR Forecasting V 8.0 SlowFast [19]
LTA Forecasting V 16.0 SlowFast [19]

(b)
LAM Social V 0.2 3D RN-18 [57]
TTM Social A&V 2.7 3D RN-18 [57]
ASD AV A&V 3.7 TalkNet [56]

Table 1. Task Descriptions. ‘Mod.’ is short for modality; ‘A’ and
‘V’ denote audio and video, respectively.

Finetuning [13] baseline, which finetunes a few layers on
top of the features produced by the primary task model. In
order to make a fair comparison, the first-stage training of
these baselines is identical to that of EgoT2, and the number
of parameters in the second stage of training is set to match
that of EgoT2-s as closely as possible.

For task-general translation (Sec. 4.3), the task translator
is jointly optimized for all tasks within a cluster3, thus we
have one task translator for human-object interactions that
attends to all tasks simultaneously and one translator that
performs three human-human interaction tasks at the same
time. For comparison with EgoT2-g, we implement the
most widely adopted multi-task learning approach, hard
parameter sharing [51] (Figure 2(b)).
Implementation Details. There is one video preprocess-
ing step before the feature extraction step in Equation (1),
where we transform the original video input from xTp to
match the input format of the k-th task-specific model fk. In
particular, xTp is first upsampled or downsampled to match
the frame rates required by fk. Next, if the temporal span
of the auxiliary task is smaller than that of the primary task,
we slide fk in a moving window to extract a sequence of
features, where the window length is the temporal span re-
quired by fk, and stride size is a hyperparameter. Con-
versely, if fk requires video inputs of a longer temporal span

3There is a significant domain gap between human-human and human-
object interaction videos. See Appendix A.3 for cross-cluster EgoT2-g.
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Tp is PNR Tp is OSCC Tp is AR Tp is LTA
# Params ·106 Error # Params ·106 Acc. # Params ·106 Acc. (%) ↑ # Params ·106 ED@20 ↓
Trainable (All) (s) ↓ Trainable (All) (%) ↑ Trainable (All) Verb Noun Trainable (All) Verb Noun

TS model [23] 32.2 (32.2) 0.615 32.2 (32.2) 68.22 63.3 (63.3) 22.18 21.55 180 (242) 0.746 0.789

Finetuning [13] 8.4 (40.6) 0.611 8.4 (40.6) 67.93 4.9 (66.8) 21.64 22.84 48.6 (266) 0.744 0.787
Transfer [62] (PNR) N/A N/A 8.4 (40.6) 66.80 4.9 (37.1) 19.98 5.44 65.4 (97.6) 0.778 0.902
Transfer [62] (OSCC) 8.4 (40.6) 0.611 N/A N/A 4.9 (37.1) 20.00 9.61 65.4 (97.6) 0.774 0.899
Transfer [62] (AR) 9.5 (71.4) 0.613 9.4 (71.4) 70.98 N/A N/A N/A 53.3 (115) 0.745 0.806
LF [45] (All Tasks) 9.6 (135) 0.610 9.6 (135) 72.10 5.2 (131) 21.11 19.24 83.6 (427) 0.744 0.788
EgoT2-s (All Tasks) 6.4 (132) 0.610 7.4 (133) 72.69 4.3 (130) 23.04 23.28 41.8 (348) 0.731 0.769

Table 2. Results of EgoT2-s as we vary the primary human-object interaction task Tp. First row records performance of the task-specific
(TS) model we obtain in the first-stage training; we compare EgoT2-s with other baseline methods in the second-stage training. We list the
number of trainable parameters for each separate stage as well as the total (i.e., trainable parameters plus parameters of frozen TS models)
in parentheses. Following [23], the evaluation metric is temporal localization error (unit: seconds) for PNR, accuracy for OSCC and AR,
and edit distance at future 20 time stamps (i.e., ED@20) for LTA. For localization error and ED@20, lower is better. EgoT2-s reliably
adapts the auxiliary tasks to suit the target task.

Tp is TTM Tp is ASD
# Params ·106
Trainable (All)

mAP
(%) ↑

# Params ·106
Trainable (All)

mAP
(%) ↑

TS model [23] 20.2 (20.2) 58.91 15.7 (15.7) 79.05

Finetuning [13] 0.8 (20.8) 59.67 1.1 (16.8) 78.62
Transfer [62] (LAM) 0.8 (15.4) 63.59 1.6 (16.2) 66.40
Transfer [62] (TTM) N/A N/A 1.6 (21.6) 71.06
Transfer [62] (ASD) 0.8 (16.5) 62.31 N/A N/A
LF [45] (All Tasks) 1.2 (51.5) 64.29 1.6 (51.9) 77.54
EgoT2-s (All Tasks) 0.7 (51.1) 66.54 1.5 (51.9) 79.38

Table 3. Results of EgoT2-s as we vary the primary human-human
interaction task Tp. EgoT2-s consistently improves the TS model.

than xTp , we exclude task k from auxiliary task candidates
to avoid providing potential advantages of a longer obser-
vation window to our framework as otherwise we need to
expand video length of xTp to match the requirement of fk.
Moreover, if the auxiliary task dataset is multimodal (i.e.,
video and audio) and the primary task involves only video,
we apply the unimodal video pathway of fk to obtain fea-
tures; if the primary task is multimodal, we provide all task-
specific features that are computable from these modalities.
See Appendix A.2.2 for more implementation details.

4.2. Evaluation of Task-Specific Translation

Results. We conduct experiments with EgoT2-s for each
task being the primary task4 and summarize the results for
human-object interactions and human-human interactions
in Table 2 and 3, respectively.

From the two tables, we observe uneven performance by
the baseline methods. Transfer and Late Fusion sometimes
outperform the dedicated TS model and sometimes under-
perform it. When tasks do not exhibit a strong transfer rela-

4Following the time-span guidelines in Sec. 4.1, LAM is not considered
as the primary task and LTA is not adopted as an auxiliary task. Nonethe-
less, Appendix A.3 shows some special cases for completeness.

tion, reusing the backbone of the auxiliary task for the pri-
mary task leads to negative transfer and performance degra-
dation. For instance, in Table 2, when Tp is AR, Transfer
(OSCC) and Late Fusion both downgrade noun prediction
accuracy, suggesting object state change is more dependent
on verbs and unrelated to noun prediction tasks in AR.

On the contrary, our proposed EgoT2-s learns to adap-
tively utilize task-specific features and effectively mitigates
negative transfer, demonstrating consistent improvement
over the TS model for all 6 cases. For instance, in Table
3, when Tp is ASD, Late Fusion indicates there is a dele-
terious relation from LAM and TTM to ASD, as it suffers
from an accuracy degradation of 1.51% over TS, yet EgoT2-
s still obtains slightly better performance compared to TS
(i.e., 79.38% v.s. 79.05%). Moreover, when auxiliary tasks
are beneficial for the primary task, EgoT2-s outperforms
all baselines with fewer trainable parameters. For example,
when Tp is TTM, it achieves a +7.63% mAP improvement
over the original TS model by training a lightweight task
translator with only 0.7M parameters on top of it (TS is kept
frozen). These results across different primary and auxiliary
task combinations help demonstrate the generalizability of
EgoT2-s. See Appendix A.3 for experiments using a subset
of auxiliary tasks rather than all tasks.

Ablation Study. In Table 4, we ablate three different de-
sign choices of EgoT2-s using TTM as the primary task:
(a) We replace the LAM and ASD TS models in EgoT2-
s with two TTM models with different parameters. This
yields a task fusion transformer that is architecturally iden-
tical to EgoT2-s but takes only TTM tokens as input; (b) We
pass features produced by TS models after temporal pool-
ing as the input of our task fusion transformer; (c) We do
not freeze TS models in our second-stage training. By com-
paring (a) with our default configuration (d), we see that
EgoT2-s indeed benefits from the introduction of auxiliary
tasks. Although equipped with three different TTM models
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# Params ·106
Trainable (All)

Auxiliary
Tasks

Temporal
Information

Frozen
TS model

mAP
(%) ↑

(a) 0.7 (60.8) ✓ ✓ 63.40
(b) 0.7 (51.1) ✓ ✓ 65.47
(c) 51.1 (51.1) ✓ ✓ 66.00
(d) 0.7 (51.1) ✓ ✓ ✓ 66.54

Table 4. Ablation study of EgoT2-s (Tp is TTM).

(a) # Params
Trainable

PNR
↓

OSCC
↑

AR
Verb ↑

AR
Noun ↑

LTA
Verb ↑

LTA
Noun ↑

TS model [23] N/A 0.615 68.2 22.18 21.55 20.82 21.80
Multi-task [51] 32.2 0.617 66.0 N/A N/A N/A N/A
EgoT2-g (P & O) 5.9 0.612 68.6 N/A N/A N/A N/A
EgoT2-g (All) 34.5 0.611 71.7 21.93 22.73 21.91 23.61

(b) # Params
Trainable

LAM
mAP (%) ↑

TTM
mAP (%) ↑

ASD
Acc.(%) ↑

TS model [23] N/A 77.79 58.91 79.05
Multi-task [51] 20.2 60.53 61.91 N/A
EgoT2-g 1.4 77.63 64.49 79.06

Table 5. EgoT2-g for (a) human-object interaction and (b) human-
human interaction tasks. The evaluation metric is error (seconds)
for PNR (P) and accuracy (%) for OSCC (O), AR and LTA. We re-
port the number of trainable parameters required for each method
in the second-stage training (unit: million). Our model is flexible,
accurate, and avoids negative transfer.

and a larger model size (the total number of parameters of
three TTM models is larger than the sum of three TS mod-
els), variant (a) does not bring as much performance gain as
EgoT2-s (d). Also, preserving the temporal information of
task-specific tokens further boosts performance, as can be
seen in the comparison of EgoT2-s (b) with EgoT2-s (d).
Finally, not freezing TS (c) greatly increases the training
cost yet brings no performance gain. These results validate
the design of our proposed EgoT2-s.

4.3. Evaluation of Task-General Translation

Results. Table 5 provides results of EgoT2-g. Since the
TTM and LAM baseline models use identical video back-
bones (i.e., 3D ResNet-18), the hard parameter sharing
multi-task baseline [51] can jointly learn TTM and LAM.
Yet this model design is unable to solve the ASD task
without further modifications to the ASD backbone model.
In contrast, our EgoT2-g provides a flexible solution that
can incorporate a heterogeneous mix of pretrained mod-
els. Similarly, we apply the multi-task baseline to PNR
and OSCC, as they use the same video backbone (i.e., I3D
ResNet-50). Compared with dedicated TS models, our pro-
posed EgoT2-g performs task translation for all tasks at the
same time and achieves on parallel or better performance
for all tasks. For instance, it achieves +5.58% mAP im-

TTM Challenge mAP ↑
Random Guess [23] 0.50
3D ResNet-18 Bi-LSTM [23] 0.54
EgoT2-g (3D ResNet-18) 0.58
EgoT2-s (3D ResNet-18) 0.58

PNR Challenge Error (s) ↓
Always Center Frame [23] 1.01
CNN LSTM [23] 0.76
EgoVLP [40] 0.67
Video Swin Transformer [16] 0.66
SViT [4] 0.66
EgoT2-s (I3D ResNet-50) 0.66

OSCC Challenge Acc. ↑
Always Positive [23] 0.48
I3D ResNet-50 [23] 0.68
Video Swin Transformer [16] 0.68
Divided ST Attention [28] 0.72
EgoVLP [40] 0.74
EgoT2-g (I3D ResNet-50) 0.70
EgoT2-s (I3D ResNet-50) 0.71
EgoT2-s (EgoVLP) 0.75

LTA Challenge
ED@20 ↓

Verb Noun Action
SlowFast + Transformer [23] 0.74 0.78 0.94
Video + CLIP [10] 0.74 0.77 0.94
Hierarchical MLP Mixer [46] 0.74 0.74 0.93
EgoT2-s (SlowFast) 0.72 0.76 0.93

Table 6. Comparison of EgoT2 with SOTA approaches on four
Ego4D challenges (test set). We list the TS model architecture of
EgoT2 in parentheses. Our model improves the state of the art.

provement for TTM and 3.5% accuracy gain for OSCC. No-
tably, on ASD, it retains the top-performance of the original
TS models when the other two auxiliary tasks do not help.
In contrast, we observe task competition for the multi-task
baseline: the improvement for TTM (i.e., +3.0% mAP) is
at the cost of significantly downgraded LAM performance
(i.e., -17.26% mAP). Similarly, sharing an encoder for PNR
and OSCC also leads to task competition and suboptimal
performance for the multi-task baseline. For a side-by-side
comparison, we also implement EgoT2-g that performs task
translation for PNR and OSCC only and observe its ad-
vantages over the multi-task baseline in terms of both per-
formance and trainable parameters. As EgoT2-g does not
require re-training of the backbone, we can integrate any
available model checkpoint developed for each individual
task into our framework and train a lightweight task-general
translator to further boost performance in the second stage.
Comparison with SOTA Approaches. To further demon-
strate the efficacy of both EgoT2-s and EgoT2-g, we submit
our model to the EvalAI server to compare it with winning
submissions to Ego4D-CVPR’22 and Ego4D-ECCV’22
challenges on the withheld test set. Table 6 shows the re-
sults.5 EgoT2-s achieves top performance for all 4 chal-

5ASD & AR are not applicable since they are not Ego4D challenges.
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lenges. By only incorporating basic video backbones (e.g.,
3D ResNet-18 and SlowFast) as the task-specific model,
EgoT2-s achieves similar or better performance than works
that adopt more powerful, novel architectures such as Video
Swin Transformer. Moreover, the benefits of our approach
are orthogonal to such architecture improvements: e.g., for
the OSCC challenge, replacing the I3D ResNet-50 back-
bone with the one used in EgoVLP [40] can further elevate
the accuracy of EgoVLP by 1%. This indicates the success
of EgoT2 stems from its effective use of task synergies.

While EgoT2-g is a strong performer that surpasses or
matches TS across all tasks, if we compare its resultswith
those of EgoT2-s, we observe that EgoT2-s demonstrates
superior performance. This is understandable given that
EgoT2-s is individually optimized for each primary task and
employs a specialized translator. On the other hand, EgoT2-
g provides a favorable unified framework that performs task
translation for all tasks simultaneously via the design of a
task-general translator. Thus, EgoT2-s serves as the frame-
work of choice for top performance while EgoT2-g provides
added flexibility. See Appendix A.3 for a detailed compari-
son of the performance and efficiency of these two variants.

4.4. Visualization of Uncovered Task Relations

Our proposed EgoT2 explicitly models task relations via
a task translator and offers good interpretability on task rela-
tions. For EgoT2-s, Figure 5 shows the attention weights of
task tokens when the primary task is LTA and the auxiliary
task is AR. Given two adjacent input video clips, the goal of
LTA is to predict the next action (e.g., put container and turn
off nozzle for the two examples here). In the upper exam-
ple, there is a scene change from the first clip (the temporal
segment corresponding to put wheel) to the second clip (the
clip corresponding to take container). The attention weights
of AR tokens are small for the first clip and large for the sec-
ond clip. Clearly, the future action to predict is more closely
related to the second temporal segment due to similarities in
the scene and objects. In the lower example, the AR tokens
have large attention weights, as the video is temporally sim-
ilar and the previous two actions are indicative of the next
action. These results show how EgoT2-s accurately charac-
terizes temporal and auxiliary task information to improve
the primary task. More visualizations are in Appendix A.4.

Similarly, for EgoT2-g, we visualize its encoder-decoder
attention weights from the last layer transformer in Figure
6. Given the same video clip as input, feature tokens are
activated differently when EgoT2-g is given different task
prompts, demonstrating that EgoT2-g learns to perform task
translation conditioned on the task of interest. As it as-
signs small weights to task features that are not beneficial
for the task of interest (e.g., PNR features to noun predic-
tion tasks), EgoT2-g discards non-relevant task features to

Results of EgoT2-g for PNR & LTA are unavailable (see Appendix A.2.2).

AR Tokens
LTA Tokens

put wheel take container put container

0.0
0.5

turn on nozzle

LTA Tokens
AR Tokens 0.5

0.0

wash car turn off nozzle

unobservedobserved

unobservedobserved

Figure 5. Attention weights of EgoT2-s when Tp is LTA. EgoT2-s
learns to utilize tokens from relevant temporal segments and tasks.
The attention weights of AR tokens are large when the current
action is indicative of future action.

0.1
0.0

0.0
0.1

0.1
0.0
0.5
0.0
0.5
0.0
0.5
0.0

PNR Tokens OSCC Tokens AR Tokens LTA Tokens

Ta
sk

 P
ro

m
pt

[PNR]

[OSCC]

[AR verb]

[AR noun]

[LTA verb]

[LTA noun]

Feature Tokens

Figure 6. Attention weights of EgoT2-g. Given the same video
and different task prompts, EgoT2-g assigns different weights to
different task tokens. See text.

mitigate task competition. We also observe temporal differ-
ences of attention weights from same task features, indicat-
ing that EgoT2-g captures both inter-frame and inter-task
dependencies to improve the task of interest. Finally, recall
that in Figure 1, we derive task relations for 4 human-object
interaction tasks via attention weights provided by EgoT2-
g. The attention weights are temporally pooled and aver-
aged over all validation data, revealing task relations from
a global perspective. Results for human-human interaction
tasks are presented in Appendix A.4. In all, EgoT2 pro-
vides good interpretability patterns on (1) which subset of
tasks (2) which time segments lead to the final prediction.

5. Conclusion
As a step towards unified egocentric perception, we pro-

pose EgoT2, a general and flexible design for task transla-
tion. EgoT2 consists of heterogeneous video models op-
timized for each individual task and a transformer-based
task translator that captures inter-frame and inter-task re-
lations. We propose EgoT2-s to improve one primary task
and EgoT2-g to conduct task translation for all tasks simul-
taneously. Results on 7 diverse egocentric video tasks reveal
valuable task relations and validate the proposed design.
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A. Appendix

This Appendix includes:

1. Reference to video with qualitative examples of EgoT2

2. Experimental Setup

3. Additional Results

4. Additional Visualizations

A.1. Video containing qualitative results

We invite the reader to view the video available at
https://vision.cs.utexas.edu/projects/
egot2/ where we show qualitative examples of (a) how
EgoT2 captures inter-frame and inter-task relations, (b)
video retrieval results using attention weights of task tokens
and (c) how EgoT2-g makes predictions conditioned on the
task prompt and given video.

From these examples, we can see that EgoT2 offers good
interpretability on task relations, revealing clearly which
temporal segments and which subsets of tasks contribute to
improving a given task. Moreover, we run EgoT2-s on all
AR validation videos and retrieve video segments with top
PNR and OSCC weights. The results show that videos with
large PNR and OSCC weights actually all involve heavy
human-object interactions, which is the focus of these two
tasks. Finally, we observe that EgoT2-g successfully per-
forms task translation conditioned on the task of interest and
task tokens through encoder-decoder attention weights.

A.2. Experimental Setup

Below we provide detailed descriptions of the 7 tasks we
adopt in our study.

• Point-of-no-return Keyframe Localization (PNR):
given a short video of a state change, estimate the
keyframe that contains the time at which a state
change begins.

• Object State Change Classification (OSCC): given a
video clip, classify whether an object state change has
taken place or not.

• Action Recognition (AR): classify the action (verb and
noun) of the camera wearer from a short egocentric
video clip; there are 115 verb categories and 478 noun
categories.

• Long-term Action Anticipation (LTA): given a video
clip, predict the camera wearer’s future sequence of
actions; the action vocabulary is identical to that used
in AR.

• Looking At Me (LAM): given an egocentric video in
which the faces of social partners have been localized
and identified, classify whether each face is looking at
the camera wearer.

• Talking To Me (TTM): given a video and audio with
the same tracked faces, classify whether each face is
talking to the camera wearer.

• Active Speaker Detection (ASD): given a cropped face
video clip and corresponding audio segments, identify
whether this person is speaking.

A.2.1 Dataset Details

Note that Ego4D does not have a common training set that
provides labels for all tasks. In all of our experiments, the
task-specific models are trained on 7 subsets of Ego4D. Ta-
ble 7 reports the percentage of training videos shared be-
tween task pairs. Among the 7 task datasets, the average
data overlap between two tasks is 22.5%, and for 57.1% of
the task pairings there is strictly disjoint training data. The
limited intersections in these 7 task datasets lend support to
the generalizability of EgoT2 across multiple datasets.

PNR OSCC AR LTA LAM TTM ASD

PNR 100 48.2 32.6 32.6 0 0 0
OSCC 48.2 100 67.0 67.0 0 0 0

AR 32.6 67.0 100 100 0 0 0
LTA 32.6 67.0 100 100 0 0 0
LAM 0 0 0 0 100 12.8 12.8
TTM 0 0 0 0 12.8 100 100
ASD 0 0 0 0 12.8 100 100

Table 7. Percentage of training videos shared between task pairs
for the 7 tasks used in the experiments. There is a low level of data
overlap between individual task pairs.

A.2.2 Implementation Details

Task-Specific Translation. As shown in Table 1 of the
main paper, the LTA task-specific backbone requires videos
of 16 seconds while the other three human-object interac-
tion tasks operate on videos of 8 seconds. Therefore, when
Tp is LTA, we slide the other task-specific backbones along
the 16-seconds time window to obtain auxiliary task fea-
tures; the stride size is set to 8 seconds. When Tp is PNR,
OSCC or AR, LTA is not a valid auxiliary task since its task-
specific model requires video of a longer temporal span than
provided in these three datasets. While it is possible to ex-
pand the video for the LTA model to be applicable, we aim
at avoiding advantages brought by a longer time window for
a fair comparison with prior work and thus exclude LTA as
the auxiliary task. Nevertheless, to provide a complete eval-
uation, we consider one such special case when the primary
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task is AR and the auxiliary task is LTA (see results marked
with ⋆ in Table 9). Similarly, for the 3 human-human inter-
action tasks, LAM dataset provides video instances of 0.2
seconds while the TTM and ASD task-specific model re-
quires videos of a longer time span. Consequently, LAM is
not considered as the primary task.
Task-General Translation. For human-object interaction
tasks, we follow common practices [26] and treat predict-
ing verbs and nouns as two separate tasks. EgoT2-g is thus
jointly optimized on 6 tasks: PNR, OSCC, AR Verb, AR
Noun, LTA Verb and LTA Noun. We simplify the LTA task
as predicting actions at a single timestamp into the future
as opposed to the 20 timestamps considered in the origi-
nal benchmark since otherwise the decoder would be heav-
ily biased towards the LTA task (see parameter compari-
son in Table 2 of the main paper). While EgoT2-s pre-
dicts future actions at future 20 timestamps and uses edit
distance@20 (ED@20) as the metric, we report verb and
noun accuracy for LTA in EgoT2-g. For human-human in-
teractions, while LAM is not considered as the primary task
for EgoT2-s, EgoT2-g provides the flexibility to incorporate
LAM in training as well. In particular, when task prompt is
LAM, we feed LAM tokens as input to the task fusion trans-
former and do not use other task tokens following the time
span guidelines discussed above.
Tokenization and Detokenization. We construct a small
task-related vocabulary for the sequence decoder in EgoT2-
g to work. Namely, it is based on the label spaces of
all candidate tasks and maps the original output label to a
vocabulary. For PNR, we transform the output keyframe
(i.e., an integer from 0-15) to be its character format. For
OSCC/LAM/TTM/ASD, we transform the output label to
the word ‘True’ or ‘False’. For AR and LTA, we use the
verb and noun vocabulary and transform the label to the
word. In addition, we include the 7 task prompts (i.e., PNR,
OSCC, AR, LTA, LAM, TTM and ASD) in the vocabulary.
Consequently, we can transform the original label for all
tasks to be a sequence and transform the predicted sentence
back to the original label since it is a one-to-one mapping.
Note that EgoT2-g is not sensitive to the choice of prompts.
For example, the human-human interaction task prompts
are [LAM], [TTM], [ASD], but [TaskA], [TaskB], [TaskC]
would work too. Any output tokens outside the target task’s
label space are considered incorrect predictions. We find
that EgoT2-g learns to predict words within the target task
dictionary after a few epochs.
Hyperparameters and Optimization. Our implementa-
tion is based on the official Ego4D codebase.6 EgoT2-s re-
tains the same training configurations (e.g., batch size, op-
timizer, total number of training epochs) unless otherwise
specified. (1) Tp is PNR: Transfer (AR) is implemented
as a SlowFast backbone pretrained on AR dataset followed

6https://github.com/EGO4D.

by a 1-layer MLP with hidden dimension of 4096 and the
PNR prediction head. Similarly, Finetuning and Transfer
(OSCC) consists of a I3D ResNet-50 backbone pretrained
on PNR and OSCC respectively followed by a 1-layer MLP
with hidden dimension of 512 and the PNR prediction head.
Late Fusion uses 3 1-layer MLPs to map features generated
by each task-specific model (i.e., PNR, OSCC and AR) to
be 512-dimensional and concatenates the three task-specific
features; the concatenated features are then passed to the
PNR prediction head. EgoT2-s consists of 6-layer trans-
former encoders with hidden dimension of 128. (2) Tp is
OSCC: we follow the same way as in PNR to implement
these baselines, and the task fusion transformer in EgoT2-s
has 5 layers with hidden dimension set as 128. (3) Tp is AR:
Late Fusion follows the same design as in PNR and OSCC
but has hidden dimension equal to 256. EgoT2-s uses a
transformer encoder of 3 layers and hidden dimension set
as 128. (4) Tp is LTA: The hidden dimension of Finetun-
ing, Transfer and Late Fusion is set as 2048. EgoT2-s has a
1-layer transformer encoder with 128 dimension. (5) Tp is
TTM: Finetuning and Transfer baselines are implemented
as 3-layer MLPs with hidden dimension set as 1024 and
512. Late Fusion uses a 2-layer MLP to take concatenated
features as input and passes the processed features to the
TTM prediction head. EgoT2-s uses a 1-layer transformer
encoder with hidden dimension of 128. (6) Tp is ASD: The
baselines follow the same design as in TTM, and the hidden
dimension of Transfer and Late Fusion is set as 6144 and
2048, respectively. EgoT2-s uses a 1-layer transformer en-
coder with hidden dimension of 256. Learning rate is set as
1e-3.

For EgoT2-g on human-object interaction tasks, we use a
batch size of 4× 8 distributed over 8 GPUs. The task trans-
lator consists of 3 transformer encoder layers and 3 trans-
former decoder layers with hidden dimension equal to 512.
We use AdamW optimizer with learning rate and weight
decay set as 1e-4. For human-human interaction tasks, we
set the batch size for LAM, TTM and ASD to be 256, 15
and 1800 respectively to balance three dataloaders. The
task translator has 1 transformer encoder layer and 1 trans-
former decoder layer with hidden dimension set as 128. We
use Adam optimizer with learning rate of 5e-4 and weight
decay of 5e-5. All models are trained for 20 epochs.

A.3. Additional Results

Analysis on Task Relations. From Table 2-3 in the main
paper, we observe the superior performance of EgoT2-s.
Moreover, Transfer baseline results from these two tables
offer insights on task relations. Intuitively, tasks within one
benchmark (e.g., AR and LTA) are very related and can help
each other, and tasks across benchmarks (e.g., PNR and AR,
OSCC and AR) may seem unrelated at first sight. It is inter-
esting to see that our results capture both inter-benchmark
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Tp is TTM Tp is PNR Tp is OSCC
# Params ·106 mAP # Params ·106 Error # Params ·106 Acc.
Trainable (All) (s) Trainable (All) (s) ↓ Trainable (All) (%) ↑

TS model [23] 20.2 (20.2) 58.91 32.2 (32.2) 0.615 32.2 (32.2) 68.22

EgoT2-s (Subset of Tasks) 0.7 (35.3) 65.89 5.8 (70.2) 0.608 5.8 (70.2) 69.69
EgoT2-s (All Tasks) 0.7 (51.1) 66.54 6.4 (132) 0.610 7.4 (133) 72.69

Table 8. Results of EgoT2-s when primary task is Tp is TTM, PNR and OSCC. We compare EgoT2-s that uses a subset of auxiliary tasks
with EgoT2-s using all auxiliary tasks. When Tp is TTM, ‘Subset of Tasks’ denote TTM and LAM; When Tp is PNR or OSCC, ‘Subset of
Tasks’ denote PNR and OSCC.

Tp is AR Tp is LTA
# Params ·106 Acc. (%) ↑ # Params ·106 ED@20 ↓
Trainable (All) Verb Noun Trainable (All) Verb Noun

TS model [23] 63.3 (63.3) 22.18 21.55 180 (242) 0.746 0.789

EgoT2-s (Subset of Tasks) 2.4 (282) 21.94⋆ 23.33⋆ 25.0 (304) 0.739 0.774
EgoT2-s (All Tasks) 4.3 (130) 23.04 23.28 41.8 (348) 0.731 0.769

Table 9. Results of EgoT2-s when primary task is Tp is AR and LTA. ‘Subset of Tasks’ denote AR and LTA. The results achieved with
expanded video length are makred with a ⋆.

and intra-benchmark task relations: (1) when Tp is PNR,
the Transfer of OSCC or AR features yields similar results,
achieving the temporal localization error of 0.611 and 0.613
seconds, respectively; (2) when Tp is OSCC, surprisingly,
Transfer (AR) outperforms Transfer (PNR) and a dedicated
OSCC model (i.e., Finetuning) by ∼3%; (3) when Tp is AR
or LTA, PNR and OSCC features transfer better to predict-
ing verbs than predicting nouns. We hypothesize that this
is because an object state change is dependent on verbs and
agnostic to nouns.

We find that the task of action recognition (AR) is very
informative in predicting the other 3 tasks; this suggests that
similar to common practices in third-person video under-
standing (e.g., finetuning an action recognition model pre-
trained on Kinetics to other downstream tasks), the Ego4D
AR model can also serve as a good initialization choice for
other egocentric video tasks. In addition, from the task
definition, PNR and OSCC are more object-centric while
AR and LTA focus on human activities. Besides the ob-
vious task relations (i.e., PNR to OSCC, AR to LTA), we
uncover connections between tasks belonging to different
benchmarks as well. AR task provides information comple-
mentary to primary task features and benefits OSCC. PNR
and OSCC models convey information that are helpful for
classifying verbs in AR and LTA.

For human-human interactions, when the primary task
is TTM, the good results achieved by Transfer (LAM) and
Transfer (ASD) indicate that both auxiliary tasks provide
informative cues for TTM. This also aligns with our intu-
ition that LAM and TTM are very related tasks as people
tend to make eye contact when they talk to someone. In
addition, when Tp is ASD, Transfer baseline results indi-

cate that TTM and LAM are detrimental to the ASD task.
We conjecture that this may be because the act of someone
looking at the camera wearer does not necessarily relate to
the fact that this person is the active speaker. In all, we hope
our analysis on task relations can facilitate holistic egocen-
tric video understanding.
Varying the Set of Auxiliary Tasks. In Table 2-3 of the
main paper we presented results for EgoT2-s (All Tasks),
where all tasks within the same cluster of Tp are adopted
as auxiliary tasks. Here we consider the setting where we
constrain the auxiliary tasks to be within the same bench-
mark as Tp. Results of EgoT2-s using a subset of tasks7 are
shown in Table 8-9.

By comparing results of EgoT2-s (Subset of Tasks) and
EgoT2-s (All Tasks) in these two tables, we see that there
are cases where EgoT2 can effectively leverage synergies
between tasks that belong to different benchmarks. For in-
stance, when Tp is OSCC, since AR features provide ben-
eficial cues, EgoT2-s with all auxiliary tasks outperforms
by 3% the EgoT2-s variant that only uses PNR and OSCC
features. Conversely, we would expect that the introduc-
tion of inter-benchmark auxiliary tasks may cause a detri-
mental effect when the benchmarks involve dissimilar tasks,
for instance, when Tp is PNR. However, even in such case
EgoT2-g (All Tasks) is still on-par with EgoT2-g (Subset of
Tasks) and it outperforms all transfer baselines. This sug-
gests that it has strong ability to mitigate negative transfer.
Ablation Study. In Table 4 of the main paper, we provided
an ablation study of EgoT2-s when the primary task is TTM
to validate our design choices. Here, we conduct another set

7We exclude ASD here since there is no other task from the same
benchmark as ASD (see Table 1 in the main paper).
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# Params ·106
Trainable (All)

Auxiliary
Tasks

Temporal
Information

Frozen
TS model

mAP
(%) ↑

(a) 8.9 (105) ✓ ✓ 69.68
(b) 7.4 (133) ✓ ✓ 71.65
(c) 133 (133) ✓ ✓ 72.22
(d) 7.4 (133) ✓ ✓ ✓ 72.69

Table 10. Ablation study of EgoT2-s (Tp is OSCC).

Acc. (%) SlowFast EgoVLP

TS Model 68.22 73.00
EgoT2-s 72.69 75.77

Table 11. Experiments with the TS model being SlowFast and
EgoVLP when Tp is OSCC. By resorting to auxiliary task informa-
tion, EgoT2-s demonstrates further performance improvements.

of ablation studies for the case when Tp is OSCC. The re-
sults are summarized in Table 10. The results are consistent
with those reported in Table 4. The three components (i.e.,
the introduction of auxiliary tasks, preserving temporal in-
formation and freezing TS backbones) work together and
contribute to the efficacy of EgoT2-s.
Experiments with a different TS backbone. In the ex-
periments presented in the main paper, we selected as TS
backbones, the baseline models of Ego4D in order to fa-
cilitate comparison with prior work and to demonstrate the
ability of our approach to achieve state-of-the-art results
with simple network designs. However, EgoT2-s provides
a flexible framework that can incorporate any advanced ar-
chitecture. Here we demonstrate this flexibility by replac-
ing the I3D ResNet-50 backbone with a video transformer
used in EgoVLP [40] for the case when Tp is OSCC. We
report results in Table 11. We find that the improvement
brought by auxiliary task information (i.e., AR in this case)
is orthogonal to architecture advances and pretraining tech-
niques. EgoT2-s can further improve the EgoVLP model
performance by 2.77%.
Comparison of EgoT2-s and EgoT2-g. We provide a side-
by-side comparison of our proposed two variants of EgoT2
over the TS model in Figure 7. As discussed in Sec. A.2.2,
LTA has two metrics (accuracy for future 1 timestamp and
edit distance for future 20 timestamps). Since EgoT2-s is
optimized towards long-term predictions and EgoT2-g is
trained to make one-step predictions, EgoT2-s does not per-
form as well as EgoT2-g in terms of LTA verb and noun ac-
curacy, and ED@20 is not computable for EgoT2-g. In gen-
eral, EgoT2 achieves great performance gains over the TS
models across tasks, and EgoT2-s leads to top performance.
Moreover, Table 12 compares the number of trainable pa-
rameters and multiply-accumulate operations required for
EgoT2-s and EgoT2-g. For EgoT2-s, we sum the train-
able parameters (computations) of all task translators within
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Figure 7. Performance comparison of two variants of EgoT2 with
the TS models on 6 tasks. EgoT2 leads to great improvement over
the TS model and EgoT2-s achieves top performance.

Human-Object Tasks Human-Human Tasks
# Params # MACs # Params # MACs

Sum of EgoT2-s 2.2 1802.5 59.9 386.6
EgoT2-g 1.4 1803.6 34.5 386.2

Table 12. Efficiency comparison of two variants of EgoT2. We
report the number of trainable parameters (in millions) and the
multiply-accumulate operations (MACs, in billions) required for
one forward pass. Compared with a set of EgoT2-s models devel-
oped for each task, EgoT2-g has fewer trainable parameters and
similar computational costs.

one cluster. EgoT2-g shares the task translator across tasks
within one cluster and hence saves parameters. The com-
putational costs of EgoT2-s and EgoT2-g are similar, as the
majority of the computation lies in the task-specific back-
bones, which are identical in both variants.
EgoT2-g across Task Clusters. In Table 5 of the main pa-
per, we presented separate results of EgoT2-g on the clus-
ter of human-human interaction (HHI) tasks and the clus-
ter of human-object interaction (HOI) tasks due to the sub-
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Figure 8. Average encoder-decoder attention weights of EgoT2-g.
The heatmaps illustrate how task-specific feature tokens (x axis)
contribute to the task of interest (y axis) in task translation.

stantial domain gap between hese two clusters of Ego4D
videos. Take Figure 4 as an example, videos from HOI
task datasets (upper figure) only capture human-object in-
teractions and do not have other people in the scene. Thus,
no HH interactions would be detected in these HOI videos,
and as such we would not expect HHI features to contribute
to HOI tasks. To verify this hypothesis, we implement a
cross-cluster EgoT2-g that attends to two HOI tasks (PNR
and OSCC) and one HHI task (LAM) simultaneously and
report the results in Table 13. The cross-cluster EgoT2-g
yields similar performance with intra-cluster EgoT2-g.

PNR
Error (s) ↓

OSCC
Acc. (%) ↑

LAM
mAP (%) ↑

EgoT2-g (intra-cluster) 0.612 68.6 77.63
EgoT2-g (cross-cluster) 0.611 68.3 77.56

Table 13. Results of EgoT2-g across 2 task clusters. Due to the
domain gap between human-human interaction tasks and human-
object interaction tasks, EgoT2-g (cross-cluster) does not lead to
further improvement compared with the EgoT2-g variant trained
within the same task cluster.

A.4. Additional Visualizations

Finally, Figure 8 shows encoder-decoder attention
weights of the last layer transformer produced by EgoT2-g
for 3 human-human interaction (HHI) tasks and 6 human-
object interaction (HOI) tasks. The attention weights of
task-specific tokens are temporally pooled into one token
and averaged over all validation video data. x axis are dif-
ferent task tokens and y axis corresponds to task prompts.
Note that in Figure 1 in the main paper, we average the
attention weights of verb and noun for AR and LTA and
visualize the resulting 4 × 4 matrix. Figure 8 reveals in-
herent task relations and provides an intuitive illustration of
how the task-general translator utilizes task tokens differ-
ently conditioned on the task of interest (i.e., task prompt).
In the left figure, we observe that LAM and ASD features

have large attention weights when the task prompt is TTM,
indicating that EgoT2-g effectively utilizes the two rele-
vant tasks to improve TTM predictions. On the contrary,
when the task prompt is ASD, ASD tokens are largely acti-
vated while non-beneficial LAM and ASD tokens are rarely
adopted in task translation. This demonstrates that EgoT2-
g learns to selectively activate task tokens to mitigate the
issue of negative transfer. In the right figure, AR task to-
kens are more activated given that the task prompt is OSCC
rather than PNR. This aligns with our previous finding in
EgoT2-s that AR features are beneficial for the OSCC task.
Also, when the task of interest is predicting nouns (i.e., task
prompt is AR noun or LTA noun), attention weights of PNR
and OSCC are very small, which indicates that the two task
features do not help in noun prediction. The conclusion is
also consistent with EgoT2-s.
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