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Abstract

Semi-Supervised Learning can be more beneficial for the
video domain compared to images because of its higher an-
notation cost and dimensionality. Besides, any video un-
derstanding task requires reasoning over both spatial and
temporal dimensions. In order to learn both the static
and motion related features for the semi-supervised ac-
tion recognition task, existing methods rely on hard in-
put inductive biases like using two-modalities (RGB and
Optical-flow) or two-stream of different playback rates.
Instead of utilizing unlabeled videos through diverse in-
put streams, we rely on self-supervised video represen-
tations, particularly, we utilize temporally-invariant and
temporally-distinctive representations. We observe that
these representations complement each other depending on
the nature of the action. Based on this observation, we
propose a student-teacher semi-supervised learning frame-
work, TimeBalance, where we distill the knowledge from a
temporally-invariant and a temporally-distinctive teacher.
Depending on the nature of the unlabeled video, we dy-
namically combine the knowledge of these two teach-
ers based on a novel temporal similarity-based reweight-
ing scheme. Our method achieves state-of-the-art perfor-
mance on three action recognition benchmarks: UCF101,
HMDB51, and Kinetics400. Code: https://github.
com/DAVEISHAN/TimeBalance.

1. Introduction

Recent development in action recognition have opened
up a wide range of real-world applications: visual security
systems [19, 51, 57], behavioral studies [35], sports analyt-
ics [47], elderly person fall detection systems [10, 50, 86],
etc. Most of these developments are mainly courtesy of
large-scale curated datasets like Kinetics [12], HVU [21],
and HACS [88]. However, labeling such a massive video
dataset requires an enormous amount of annotation time
and human effort. At the same time, there is a vast

amount of unlabeled videos available on the internet. The
goal of semi-supervised action recognition is to use such
large-scale unlabeled dataset to provide additional supervi-
sion along with the labeled supervision of the small-scale
dataset.

Semi-supervised learning for image classification has
seen tremendous progress in recent years [1, 58, 64, 69].
In semi-supervised action recognition, recent approaches
have adapted these image-based methods by incorporat-
ing motion-related inductive biases into the setup. For
instance, some methods [78, 80] use two different input
modalities where the original RGB video promotes learn-
ing appearance-based features while optical flow/temporal
gradients promotes learning of motion-centric features. An-
other set of methods uses input streams of different sam-
pling rates to achieve this [65, 71]. Although these input-
level inductive biases are simple-yet-very-effective to pro-
vide unlabeled supervision for action recognition, they are
not suitable for large-scale datasets due to their multiplica-
tive storage requirement and high preprocessing overhead.

Contrastive Self-supervised Learning (CSL) has
emerged as a powerful technique to learn meaningful
representations from unlabeled videos. Existing video CSL
methods deal with mainly two different kinds of objec-
tives: (1) Learning similarities across clips of the same
video i.e temporally-invariant representations [29, 54, 56]
(2) Learning differences across clips of the video i.e.
temporally-distinctive representations [18, 36, 76]. Each
objective has its own advantages, depending on the nature
of the unlabeled videos being used.

Our experiments reveal a clear difference in the class-
wise performance of both methods, as illustrated in Fig. 1.
The right half of the figure shows the action classes where
the temporally-invariant model is dominant. We can ob-
serve that all such action classes are atomic actions with
high repetitions, e.g., Fencing, Knitting. Any two
clips from such videos are highly similar, hence, increasing
agreement between them i.e. learning temporal-invariant
representation is more meaningful. The left half of the fig-
ure shows action classes where temporally-distinctive rep-
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Classwise performance difference for action recognition task

(% Accuracy of Temporally-Distinctive model) - (% Accuracy of Temporally-Invariant model)

Temporally-Distinctive Representations perform better

Clips share high-similarity, hence learning temporally-
invariant representation is useful

FencingRandom Clip-1 Random Clip-2

Clips do not share high similarity, hence learning temporally-
different(distinctive) representation is useful

Random Clip-1 Random Clip-2
Javelin Throw

Temporally-Invariant Representations perform better

Figure 1. Motivation for Temporally-Distinctive and Temporally-Invariant Representations. In order to leverage the unlabeled videos
effectively, we consider two kinds of self-supervised video representation learning techniques with complementary goals: (1) Temporally
Invariant Representations (Bottom Right) encourage learning the commonalities of the clips, hence it mainly focuses on learning
features related to highly frequent repetitions and appearance. (2) Temporally Distinctive Representations (Bottom Left) encourage
learning the dissimilarities between clips of the same video, hence it encourages learning features for sub-actions within the video. The
plot shows the activity-wise UCF101 performance difference of finetuned models which were self-supervised pretrained with temporally-
distinctive and temporally-invariant objectives. The plot shows extreme 25-25 classes after sorting the all classwise differences.

resentations perform better. We can observe that such ac-
tion classes are slightly more complex i.e. they contain sub-
actions, e.g., JavelinThrow first involves running and
then throwing. Any two clips from such videos are visually
very different, hence if we maximize agreement between
them then it results in loss of the temporal dynamics. There-
fore, temporally-distinctive representation is more suitable
in such videos.

Based on our observation, we aim to leverage the
strengths of both temporally-invariant and temporally-
distinctive representations for semi-supervised action
recognition. To achieve this, we propose a semi-supervised
framework based on a student-teacher setup. The teacher
supervision includes two models pre-trained using CSL
with temporally-invariant and temporally-distinctive objec-
tives. After pre-training, the teachers are fine-tuned with
the labeled set to adapt to the semi-supervised training of
the student. During semi-supervised training, we weigh
each teacher model based on the nature of the unlabeled
video instance. We determine the nature of the instance
by computing its similarity score using the temporal self-
similarity matrices of both teachers. This way, the student
is trained using the labeled supervision from the labeled
set and the unlabeled supervision from the weighted aver-
age of the teachers. It is worth noting that our framework
doesn’t depend on complicated data-augmentation schemes

like FixMatch [66].
The contributions of this work are summarized as follows:

• We propose a student-teacher-based semi-supervised
learning framework that consists of two teachers with
complementary self-supervised video representations:
Temporally-Invariant and Temporally-Distinctive.

• In order to leverage the strength of each representation
(invariant or distinctive), we weigh a suitable teacher
according to an unlabeled video instance. We achieve
it by the proposed temporal-similarity-based reweight-
ing scheme.

• Our method outperforms existing approaches and
achieves state-of-the-art results on popular ac-
tion recognition benchmarks, including UCF101,
HMDB51, and Kinetics400.

2. Prior Work
Semi-supervised learning in images Semi-supervised
learning is one of the fundamental approaches to learn-
ing from limited labeled data [16, 26, 40, 42, 49, 55, 59].
There are two common approaches for semi-supervised
learning are consistency regularization [44, 53, 62, 69, 79]
and pseudo-labeling [1, 45, 58, 60, 64, 85]. The consistency
regularization methods attempt to achieve perturbation in-
variant output space. To this end, these methods try to
minimize a distance/divergence-based loss as a measure of
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consistency between two differently perturbed/augmented
versions of an image. Pseudo-labeling-based methods on
the other hand promote entropy minimization to improve
by performing self-training on the confident pseudo-labels
generated from the network. Hybrid methods [7,8,66] com-
bine consistency regularization and pseudo-labeling tech-
niques to obtain further improvement. Some of the recent
works [3, 16, 84] have also shown the effectiveness of self-
supervised representations in solving this task. Our work is
somewhat in the spirit of this last set of works as we also
leverage self-supervised representation learning to obtain
temporally distinct and invariant features.
Semi-supervised learning in videos Although there is a
tremendous recent development in action recognition [2,
6, 9, 13, 20, 22, 32, 48, 52, 61, 73, 75, 87], semi-supervised
learning in videos is not explored as in the image domain.
CMPL [81] utilizes a FixMatch framework, where they
study the effect of model capacity to provide complemen-
tary gains of unlabeled videos. They provide empirical ev-
idence that the smaller model is responsible for learning
the motion features whereas, the bigger model learns more
appearance-biased features. However, defining smaller and
bigger models is very relative, and the observation may
not hold true for different architectures. Some prior work
injects temporal dynamics to their semi-supervised frame-
work by additional input modality to RGB videos like tem-
poral gradients [78], optical-flow [80], or P-frames [70].
Another set of methods utilizes consistency loss between
the slow and fast input streams of the video to leverage the
unlabeled videos [65, 71]. We can see that the prior works
rely on hard-inductive biases like model architectures, in-
put modality, or input sampling to learn temporal-invariance
and distinctiveness. On the other hand, we do not have such
a hard design choice; we leverage the unlabeled videos by
the nature of the video instance using two complementary
self-supervised teachers.
Self-supervised learning (SSL) In recent years, self-
supervised learning has demonstrated learning powerful
representations for images [11, 15, 30, 33, 34, 83] and
videos [18, 23, 25, 36, 37, 56, 63, 72]. Although some
works [16,84] have exploited self-supervised representation
in semi-supervised image classification, Video SSL is not
explored yet for semi-supervised action recognition.

Video SSL methods can be grouped mainly into two cat-
egories: the first set of methods focuses on learning tempo-
ral invariance [25, 54, 56]. These methods are a simple-yet-
effective extension of instance-discimination-based meth-
ods like SimCLR [15], MoCo [34], etc., where mutual
information between two views of an instance is maxi-
mized. For videos, two views are two clips from different
timestamps, hence it introduces temporal invariance in the
learned representations. The second set of methods focuses
on learning the temporal distinctiveness, where they try to

Supervised Loss

Temporally Distinctive
Teacher (fD)

Temporally Invariant
Teacher (fI)

Teacher
Prediction

Reweighting

Student Model (fS)

Stop Gradient

Clip x(i)

Video v(i)

Dist. Prediction pD

Inv. Prediction pI

Avg. Prediction pT

Student Prediction
pS

Unsupervised Loss

Label

Overall Loss

For Labeled Samples

1.0

Figure 2. Our Framework We use a teacher-student framework
where we use two teachers: fI and fD . The input clip x(i) is given
to the teachers and student to get their predictions. We utilize a
reweighting strategy to combine the predictions of two teachers.
Regardless of whether the video v(i) is labeled or unlabeled, we
distill the combined knowledge of teachers to the student. For the
labeled samples, we also apply standard cross-entropy loss.

learn different representations for different clips through
contrastive loss [18,68,76,82] or through different temporal
pretext transformations [5, 14, 17, 36, 37, 77].

TCLR [18] introduces temporal contrastive losses for
both temporally pooled and unpooled features to learn the
temporal distinctiveness. In our method, we utilized these
losses to learn the temporal distinctive teacher.

3. Method
Let’s consider a small labeled set of videos Dl =

{(v(i),y(i))}Nl
i=1, where v(i) and y(i) denote ith video in-

stance and its associated action label and Nl is number of
total instances in the dataset. We also have access to a unla-
beled dataset Du = {v(i)}Nu

i=1, where Nu is the total num-
ber of unlabeled videos and Nu ≫ Nl. The objective of
the semi-supervised action recognition is to utilize both la-
beled and unlabeled sets (Dl and Du) to improve the action
recognition performance.

A high-level schematic diagram of our framework is
depicted in Fig. 2. Our semi-supervised learning frame-
work, TimeBalance, is a teacher-student framework. To
train on the unlabeled samples, we distill the knowledge
of two teacher models: temporally-invariant teacher fI and
temporally-distinctive teacher fD, which are trained in self-
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supervised manner, to a student model fS . In the following,
we explain the details of TimeBalance. To be particular,
in Sec. 3.1, we present the self-supervised pretraining of
teacher models. In Sec. 3.2 we explain the semi-supervised
training of the student model and our Temporal Similarity
based Teacher Reweighting (TSTR) scheme.

3.1. Self-supervised pretraining of teachers

From a video instance v(i), we sample n consecutive
clips X(i) = {x(i)

t }nt=1, where t represents clip location
(timestamp). Each of these clips undergoes stochastic trans-
formations (e.g. random crop, random color jittering, etc.).
Next, we send these clips to the teacher model f and a non-
linear projection head g respectively. The non-linear pro-
jection head, projects the clip-embedding from the teacher
model to a lower-dimensional normalized representation z,
s.t. z ∈ Rd, where d is the dimension of output vector z.

3.1.1 Pretraining of Temporally-Invariant Teacher

The goal of temporal-invariant pretraining is to learn the
shared information across the n different clips {x(i)

t }nt=1 of
the same video instance i. To achieve this, we maximize
the agreement between the projections, z, of two different
clips from the same video instance {(z(i)t1 , z

(i)
t2 ) | t1, t2 ∈

{1...n} and t1 ̸= t2}, while maximizing the disagreement
between the projections of clips from different video in-
stances {(z(i), z(j)) | i, j ∈ B and i ̸= j}, where B is
the batch-size. This contrastive objective can be expressed
as the following equation:

L(i)
I = −

n∑
t1,t2
t2 ̸=t1

log
h
(
z
(i)
t1 , z

(i)
t2

)
B∑

j=1

1[j ̸=i]h(z
(i)
t1 , z

(j)
t1 ) + h(z

(i)
t1 , z

(j)
t2 )

,

(1)
where h(u1,u2) = exp

(
u1

Tu2/(∥u1∥∥u2∥τ)
)

is used to
compute the similarity between u1 and u2 vectors with an
adjustable temperature parameter, τ . 1[j ̸=i] ∈ {0, 1} is an
indicator function which equals 1 iff j ̸= i.

L(i) = L(i)
sup + ωL(i)

unsup, (2)

where ω is the weight of the unsupervised loss.

3.1.2 Pretraining of Temporally-Distinctive Teacher

Contrary to the goal of LI , temporally-distinctive pretrain-
ing deals with learning the differences across the clips of
the same video instance. To achieve this, we generate an-
other set of clips X̃(i) = {x̃(i)

t }nt=1, which are randomly-
augmented versions of clips in X(i). After that, we max-
imize the agreement between the projections of a pair of
clips {(z(i)t1 , z̃

(i)
t1 ) | t1 ∈ {1..n}} from the same timestamp

Video v(i)

MLP MLP

Temporally
Distinctive

Teacher (fD)

Temporally
Invariant

Teacher (fI)

Distinctive
Temporal
Similarity

Matrix

Invariant
Temporal
Similarity

Matrix 

Average Temporal
Similarity Matrix

Clip-1   Clip-2   Clip-3   Clip-4  

CD(1,2) CD(1,3)CD(1,1) CD(1,4)

CD(2,2) CD(2,3)CD(2,1) CD(2,4)

CD(3,2) CD(3,3)CD(3,1) CD(3,4)

CD(4,2) CD(4,3)CD(4,1) CD(4,4)

CI(1,2) CI(1,3)CI(1,1) CI(1,4)

CI(2,2) CI(2,3)CI(2,1) CI(2,4)

CI(3,2) CI(3,3)CI(3,1) CI(3,4)

CI(4,2) CI(4,3)CI(4,1) CI(4,4)

C(1,2) C(1,3)C(1,1) C(1,4)

C(2,2) C(2,3)C(2,1) C(2,4)

C(3,2) C(3,3)C(3,1) C(3,4)

C(4,2) C(4,3)C(4,1) C(4,4)

Temporal Similarity Score

Figure 3. Temporal Similarity based Teacher Reweighting
Firstly, a set of clips from video v(i) are passed through the dis-
tinctive and invariant teachers to get representations. Secondly,
Temporal Similarity Matrices (C(i)

D and C
(i)
I ) are constructed

from the cosine similarity of one timestamp to another timestamp.
Finally, from the average matrix C(i), a temporal similarity score
s(i) is computed. s(i) is utilized to combine predictions of teachers
for video v(i) during semi-supervised training.

and maximize the disagreement between the projections of
pair of temporally misaligned clips. A mathematical ex-
pression for this contrastive objective can be written as:

L(i)
D1 = −

n∑
t1=1

log
h
(
z
(i)
t1 , z̃

(i)
t1

)
n∑

t2=1
t2 ̸=t1

h(z
(i)
t1 , z

(i)
t2 ) + h(z

(i)
t1 , z̃

(i)
t2 )

, (3)

The above contrastive loss imposes temporal distinctive-
ness at the clip-level i.e. temporally-average-pooled fea-
tures. Similarly, we can also impose temporal distinctive-
ness (L(i)

D2) on a more fine-grained level i.e. on the un-
pooled temporal feature slices [18]. More details in Supp.
Sec. D. We combine these pooled and unpooled temporal-
distinctiveness objectives to obtain L(i)

D = L(i)
D1 + L

(i)
D2.

The primary objective of this work is semi-supervised
action recognition. Therefore, even though the self-
supervised teacher models lack any explicit notion of
category-specific output space, we argue that to solve the
downstream action recognition task their knowledge has to
be distilled from the action category-specific output space.
To this end, we finetune both of the self-supervised teacher
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models on the labeled set Dl using cross-entropy loss.

3.2. Semi-supervised training of student model

We initialize the student model with weights from a
video self-supervised model [18] trained on Du. During the
semi-supervised training, student model fS gets supervision
from two sources: (i) ground-truth label (if available), and
(ii) teacher supervision (Fig. 2). A visual aid is provided
in Supp. Sec. D for loss computations over the labeled and
unlabeled split in semi-supervised training. The supervi-
sion from the ground-truth label is utilized using standard
cross-entropy loss, as depicted in the following equation:

L(i)
sup = −

C∑
c=1

y(i)
c logp(i)

c (4)

For instance i, the prediction vectors of the invariant and
distinctive teacher are denoted as pI and pD, respectively.

Next, we will discuss our TSTR scheme to distill knowl-
edge from the temporally invariant and distinct teachers to
train the student model on the unlabeled data, Du and videos
of labeled data Dl.

Temporal Similarity based Teacher Reweighting. In
order to combine supervision from fI and fD for a particu-
lar video instance v(i), we first compute temporal similarity
scores. To this end, we compute the cosine similarity be-
tween each pair of clips to form a temporal similarity ma-
trix, C(i), as depicted in Fig. 3. The temporal similarity
matrix computation is described in the following,

C(i) =
[
Sim(z

(i)
t1 , z

(i)
t2 )

]n
t1,t2=1

, (5)

where, Sim(.) is the cosine similarity function.
We compute the temporal similarity matrix for both in-

variant and distinctive teachers denoted as C
(i)
I , and C

(i)
D ,

respectively. Next, in order to get a similarity score, s(i), for
an instance i, we take the average of non-diagonal elements
of both C

(i)
I , and C

(i)
D matrices.

s(i) =
1

2n(n− 1)

n∑
t1,t2=1
t2 ̸=t1

(C
(i)
I +C

(i)
D ) (6)

We use this temporal similarity score, s(i), to aggregate
the outputs of the teacher models. Let’s assume, for in-
stance i, the prediction vectors of the invariant and dis-
tinctive teacher are denoted as p

(i)
I and p

(i)
D , respectively.

Now, we want to combine these teacher prediction vectors
in such a way that the temporally-invariant prediction p

(i)
I

gets a higher weight if the temporal similarity score is high,
and the weight of the temporal-distinctive prediction p

(i)
D

gets higher in the case of a lower temporal similarity score.

This dynamic weighting scheme for obtaining the aggre-
gated teacher prediction is provided below.

p
(i)
T = s(i).p

(i)
I + (1− s(i)).p

(i)
D (7)

We use the combined teacher prediction p
(i)
T to provide

supervision to the student model usingL2 loss. We compute
this loss only on the unlabeled samples (Du and videos of
Dl without assigned labels), hence, we refer to this loss as
the unsupervised loss. This loss term is defined below.

L(i)
unsup =

(
p
(i)
T − p

(i)
S

)2

(8)

Finally, we sum both the supervised and unsupervised
losses to train the student model. The overall objective func-
tion is defined below.

3.3. Algorithm

Let’s consider models fI , fD, and fS are parameterized
by θI , θD, and θS . All steps of our semi-supervised training
are put together in Algorithm 1.

Algorithm 1: TimeBalance training algorithm

1 Inputs:
2 Datasets: Du, Dl

3 #Epochs: max ssl epochI , max ssl epochD,
max epochtune, max epoch

4 Learning Rates: αI , αD, αS

5 Output: Student model θS
6 Initialize θI , θD randomly;
7 Initialize θS with any SSL [18, 56] method on Du;
8 Temporally-Invariant Self-supervised Pretraining:
9 for e0 ← 1 to max ssl epochI do

10 θI ← θI − αI∇θILI(θI)
11 end
12 Temporally-Distinctive Self-supervised Pretraining:
13 for e0 ← 1 to max ssl epochD do
14 θD ← θD − αD∇θDLD(θD)
15 end
16 Compute the similarity score s(i) using Eq. 5
17 Finetuning the teacher models on labeled set Dl:
18 for e0 ← 1 to max epochtune do
19 θ∗I = argminθILsup(θI)
20 θ∗D = argminθDLsup(θD)

21 end
22 Semi-supervised training of student on Dl + Du:
23 for e0 ← 1 to max epoch do
24 L= Lsup(θS) + ωLunsup(θS , θ

∗
D, θ∗I , s

(i))
25 θS ← θS − αS∇θSL

26 end

5



Method Backbone Params
(M) Input #F UCF101 HMDB51 Kinetics400

1% 5% 10% 20% 50% 40% 50% 60% 1% 10%
PL ICML’13 [46] 3D-ResNet18 13.5 V 16 - 17.6 24.7 37.0 47.5 27.3 32.4 33.5 - -
MT NeuRIPS’17 [69] 3D-ResNet18 13.5 V 16 - 17.5 25.6 36.3 45.8 27.2 30.4 32.2 - -
S4L ICCV’19 [84] 3D-ResNet18 13.5 V 16 - 22.7 29.1 37.7 47.9 29.8 31.0 35.6 - -
UPS ICLR’21 [58] 3D-ResNet18 13.5 V 16 - - - 39.4 50.2 - - - - -
SD ICCV’19 [28] 3D-ResNet18 13.5 V 16 - 31.2 40.7 45.4 53.9 32.6 35.1 36.3 - -
MT+SD WACV’21 [38] 3D-ResNet18 13.5 V 16 - 30.3 40.5 45.5 53.0 32.3 33.6 35.7 - -
3DRotNet Arxiv’19 [39] 3D-ResNet18 13.5 V 16 15.0 31.5 40.4 47.1 - - - - - -
VideoSemi WACV’21 [38] 3D-ResNet18 13.5 V 16 - 32.4 42.0 48.7 54.3 32.7 36.2 37.0 - -
TCL CVPR’21 [65] TSM-ResNet18 - V 8 - - - - - - - - 11.6 -
TG-FixMatch CVPR’21 [78] 3D-ResNet18 13.5 V 8 - 44.8 62.4 76.1 79.3 46.5 48.4 49.7 9.8 43.8
MvPL ICCV’21 [80] 3D-ResNet18 13.5 VFG 8 - 41.2 55.5 64.7 65.6 30.5 33.9 35.8 5.0 36.9
TCLR CVIU’22 [18] 3D-ResNet18 13.5 V 16 26.9 - 66.1 73.4 76.7 - - - - -
CMPL CVPR’22 [81] 3D-ResNet18 13.5 V 8 23.8 - 67.6 - - - - - 16.5 53.7
TACL TSVT’22 [71] 3D-ResNet18 13.5 V 16 - 35.6 50.9 56.1 65.8 34.6 37.2 39.5 - -
TACL TSVT’22 [71] 3D-ResNet18 13.5 V 16 - 43.7 55.6 59.2 67.2 38.7 40.2 41.7 - -
MemDPC ECCV’20 [31] 3D-ResNet18 13.5 V 16 - - 44.2 50.9 62.3 - - - - -
MotionFit ICCV’21 [27] 3D-ResNet18 13.5 VF 16 - - - 57.7 59.0 - - - - -
Ours (TimeBalance) 3D-ResNet18 13.5 V 8 29.1 47.9 69.8 79.1 83.3 49.8 51.4 53.1 17.1 54.9
ActorCM Arxiv’21 [89] R(2+1)D-34 33.3 V 8 - 27.0 40.2 51.7 59.9 32.9 38.2 38.9 - -
ActorCM Arxiv’21 [89] R(2+1)D-34 33.3 V 8 - 45.1 53.0 57.4 64.7 35.7 39.5 40.8 - -
FixMatch NeuRIPS’20 [66] SlowFast-R50 60 V 8 16.1 - 55.1 - - - - - 10.1 49.4
MvPL ICCV’21 [80] 3D-ResNet50 31.8 VFG 8 22.8 - 80.5 - - - - - 17.0 58.2
CMPL CVPR’22 [81] 3D-ResNet50 31.8 V 8 25.1 - 79.1 - - - - - 17.6 58.4
Ours (TimeBalance) 3D-ResNet50 31.8 V 8 30.1 53.5 81.1 83.3 85.0 52.6 53.9 54.5 19.6 61.2

Table 1. Comparison with state-of-the-art methods: Methods using pre-trained ImageNet weights are shown in Grey. V- Video (RGB),
F- Optical Flow, G- Temporal Gradients. Best results are shown in Red, and Second-best in Blue

4. Experiments

4.1. Datasets

UCF101 [67] is a dataset for human action recognition col-
lected from internet videos consisting 101 action classes.
We use split-1 for our experiments, which has 9,537 train
videos and 3,783 test videos.
HMDB51 [43] is relatively a smaller dataset collected from
movie videos. It has 51 human activity classes and has a
high intra-class variance. We use split-1 in this paper, which
has 3,570 train videos and 1,530 test videos.
Kinetics400 [12] is a large-scale dataset collected from
YouTube videos. It has a standard split of 240k training
videos and 20k validation videos which covers 400 actions.

4.2. Implementation Details

For our default experimental setup, we use an input clip
resolution of 224 × 224. We use 3D-ResNet-50 [24] for
both student and teacher models. We use most commonly
used augmentations: geometry-based augmentations like
random cropping, and flipping, and color-based augmenta-
tions like random greyscale, and color jittering.
Self-supervised pretraining The pretraining is performed
with clips of 16 frames for 100 epochs for Kinetics400, 250

epochs for UCF101, and HMDB51 experiments. For con-
trastive losses, the default temperature is set to 0.1.
Semi-supervised training Semi-supervised training is per-
formed with clips of 8 frames for 150 epochs.
Inference We follow standard protocol [74] of averaging
the predictions of 10 uniformly spaced clips and 3 different
spatial scales to get a video-level prediction.
More implementation details in Supp. Sec. B.

4.3. Comparison with prior work

We compare our method with image-based baselines,
video self-supervised baselines, and recent state-of-the-
art methods for semi-supervised action recognition in Ta-
ble 1. We present the results in two sections based on the
backbone architecture used: (1) 3D-ResNet18 and (2) 3D-
ResNet50. We report Top-1 classification accuracy as the
performance measure and follow the standard protocol of
reporting average performance over three independent runs.
Image-based baselines We consider widely used semi-
supervised image classification baselines like Psuedo-
Label [46], MeanTeacher [69], UPS [58], S4L [84] and
FixMatch [66]. From Table 1, we observe that the results
of these image-based methods are significantly lower than
the video-based methods across all benchmarks; which sug-
gests that spatial information is not enough to excel in semi-
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Temporal Similarity Matrix
from Invariant teacher  

Instance Similarity score

Temporal Similarity Matrix
from Distinctive teacher

(a) Fencing, s(i) = 0.795 Instance Similarity score

 
Temporal Similarity Matrix
from Invariant teacher

Temporal Similarity Matrix
from Distinctive teacher

(b) JavelinThrow, s(i) = 0.387

Figure 4. Visualization of similarity matrices from temporally-invariant and distinctive teachers and resultant instance-similarity score.
(a) Video instances with atomic actions like Fencing result in a high instance similarity score, which will proportionally increase the
weightage of temporally-invariant teacher (b) Whereas, complex actions video instances like JavelinThrow results in a low similarity
score, which results into more weightage of temporally-distinctive teacher. Details of the computation of the similarity score in Sec 3.2

supervised action recognition.
Video Self-supervised Learning baselines Video self-
supervised learning methods are first pretrained on the full-
training set without using any labels and then finetuned
on the labeled set in a supervised manner. We compare
with contrastive learning-based methods like TCLR [18],
MemDPC [31], multimodal approach like MotionFit [27],
and pretext-task based approach 3DRotNet [39]. From
Table 1, we notice that the performance of these video
self-supervised methods is significantly better than image-
based baselines, and in some cases, it even performs favor-
ably against the semi-supervised action recognition meth-
ods [78, 80, 81]. However, our proposed semi-supervised
method outperforms all these video self-supervised base-
lines by a noticeable margin.
Semi-supervised action recognition baselines We also
compare with prior semi-supervised action recognition
works like TG-Fixmatch [78], VideoSemi [38], MvPL [80],
TACL [71], and ActorCM [90]. Our method achieves sig-
nificant improvement over these methods across all bench-
marks. Remarkably, our method also outperforms the
methods that use additional modalities like optical flow
in MvPL [80] and additional data (ImageNet) in Ac-
torCM [90] and TACL [71].

4.4. Ablations and Analysis

In the default setting of ablations, we consider UCF101
with 3D-ResNet50 as the teacher backbone. More ablations
in Supp. Sec. C.
Contribution of different training components In Ta-
ble 2, we analyze the effect of each model (fS , fI , fD) and
our proposed teacher reweighting scheme with 5% and 20%
labeled data on the UCF101 dataset. Row a-c, demon-
strates the performance of teacher and student models indi-

vidually. Results in Row f demonstrates that the student
model performs the best when we average the predictions
of both teachers and removing any of them(Row d, e)
degrades the performance. This validates our hypothesis
that for optimal performance, we need to distill the knowl-
edge from both teachers. Finally, Row g, demonstrates the
effectiveness of our proposed teacher reweighting scheme
using temporal similarity. We found similar results with fS
from random initialization in Table 3.

fS fI fD
Teacher
Reweighting

UCF101 % labels
5% 20%

(a) ✓ ✗ ✗ ✗ 48.66 79.70
(b) ✗ ✓ ✗ ✗ 43.79 74.55
(c) ✗ ✗ ✓ ✗ 44.08 75.13
(d) ✓ ✓ ✗ ✗ 47.95 79.28
(e) ✓ ✗ ✓ ✗ 48.81 79.76
(f) ✓ ✓ ✓ ✗ 52.14 82.02
(g) ✓ ✓ ✓ ✓ 53.48 83.26

Table 2. Ablation of different components of our framework. Stu-
dent (fS) and teachers (fI and fD) are 3D-ResNet50.

Visualization of Temporal Similarity Matrix We sample
four consecutive frames from unlabeled videos and com-
pute the temporal similarity matrix for both fI and fD. Vi-
sualization is shown Fig. 4. Firstly, we observe that fI gives
higher similarity values in both video instances than fD.
Secondly, we can observe that the final instance similarity
score aligns with our goal i.e. providing more weight to
fI in atomic actions and providing more weight to fD in
complex actions.
Different types of teacher pairs In order to further inves-
tigate the importance of having teachers with complemen-
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fS
(rand. init.) fI fD

Teacher
Reweighting

UCF101 % Labels
5% 20%

(a) ✓ ✗ ✗ ✗ 25.60 46.20
(b) ✓ ✓ ✗ ✗ 43.94 74.85
(c) ✓ ✗ ✓ ✗ 44.30 75.22
(d) ✓ ✓ ✓ ✗ 49.57 80.06
(e) ✓ ✓ ✓ ✓ 53.10 83.00

Table 3. Ablation of different components with Student with ran-
dom initialization. All backbones are 3D-ResNet50.

tary self-supervised objectives (i.e temporally invariant and
distinctive), we study the effect of having various pairs of
teachers in our framework (Table 4). Inv1 and Inv2 mod-
els are obtained from independent SSL pretrainings with
temporal-invariance objective. Similarly, Dist1 and Dist2
are trained with temporal-distinctiveness SSL objective. We
observe that, compared to combining teachers with the same
SSL objective (Row a, b), teachers with different SSL
objectives (Row c, e) perform significantly better. In our
default setting, we use (Inv1, Dist1) as teacher pair.

Teacher-1 Teacher-2 UCF101 % labels
5% 20%

(a) Inv1 Inv2 48.33 78.76
(b) Dist1 Dist2 49.15 80.49
(c) Inv1 Dist1 52.14 82.02
(d) Inv1 Dist2 51.78 81.43

Table 4. Ablation of different teacher combinations.

Student initialization We also study various video self-
supervised methods to initialize the student model and re-
port the results in Fig 5. We conduct these experiments
on the UCF101 dataset with 3D-ResNet18 as the student
backbone. We observe that even across a diverse set of
video SSL-based initialization techniques, our proposed
semi-supervised framework can achieve better/competitive
performance against the current state-of-the-art. This fur-
ther validates the effectiveness of our idea of leveraging
temporally distinct and invariant teachers and our proposed
teacher prediction reweighting scheme.
Number of clips in Teacher SSL pretraining We analyze
the effect of using a different number of clips to impose
temporal invariance/distinctiveness in teacher pretraining in
Table 5. We perform pretraining on UCF101 with the 3D-
ResNet50 model and report the performance of the teacher
model after finetuning on the labeled set. In the default set-
ting, we use n=4 clips. We observe that while reducing the
clips from 4 to 2, the performance drop is significant for
temporally-distinctive teachers, whereas, it is not severe for
the temporally-invariant teacher. Since the distinctiveness

Semi-supervised training Epochs
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Figure 5. Analysis of different student initialization strategies on
UCF101 dataset with 5% labeled data and 3D-ResNet18 student.

contrastive loss LD treats other clips as negatives, its con-
trastive objective becomes very easy to solve if we reduce
the number of clips (Eq. 3). Whereas, temporal-invariance
contrastive loss LI takes negatives from the other instances
of the batch, and decreasing the number of clips does not
change the difficulty of the loss.

Pretraining Number of
clips (n)

UCF101 % Labels
5% 20%

Invariant Teacher n=4 43.79 74.55
n=2 42.78 73.86

Distinctive Teacher n=4 44.08 75.13
n=2 39.55 71.21

Table 5. Number of clips per video in self-supervised pretraining.

5. Conclusion and Future Work
In this work, we have proposed TimeBalance, a teacher-

student framework for semi-supervised action recognition.
We utilize the complementary strengths of temporally-
invariant and temporally-distinctive representations to
leverage unlabeled videos. Our extensive experimentation
has empirically validated the effectiveness of different com-
ponents of our framework and results on multiple bench-
mark datasets established TimeBalance as the new state-of-
the-art for semi-supervised action recognition.

Our findings regarding the complementary strengths of
temporally-invariant and temporally-distinctive video rep-
resentations could be applied to other data-efficient video
understanding problems, such as few-shot action recogni-
tion and spatio-temporal action detection. It would also
be interesting to explore the invariance and distinctiveness
properties of video using recent masked-image modeling
techniques [23, 72] and multi-modal settings [4], such as
audio + video and text + video.
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Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6836–6846,
2021. 3

[3] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-
janowski, Armand Joulin, Nicolas Ballas, and Michael Rab-
bat. Semi-supervised learning of visual features by non-
parametrically predicting view assignments with support
samples. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8443–8452, 2021. 3

[4] Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir
Zamir. MultiMAE: Multi-modal multi-task masked autoen-
coders. 2022. 8

[5] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri,
William T Freeman, Michael Rubinstein, Michal Irani, and
Tali Dekel. Speednet: Learning the speediness in videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9922–9931, 2020. 3

[6] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In ICML, volume 2, page 4, 2021. 3

[7] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution matching
and augmentation anchoring. In International Conference on
Learning Representations, 2020. 3

[8] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems 32, pages 5049–
5059. Curran Associates, Inc., 2019. 3

[9] Adrian Bulat, Juan Manuel Perez Rua, Swathikiran Sud-
hakaran, Brais Martinez, and Georgios Tzimiropoulos.
Space-time mixing attention for video transformer. Advances
in Neural Information Processing Systems, 34:19594–19607,
2021. 3

[10] Marco Buzzelli, Alessio Albé, and Gianluigi Ciocca. A
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A. Overview
• Section B: Implementation details about network ar-

chitectures and training setup.
• Section C: Ablation study for our framework.
• Section D: Supportive diagrams and explanation for

our method.

B. Implementation Details
B.1. Network Architecture

B.1.1 Backbone

For teacher models fI and fD, we utilize 3D-ResNet50
model from the implementation of Slow-R50 [24] of of-
ficial PyTorchVideo1. For experiments with 3D-ResNet18,
we utilize its official PyTorch implementation r3d 182.

B.1.2 Non-Linear Projection Head

We use non-linear projection head g(·) during the
self-supervised pretraining of temporally-invariant and
temporally-distinctive teachers to reduce the dimensions
of the representation. We utilize Multi-layer Perceptron
(MLP) as a non-linear projection head to project 2048-
dimensional model features to 128-dimensional vectors in
normalized representation space. The design of MLP is as
follows, where nn indicates torch.nn PyTorch package:

nn.Linear(2048,512, bias = True)
nn.BatchNorm1d(512)
nn.ReLU(inplace=True)
nn.Linear(512, 128, bias = False)
nn.BatchNorm1d(128)

B.2. Training Details

For all weight updates, we utilize Adam Optimizer [41]
with default parameters β1 = 0.9 and β2 = 0.999 with a
base learning rate (αI , αD, αS) of 1e-3. For all training,
we utilize a linear warmup of 10 epochs. A patience-based
learning rate scheduler is also used, which drops the learn-
ing rate to its half value on a loss plateau.

C. Additional Ablations
C.1. Loss function for teacher supervision

In order to distill teacher knowledge, we study three dif-
ferent loss functions as Lunsup and report the results in Ta-
ble 6. For these experiments, we use 3D-Resnet50 as the
student model on the UCF101 dataset [67]. We observe that
all three losses perform reasonably while L2 performs the
best, which we use as the default loss in our method.

1https://github.com/facebookresearch/pytorchvideo
2https://github.com/pytorch/vision/blob/main/torchvision/models/video

Unlabeled Supervision UCF101 % Labels
5% 20% 50%

L2 53.48 83.15 85.02
KL-Divergence 52.62 82.76 84.50
JS-Divergence 50.91 82.10 83.94

Table 6. Ablation of different Teacher Losses. L2 distillation loss
performs the best, which we use in our default setting.

C.2. Student fS from Scratch

We perform experiments with student from random ini-
tialization and compare them with the prior methods in Ta-
ble 7.

D. Method
D.1. Loss for Labeled and Unlabeled set

In Fig. 6, we show the handling of labeled and unlabeled
data in the semi-supervised training of student fS . For la-
beled data Dl, the student model has two sources of supervi-
sion: (1) Labeled supervision L(i)

sup in the form of standard
cross entropy loss which is computed from the student’s
prediction and given class label y(i) (2) Unlabeled super-
vision L(i)

unsup in the form of L2 distillation loss computed
from the weighted average of predictions of teachers (fD
and fI ). For the unlabeled set Du, the student model gets
supervision only in the form of L2 distillation loss.

D.2. Temporally-Distinctive pretraining using un-
pooled features

Since LD1 deals with temporally-pooled(averaged) fea-
tures, it promotes temporal-distinctiveness for the pooled
features. Similar to that, [18] designs a contrastive ob-
jective that promotes temporally-distinctive representation
on the unpooled features. We call it unpooled temporal-
distinctive objective LD2, which is illustrated in Fig. 7.
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Backbone UCF101 HMDB Kinetics
5% 20% 40% 60% 10%

Prior best methods R3D-50 27.0 [90] 51.7 [90] 32.9 [90] 38.9 58.4 [81]
Ours (scratch student) R3D-50 53.1(+26.1) 83.0 (+31.3) 52.1 (+19.2) 54.3 (+15.4) 60.8 (+2.4)
Prior best methods R3D-18 44.8 [78] 76.1 [78] 46.5 [78] 49.7 [78] 53.7 [81]
Ours (scratch student) R3D-18 46.7 (+1.9) 78.2 (+2.1) 49.1 (+2.6) 52.9 (+3.2) 54.4 (+0.7)

Table 7. Experiments with Student trained from Random Initialization. (+n) shows absolute improvement over the prior best work

Labeled Set

Supervised Loss

VideoLabel

Overall Loss

Unsupervised Loss

(a) Labeled data

Unlabeled Set

Video

Unsupervised Loss

Overall Loss

(b) Unlabeled data

Figure 6. Loss computations in labeled and unlabeled data. (a) In case of Labeled data, the student fS gets supervision from supervised
cross-entropy loss from label y(i) and unsupervised L2 loss from teachers. (b) For unlabeled set, the student is only trained with the
unsupervised loss from teachers. Details are in Sec 3.2 of the main paper.

Local Clip-1 Local Clip-2 Local Clip-3 Local Clip-4

Temporally Unpooled
Features

Temporally
Pooled

Features

Global

Clip


Local Clip

Global Clip
Attract

Repel

Figure 7. Temporally-Distinctive Contrastive Objective for Temporally-unpooled features LD2: A time-duration of the video can be
represented in two different ways: (1) Pooled features of the short(local) clip (2) Unpooled feature slice of the long(global) clip. In this
contrastive objective, we maximize the agreement between temporally-aligned pooled and unpooled features.
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