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Abstract

Modelling and understanding time remains a challenge
in contemporary video understanding models. With lan-
guage emerging as a key driver towards powerful gener-
alization, it is imperative for foundational video-language
models to have a sense of time. In this paper, we consider
a specific aspect of temporal understanding: consistency of
time order as elicited by before/after relations. We estab-
lish that seven existing video-language models struggle to
understand even such simple temporal relations. We then
question whether it is feasible to equip these foundational
models with temporal awareness without re-training them
from scratch. Towards this, we propose a temporal adapta-
tion recipe on top of one such model, VideoCLIP, based on
post-pretraining on a small amount of video-text data. We
conduct a zero-shot evaluation of the adapted models on
six datasets for three downstream tasks which require vary-
ing degrees of time awareness. We observe encouraging
performance gains especially when the task needs higher
time awareness. Our work serves as a first step towards
probing and instilling a sense of time in existing video-
language models without the need for data and compute-
intense training from scratch.

1. Introduction

Self-supervised pretraining at scale on multimodal web
corpora tied with powerful architectures [107] has led to
foundational models [12] for images [2, 49, 59, 83, 84] and
videos [2, 6,26, 109,119, 126]. These models have enabled
remarkable improvements on a plethora of downstream
video-language tasks such as video-text retrieval, video
question-answering, and action recognition. Given the cost
and difficulty of video annotations, even for a small amount
of downstream data, such foundational models are emerging
as the de-facto backbone for zero-shot [119, 122, 127] and
few-shot generalization [2]. However, it remains unclear
if these video-language models capture essential properties
of a video beyond what can be learned from static images,
most notably: time.

Many before us have shown that existing video-language
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Figure 1. Can you match the correct video-text pairs? Understand-
ing the time order of events across video and language is necessary
to be able to solve this task. See footnote on next page for answers.

models [6,57,66, 119] can achieve impressive performance
on several video benchmarks [22, 41, 120] without reli-
ably encoding time [13, 56, 59]. For example, Buch et
al. [13] show that a model that uses a single (carefully
selected) frame often outperforms recent video-language
models [57, 119] on standard video benchmarks such as
MSR-VTT [120]. Lei et al. [56] report similar findings with
a single-frame pretraining approach. These findings hint at
a lack of time awareness in video models. However, it re-
mains unclear if these findings are caused, indeed, by the
lack of time in video models or whether the benchmarks
themselves do not mandate time awareness. Furthermore,
there is no clear definition of what it means for a model to
be time aware. In this paper, we strive to shed light on all
these factors of time awareness in video-language models.
As a first step, we consider a simple notion of under-
standing time, i.e., understanding temporal relations such as
before and after [4]. Consider the task presented in Fig. 1. A
time invariant model shall be able to associate (A) with (1)
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or (2) and (B) with (3) or (4) based on static frames alone.
But to distinguish between (1) and (2), one needs to be able
to understand time order and connect it across video and
language'. Thus, the first question we ask in Section 3: do
the representations learnt by foundational video-language
models encode this sense of time? To reliably attribute lack
of time awareness to models and not existing benchmarks,
we design our own synthetic dataset to probe models for this
sense of time. We create video-language pairs that show a
sequence of two events. Then, we alter the order of events
either in the text or the video and check if models can con-
nect the order in video and language. We find that existing
video-language models indeed struggle to associate the time
order across video and language.

In light of these findings, the second question we ask in
Section 4 is: can we adapt a video-language model, with-
out expensive re-training from scratch, to instill this sense
of time? Towards this, we take inspiration from literature
on understanding time in natural language, where there has
been much work on developing time aware language mod-
els [20, 36,37, 130, 131]. Our objective is to instill time
awareness in a video-language model without having to pre-
train from scratch. To do that, we propose TACT: Temporal
Adaptation by Consistent Time-ordering based on two key
components: (i) we artificially create samples that provide
temporal signal, for example, by flipping the order of events
in the video or the text, and (ii) we introduce a modified
contrastive loss to learn time order consistency based on
these samples. Instead of training from scratch, we adapt an
existing video-language model, VideoCLIP [61], using the
paradigm of post-pretraining on a small amount of video-
text data [66, 121]. We demonstrate the effectiveness of
TACT in connecting the time order in video and language
on four diverse real datasets in Section 5.

Finally, in line with the original motive of video-
language models for zero-shot generalization, we evalu-
ate in Section 6 our TACT-adapted model for three sets
of tasks on six downstream datasets which require a vary-
ing degree of time awareness. On tasks that need higher
time awareness, with the appropriate choice of adaptation
dataset, TACT outperforms a strong baseline that is based
on post-pretraining on canonical clip-text pairs without con-
sideration of time-order. the corresponding results, we first
provide a broader background on related work.

In summary, our contributions are: (i) We show that
existing video-language models struggle to associate time
order in video and language through controlled experi-
ments on synthetic data and several evaluations on real
datasets. (ii) Based on VideoCLIP [119], we propose TACT,
a method for temporal adaptation using this time order con-
sistency without having to pretrain from scratch. (iii) We
demonstrate improved zero-shot generalizability of TACT-

L Answers: (A)-(2), (B)-(1), (C)-(4), (D)-(3).

adapted models on tasks that require higher time aware-
ness.

2. Background and Related Work

We briefly discuss recent advances in video-language
models followed by their consideration of time.

Foundational video-language models. Large-scale
datasets, self-supervision, and the advent of Transform-
ers [107] have led to the emergence of powerful encoders
for images [21,39,103], videos [5,11,24,104,117], language
models [19,64,69,86] and even universal encoders [32,46].
These encoders form the basis for several vision-language
foundational models. Popular image-language models such
as CLIP [83] and ALIGN [49] are trained on massive
datasets by using web images and alt-text. Similarly, video-
language models are catching up and can be categorised into
two broad directions: (i) adapting image-language mod-
els for videos [8, 23, 50,51, 63,66,71,110,112,121], and
(i1) pure video-based models that are learned using large
video-text datasets [3,7,27-29,31,58,62,65,67,68,95,119].
Recently, a new paradigm of post-pretraining has emerged
where an existing image- or video-language model goes
through another stage of self-supervised pretraining on a
small amount of video data before it is evaluated on down-
stream tasks [66, 121]. This is promising as it circumvents
the prohibitive cost of pretraining on large datasets from
scratch. In [66], the post-pretraining uses time-invariant
mean-pooling, while [121] strives to bridge the domain gap
between image captions and video subtitles. In contrast,
our proposed temporal adaptation involves post-pretraining
of VideoCLIP [119] with a small amount of data that instills
the model to learn the time-order of events in a video.

Time in vision. Time separates videos from static images
or an unordered set of frames. While modeling time re-
mains a challenge, it also presents a natural source of su-
pervision that has been exploited for self-supervised learn-
ing. For example, as a proxy signal by posing pretext
tasks involving spatio-temporal jigsaw [, 44, 53], video
speed [10,17,48,94, 111, 124], arrow of time [78, 80, 114],
frame/clip ordering [25, 70, 90, 97, 118], video continu-
ity [61], or tracking [45, 108, 113]. Several works have also
used contrastive learning to obtain spatio-temporal repre-
sentations by (i) contrasting temporally augmented versions
of a clip [47,77, 81], or (ii) encouraging consistency be-
tween local and global temporal contexts [9, 18, 85, 123].
Nevertheless, it remains unclear if the learnt representations
actually encode time reliably. Time-aware features have
also been explored for specific downstream tasks such as
action recognition [30, 100, 101]. There has been some very
recent work on evaluating self-supervised video representa-
tions [87,99] on their temporal recognition ability instead
of only relying on time as a guidance for training.



In the same spirit, a related direction pursues evaluation
and benchmarking of time awareness in video datasets [88],
models [13, 14, 30, 56, 89, 125] or both [43,92]. Huang et
al. [43] measure the effect of motion on temporal action
recognition to find that only a subset of classes in UCF-101
and Kinetics-400 require motion information. Ghodrati e?
al. [30] propose new tasks to evaluate temporal asymme-
try, continuity and causality in video models. Our work
derives inspiration from these but applies more generally
to video-language models as language provides a basis for
open-world generalization.

Time in language. Time has also been extensively stud-
ied in the natural language literature. Early works identified
temporal structures in language such as temporal preposi-
tions and quantifiers [4,79]. More recent literature focuses
on tasks such as extracting temporal relations [35, 72-74],
as well as temporal reasoning [36, 37, 82, 130, 131]. For
example, Han et al. [36, 37] and Zhou et al. [131] pre-
train language models specifically to focus on understand-
ing temporal relations such as before, after, during, etc. The
emergence of large language models has also spurred an in-
creased interest in developing benchmarks to test for time
awareness in these models [20, 75,76, 102, 106, 129]. For
example, Ning et al. [75] propose a new benchmark of read-
ing comprehension with questions involving before/after re-
lations. Since temporal relations in language are grounded
in the video, we draw inspiration from [36,37,131] and aim
to instill time awareness in video-language models.

Time in video-language models appears implicitly in tasks
like video-text alignment [38, 98] and temporal ground-
ing [42,60]. In this work, we focus on self-supervised
video-language models that can generalize to a variety of
tasks rather than models designed for a specific task, e.g.,
temporal grounding. Some recent works have shown the
under-utilisation of time in classic video-text benchmarks
such as MSR-VTT [120], YouCook [132], ActivityNet [22],
and DiDeMo [41]. For example, [13,56,57] discover that
on several benchmarks, using only one or few frames or
clips achieves competitive performance. Adaptations of the
popular CLIP architecture for videos (e.g., CLIP4Clip [66])
show that weighted pooling of frames already achieves im-
pressive performance on retrieval benchmarks.

These raise some key questions: do existing video-
language models truly understand time in the sense of cor-
rectly associating order of events in language and video?
If not, can we adapt them to instill time awareness? Our
work addresses these questions. There has been some work
in using time-order across video and language as a source
of self-supervision. Specifically, concurrent to our work,
both Sun et al. [96] and Cao et al. [15] propose fine-grained
temporal alignment between video and text as the pretrain-
ing objective. Different from these works, we consider the
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Figure 2. Overview of the proposed task to evaluate time-
order consistency across synthetic video-language pairs having be-
fore/after relations. We also define a control task to check if the
synthetic videos are considered out-of-distribution by the model.

notion of time-order and we aim to adapt a given video-
language model using post-pretraining, which circumvents
the need for a new round of compute-intense pretraining.

3. Do Video-Language Models Sense Time?

Probing video-language models for temporal under-
standing is an open direction of research. In this work, we
consider a specific sense of temporal understanding: con-
sistency in the order of events in a video with the associated
textual description. For example, consider a text descrip-
tion: A red circle appears before a yellow circle.
This imposes an order constraint on the video stream to have
the event red circle appears happen before the event
yellow circle appears. Can existing video-language
models connect time-order in text with that in video? To
answer this, we design an experiment with synthetic data.

Synthetic dataset. We construct simple videos that com-
prise of a pair of events such as the ones mentioned above.
We generate N =180 video-language pairs as a combination
of C'=6 colors, S=3 shapes, and |7|=2 temporal relations:
before and after. The corresponding caption describes the
order of events connected with a before/after temporal re-
lation. We call this caption as an attractor since it is con-
sistent with the time-ordering in the video. Likewise, we
construct a distractor where we flip the order of event de-
scriptions while retaining the temporal relation. An exam-
ple pair is illustrated in Fig. 2 (left). Ideally, a time aware
video-language model should be able to associate the video
with the temporally consistent text, or vice versa. We re-
fer to this task as time-order consistency check. To rule out
the possibility that synthetic videos are out-of-distribution,
we also perform the same experiment with canonical clips
with a single event and the text describes that same event as
shown in Fig. 2 (right). We refer to this as the control task.

Choice of models. We consider recent video-language
models, broadly categorized into three groups: (i) image-
language models like CLIP [83] that are adapted to
videos [23,66,128], (ii) pure video-language models trained



Paradigm Method Video-to-Text  Text-to-Video
& ¢ & )

Chance - 500 500 500  50.0
Image.l. CLIP4Clip [66] 494 511 500 494
ar;‘:g; | 2)“%?;‘5: CLIP2Video [23] 1000 478 97.8 523
P CenterCLIP[128] 917  46.1 972 511
Video-Language  VideoCLIP[119]  87.1 511 667 483
Contrastive Frozen in Time [6] 97.8 49.4  100.0 50.6
VindLU [16] 980 520 1000 5l.1

Video-Language g yocpormer 20] 1000 511 972 422

Masking

Table 1. Results on synthetic control ( & ) and time-order consis-

tency (@ ) task as described in Fig. 2. Existing video-language
models show random performance on our time-order task.

on a contrastive learning objective [0, 16,119], and (iii) pure
video-language models trained on a masking objective [29].

Findings. We evaluate video-to-text and text-to-video re-
trieval on both time-order consistency and control tasks.
From Tab. 1, we observe that while most video-language
models perform well on the control task, all of them strug-
gle and perform on par with random chance on the temporal
task. This gap in performance deserves attention given the
importance of time in videos. Note that while synthetic data
allows for controlled experiments, we also expand this eval-
uation to real video datasets in the following section.

4. Adaptation by Consistent Time-Ordering

We describe a post-pretraining recipe to instill a video-
language model with a sense of time. We propose TACT
Temporal Adaptation by Consistency of Time-order, that
is based on two key components: (i) we artificially create
samples that provide temporal signals, e.g., by flipping the
order of events; and (ii) we introduce a modified contrastive
loss to learn temporal consistency based on these samples.
We start by defining the notation and then describe the key
components of our adaptation recipe.

Preliminaries. Let V be the space of video clips and T
be the space of text clips. Consider two non-overlapping
video clips v;,v; € V. Let (;,(; € T be their respective
captions. Let 7 be a temporal relation, 7 € {before, after}.
Then, we denote a stitched and time-order consistent clip as
(uij,tij), where U5 = [’Ui;?}j}, tij = K“ T, Cj]’ and [7 }
denotes concatenation. Note that depending on 7, the order
of v; and v; may need to change in u;;. For brevity, we drop
the subscripts and refer to the stitched pair as (u,t) unless
stated otherwise.

Time-order reversal. The classic contrastive learning
paradigm for video-language models aligns components of
a video clip v; with its text counterpart (; and contrasts
against other texts ¢; that usually describe a completely dif-
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Figure 3. Overview of TACT. Along with the usual contrastive
loss, where negatives come from other samples in the batch, we
make use of time-order reversal within the same sample and
cross samples to generate additional negatives for both video and
text. We also extend the contrastive loss to time-order reversed
video and text corresponding to reverse consistency L.

ferent clip. This makes such models ignore the finer de-
tails of temporal understanding as it is easier to contrast the
negatives by simply focusing on the objects or the scene.
This is evident from simple bag-of-word-like methods that
are shown to work well for contrastive learning, both on
the visual (e.g., CLIP4Clip [66]) and textual (e.g., MIL-
NCE [67]) modalities. We hypothesize that unless there are
negatives in a contrastive setup that contain the same scenes
and objects, models need not learn a sense of time. Thus,
we present a simple strategy to generate negatives that force
the learning process to focus on the temporal order.

We define a time-order reversal function T that operates
on the stitched video clip or text description and temporally
swaps its constituents:

T(u) = T([vi; v5]) == [vj;vi], and (1)
T(t) = T([¢i;: 75 ¢5)) == (G575 G - 2)

An illustration of T is shown in Fig. 3. Note that T does
not reverse the actual video, i.e., time does not flow back-
wards, but only changes the order in which events happen
in the stitched clips. Our objective is to train a model that
is able to distinguish between the original pair (u,t) and
time-reversed versions (u, T(t)), and (T (u), t).

Loss function. We assume access to an existing pre-trained
video-language model with a visual encoder fy and text en-
coder g,. We obtain the video encoding z,, := fy(u) € R?
and the text encoding z; = g4(t) € R% Our goal is to



adapt © = {0, ¢} via post-pretraining such that the result-
ing model is time aware while maintaining its original per-
formance on tasks such as retrieval. As we aim to use a
small amount of data, we only update some parameters of
the model (©), such as the last few layers.

We now introduce our recipe for temporal adaptation
based on the InfoNCE loss [105] to learn time-order sen-
sitive video-text correspondence. For a positive (or time-
order consistent) video-text pair (u, t), we first define a for-
ward loss where the stitched pair is in its original time-order.

Ly= ) (TNCE(zy,2)+ TNCE(z,2.)), (3)
(u,t)eB

where TNCE is the Noise Contrastive Estimation (NCE)
loss for temporal adaptation, defined as:

exp(zy - Z¢)
Et’eBt exp(zu . Zt’) + Ctime )
“)
where B is the batch of (u, t) pairs and B; specifically refers
to other stitched text captions in the batch. Ci™ accumu-
lates negatives defined using time-order reversal as:

TNCE(zy, z;) := —log

C'"™ = aame exp(zy - Z’H‘(t)) + Occross Z exp(zy - Z']I‘(t'))a
t'eB\{t}

(5)
where ag,me controls the effect of contrasting text from the
same sample but with reversed text time-order, i.e., T(¢),
and o055 €ncourages the model to contrast between re-
versed versions of other text captions, i.e., T(¢'). Note that
when both ogme and agss are 0, we revert back to the
standard NCE formulation, albeit on stitched pairs. While
Eq. (4) corresponds to the video-text loss TNCE(z,, z;),
the text-video loss TNCE(z¢, z,,) is defined symmetrically.
Furthermore, we also apply a reverse loss £, to bring time-
order reversed versions of both the video and the text to-
gether. Note that as we consider (u,t) as a positive pair,
(T(u), T(t)) also form a positive pair,

L, = Z (TNCE(ZT('LL)a zT(t)) + TNCE(ZT(t)a Z’H‘(u))) :

(T(u),T(t))€B
(6)
Here, the TNCE term operates on time-reversed clips and
Ctime contrasts (T(u), T(¢)) with un-reversed text clips in
the batch (T(u), t). The overall loss function is defined as:

L=Ls+BL,. 7)

Depending on the choice of loss coefficients
Qlsames Qeross, 3 € {0,1}, we can vary properties of
the adapted model. For example, setting aiame=1 encour-
ages high sensitivity to time-order reversal. As we will see
empirically, the loss coefficients also provide the flexibility
to adapt the model to various datasets.

Dataset Train Validation Test Ego Length

Ny Ne Ny Ne Ny Ne (s)
TEMPO 3,904 28,427 411 1,000 396 1,000 X 30
ActivityNet 7,440 95,474 453 906 456 912 X 120
Charades 5,262 99,928 500 1,000 500 1,000 X 30
Charades-Ego 2,679 155,306 500 1,000 210 420 v 31

Table 2. Statistics of datasets we consider for temporal adapta-
tion. Ny is the number of unique videos and N¢ is the number
of stitched clips. Based on Ny, TEMPO and Charades-Ego are
smaller as compared to ActivityNet and Charades.

We illustrate this temporal extension of the contrastive
loss in Fig. 3 (best seen in colour). T illustrates the time or-
der reversal function. The top half corresponds to £y while
the bottom half visualizes £,. In particular, the top-left
quadrant alone corresponds to the standard contrastive loss
on stitched pairs. While the green diagonal terms are pos-
itive pairs, the red diagonal terms are the strongest drivers
for instilling temporal understanding in the model.

5. Experiments: TACT Ablations

Base model. We demonstrate the effectiveness of TACT
as an adaptation recipe on top of VideoCLIP [119] ow-
ing to its simple architecture, contrastive objective, and use
of pre-computed S3D [116] features that enable faster ex-
perimentation and allow encoding a long temporal context
(~32 secs). We initialize © from the model pretrained on
HowTo100M [68] and post-pretrain on multiple datasets.

Datasets. One of our key objectives is to post-pretrain
on a small amount of data in contrast to massive pretrain-
ing datasets such as WebVid2M [7] or HowTol100M [68].
We consider dense video captioning datasets that offer suf-
ficient diversity in terms of size, backgrounds, clip dura-
tions, viewpoints and activities. Specifically, we experi-
ment with: (i) TEMPO [40]: the subset of stitched di-
verse third-person videos from DiDeMo [41] with text de-
scriptions for fixed 5s segments that contain before/after
relations; (ii) ActivityNet Captions [55]: a dense video
captioning dataset with human-centric actions; (iii) Cha-
rades [93]: a scripted indoor daily human activities video
dataset; and (iv) Charades-Ego [91]: similar to Charades,
scripted human activities from the egocentric viewpoint. To
construct stitched clips, we randomly sample any two non-
overlapping clip-text pairs in the video. Since we require
stitched clips instead of raw videos, we create new splits for
each dataset (see Tab. 2).

Evaluation metrics. We evaluate the post-pretrained model
using two sets of metrics: (i) standard retrieval metrics,
recall RQ1, R@Q5, RQ10 and median-rank evaluated on
stitched video-text clips; and (ii) time-order consistency,



i.e., the fraction of videos for which the model correctly
associates text that is time order consistent with the video:
1
Aune 1= 151 > Td(zu,zt) < d(2zaz1)], ()
(u,t)eD

where (u, t) are time-order consistent pairs, D is the dataset,
and d(-, ) is a distance metric based on cosine similarity.

Post-pretraining details. We freeze the word embeddings
and layers 1 to 5 for both the video and text encoders in
VideoCLIP. For adaptation, we use the Adam optimizer [54]
with learning rate 5e~%, batch size 32 trained on a single
node with 4 GeForce GTX 1080 GPUs. On TEMPO, we
train for 60 epochs while on the other datasets, we train for
10 epochs and pick the checkpoint that maximizes the geo-
metric mean of RQ1 and Ay, on the respective validation
set. A typical adaptation run takes about 1-3 hours.

Evaluation on the test set. Results in Tab. 3 show that
TACT* with optimal loss coefficients outperforms TACT'
(all O loss coefficients) and the zero-shot baseline (no post-
pretraining similar to the synthetic data experiment), both
on the retrieval and time-order consistency tasks. This indi-
cates the robustness of the adaptation.

Impact of loss coefficients. Choosing appropriate
values for loss coefficients O;:={asame, Qcross, 51 al-
lows the model to learn various aspects and adapt us-
ing different datasets. On each dataset, we vary
©,€{0,1}3 and find the best configuration based on the
GeometricMean(R@1, max(Agme — 50, 0)) on the valida-
tion sets. The above metric ensures the geometric mean is

Dataset Method Retrieval Time-order
R@ IT MedR \l/ AlimeT

Zero-shot 3.7 49.0 48.1

TEMPO TACT! 7.7 13.0 46.5
TACT* 9.3 9.0 66.5

Zero-shot 1.1 44.0 49.6

ActivityNet ~ TACT! 5.8 34.0 59.7
TACT* 5.8 35.0 85.7

Zero-shot 1.3 170.0 47.1

Charades TACT' 53 38.5 73.5
TACT* 5.7 35.0 77.0

Zero-shot 1.6 64.0 53.7

Charades-Ego  TACT' 6.4 35.0 60.1
TACT* 10.1 28.5 68.2

Table 3. Results for the best TACT model on test sets. TACT™ has
optimal loss coefficients and TACT' is a baseline with all coeffi-
cients 0. On time order, TACT generalizes well with TACT* out-
performing the baselines. On retrieval, for TEMPO and Charades-
Ego, TACT* outperforms the baseline as their optimal models
have =1 which helps retrieval with a small amount of data.

TEMPO ActivityNet Charades CharadesEgo

Mean: 64 | Mean: 588 Mean: 145 | Mean: 133

Frequency

Avime between clips (se¢) Ay, between clips (sec)  Agime between clips (se¢) Ay, between clips (sec)

Figure 4. Time-distance between stitched clips in datasets for tem-
poral adaptation (Agme). TEMPO has stitched clips close to each
other while those in Charades-Ego are farthest apart suggesting a
correlation between Ayne and difficulty of temporal adaptation.

not overpowered by RQ1. The results are shown in Tab. 4.
AS Qgane 18 directly responsible for discriminating between
original and time-reversed orders, unsurprisingly, setting it
to 1 is necessary to achieve the best results on Ay for
all the datasets. For TEMPO and Charades-Ego, using all
loss components (all 1) provides the best results, whereas
Qeross=1 and S=0 achieves a better trade-off for Activi-
tyNet and Charades. Choosing =1 leads to an improve-
ment in retrieval performance for TEMPO and Charades-
Ego but leads to a decline for ActivityNet and Charades.
We attribute this to the number of unique videos in the train
set for these datasets. As ActivityNet and Charades have
more videos than TEMPO or Charades-Ego (see train Ny
Tab. 2) additional positives introduced by setting =1 are
not necessary and in fact, hurt performance. Finally, we
note that carefully setting the value of aisame provides a con-
venient trade-off between spatial and temporal understand-
ing. Please refer to Appendix B for detailed experiments.

What makes temporal adaptation hard? We observe a
large gap in Agpe between TEMPO and ActivityNet. We
hypothesize that the distance (in seconds) between the two
clips (Agme) in a stitched clip is strongly correlated with
the difficulty of adaptation. Intuitively, it is easier to in-
fer the time-order consistency for a stitched clip © with text
t that has distant constituent clips v;,v; since the objects
and scene could be vastly different. In contrast, it is harder
to discern the correct time-order when the constituent clips
are closer in time. Fig. 4 shows distribution of Ay, for
each dataset. Indeed, Agye in ActivityNet (58.8s) is much
higher than that in TEMPO (6.4s) making the task harder on
TEMPO. To further test our hypothesis, we conduct a con-
trolled experiment where we gradually vary the distribution
of Agme for Charades-Ego to match it to that of TEMPO.
We find a strong correlation (p=0.92) between Agpe and
hardness of adaptation. Please refer to Appendix B for more
details.

6. Experiments: Downstream Evaluation

The goal of video-language foundation models is to gen-
eralize in a zero- or few-shot manner to a diverse range of
downstream tasks. We evaluate TACT models on three sets



Loss coefficients TEMPO ActivityNet Charades Charades-Ego
Qame  Ocross B R@11T MedR| Aime T R@11 MedR|] AimeT R@171T MedR] AimeT R@11T MedR| Aime T
Chance 0.1 500.0  50.0 0.1 4530 50.0 0.1 500.0  50.0 0.1 500.0  50.0
0 0 0 83 140 494 6.4 30,0 573 5.7 420 715 29 440 64.6
0 1 8.2 140 495 5.6 27.0  47.0 4.2 58.0 75.1 32 41.5 65.2
0 1 0 8.2 150 493 6.1 29.0 788 52 45.0 789 34 380 645
0 1 1 8.1 140 495 5.8 27.0 483 42 58.0 75.1 3.1 410 670
1 0 0 6.4 20.0  60.6 59 28.0 79.1 6.1 380 763 32 42.0  66.1
1 0 1 6.5 240 629 5.6 26.0 63.1 49 51.0 78.0 33 39.0 707
1 1 0 59 240 597 6.0 29.0 863 6.6 43.0 778 3.7 40.5 67.9
1 1 1 7.5 170 625 5.7 27.0  63.8 5.1 51.0 777 3.8 38.5 68.3

Table 4. Impact of loss coefficients for TACT post-pretraining on validation sets of various datasets. For each dataset, the corresponding
color-marked row denotes the best configuration based on the geometric mean of RQ1 and Ajime. TACT is able to connect time-order in
video and language while maintaining its retrieval capabilities across several datasets.

Time awareness

Low High
Adaptation 1. Text-to-Video Retrieval I1. Temporal VQA II1. Action-to-Video Retrieval
Dataset Method MSR-VTT YouCookII Next-QA (ATP) AGQA SSv2  SSv2 (events) Temporal
R@Q1 RQ@5 RQ10 RQl1 RQ@5 RQ10 Accuracy  Accuracy mAP mAP mAP
- Chance 0.1 0.5 1.0 0.1 0.5 1.0 20.0 50.0 0.6 2.0 2.0
- None 106 234 299 182 455 59.9 234 49.9 34 6.4 13.0
TEMPO Baseline 12.0 29.3 373 215 482 61.8 25.0 50.8 39 6.8 159
TACT 128 265 357 204 45.1 58.7 27.6 57.1 42 7.7 16.1
.. Baseline 157 344 449 156 388 51.4 23.7 50.7 3.7 7.0 16.0
ActivityNet
TACT 13.8  29.6 39.6 16.0 369 49.8 25.4 50.3 35 7.2 16.2
Baseline 123  25.8 336 215 48.6 61.7 26.0 50.5 4.1 7.1 13.7
Charades
TACT 11.7 252 324 224 491 62.4 252 54.8 43 7.8 14.1
Baseline 13.1  27.5 345 194 471 60.8 24.3 49.7 4.0 6.9 14.7
Charades-Ego
TACT 11.1 246 306 219 482 61.9 25.6 58.4 39 6.9 13.5

Table 5. Results on downstream zero-shot evaluation with tasks requiring increasing time awareness from I to III. None corresponds
to direct evaluation of the VideoCLIP model on the downstream dataset. Green denotes an improvement for the TACT adapted model
w.r.t. the baseline, red denotes a deterioration. As we move from tasks that need low to high time awareness, the effectiveness of TACT
increases. See Sec. 6 for a more detailed discussion. The table is best viewed on screen in colour.

of downstream tasks that need low-to-high time awareness.

Baseline: Standard post-pretraining. Comparing our
temporally adapted models with pretrained VideoCLIP is
not fair since adapted models see data beyond the pretrain-
ing phase. In addition to the zero-shot comparison, we com-
pare against a baseline model that is trained for standard
video-text retrieval on the same datasets as temporal adap-
tation. Instead of using stitched clips, we use simple canon-
ical pairs, i.e., (v;, ;) instead of (u;;,t;;).

Evaluating TACT adapted models on synthetic data.
On the video-to-text variant, TACT adapted on TEMPO
achieves 64.4%, ActivityNet 52.5%, Charades 65.0%,
Charades-Ego 85.6%. This is usually higher than the per-
formance that non-adapted models achieve in Tab. 1. This
highlights that TACT models learn useful signals to match

time-order in video and language.

I. Text-to-video retrieval. We consider two widely used
benchmarks: MSR-VTT [120] and YouCookII [132] and
adopt standard retrieval metrics. Recent work has identi-
fied a bias for spatial understanding in these datasets [8, 13,
43,56,59,66]. Thus, we consider this class of tasks as re-
quiring low time awareness. As shown in Tab. 5 set I, on
MSR-VTT [120], we observe that TACT is worse (marked
in red) or at par with the baseline across datasets. This
aligns well with findings in [13, 56] that these benchmarks
do not need time awareness. On YouCooklI [132], TACT
models based on Charades(-Ego) outperform the baseline
(marked in green). We believe this is a consequence of a
lower domain shift between YouCooklII and Charades.

I1. Temporal video QA. Next, we use subsets of recently



released multiple-choice video question answering bench-
marks: Next-QA [115] and AGQA [34]. The idea is to
check if we can probe models for temporal understand-
ing by asking questions with temporal language. Buch et
al. [13] identify a subset of Next-QA, dubbed as ATP-ha rd2,
with a higher concentration of temporally challenging data.
For AGQA, we pick a subset of ~6k questions that ex-
plicitly have a question with before/after relation. We con-
sider these benchmarks as requiring a moderate-high level
of time awareness and AGQA in particular is also close to
our adaptation task. We use accuracy as the standard met-
ric. We observe (see Tab. 5 set II) that indeed TACT al-
most always outperforms (marked in green) baselines on
both Next-QA and AGQA. TEMPO-adapted TACT seems
to generalize particularly well on both benchmarks. Like-
wise, Charades-adapted TACT does well on AGQA since
AGQA is also based on the Charades videos accounting for
reduced domain shift. We affirm that temporal adaptation is
useful, especially when the downstream tasks require it.

I11. Action-to-video retrieval. Finally, we consider action
recognition benchmarks such as Something-Something
(SSv2) [33] and Temporal [88]. SSv2 was designed to cap-
ture richer temporal information [33, 56]. We follow Lei et
al. [56], who propose the template-retrieval task that en-
courages temporal modelling and use their evaluation split?
containing C'=174 actions and K'=12 videos per class. In-
terestingly, different actions in SSv2 require differing lev-
els of time awareness. We create a subset SSv2 (events)
with Cevenis=49 actions that have at least two verbs in the
label as the occurrence of multiple verbs is indicative of
multiple events occurring in sequence. Finally, we also
evaluate against the Temporal benchmark [88], a combi-
nation of 50 action classes from SSv2 [33] and Kinetics-
400 [52] for which temporal information is deemed to be
essential for recognition. Similar to text-to-video retrieval,
we use the action class as a text query and obtain a rank-
ing over all videos. Different from the retrieval setup, since
a single query has multiple correct answers (up to K=12
videos), we report mAP as the metric for these bench-
marks. This task set needs high time awareness. Further-
more, unlike QA tasks in II, there is a shift in several (un-
controlled) factors as we move from temporal adaptation
task to these tasks. From Tab. 5, we observe that TEMPO-
and Charades-adapted models generalize well across set
IIT benchmarks. ActivityNet-adapted TACT underperforms
on SSv2 but outperforms the baseline on strongly tempo-
ral actions in SSv2 (events) and Temporal. Finally, TACT
adapted on Charades-Ego is at-par or slightly worse than
the baseline on SSv2 variants, and also on Temporal, per-
haps due to the shift from egocentric to third-person videos.
Overall, despite SSv2 and Temporal requiring high time

2 Available here: github.com/StanfordVL/atp-video-language
3 Available here: github.com/jayleicn/singularity

Effect of different prompts on inferring time-order
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Figure 5. Models trained by TACT with before/after relations gen-
eralize to a new kind of prompt such as First, .., then ..
indicating learning of the underlying true time-order of events.

awareness, TACT models show promising zero-shot gen-
eralization with the right choice of the adaptation dataset.

7. Discussion and Conclusion

Generalization to other temporal prompts. The time-
order of events in language can be described using vari-
ous sentence structures. Although we train video-language
models using before/after relations, it is natural to ask if
the model still correctly associates time-order for a differ-
ent prompt such as First,.., then,... To systematically
test this, we gather event pairs Fy, E'5 (F1 occurs before Ey
in the video) for each sample in the validation set and stitch
them using three prompts as follows: (i) E; before Es, (ii)
E5 after Ey, (iii) First Eq, then E5. As shown in Fig. 5,
TACT-adapted models generalize well to a new prompt (iii).
This substantiates the learning of time-order of events rather
than merely learning the order of words in the sentence.

Limitations. While we present a promising way of instill-
ing time in video-language models, our work is limited to
the VideoCLIP [119] pretrained model. Our initial experi-
ments with Frozen in Time [6] were not as promising, per-
haps because it uses a much shorter temporal context (4
frames). Please see Appendix B for results on more pre-
trained models. Furthermore, we consider a specific def-
inition of time awareness derived from temporal relations
like before/after. It is natural to ask if this can be extended
to more general notions of temporality, e.g., as defined by
Allen [4]. Finally, there can always be more downstream
tasks considered such as (spatio-)temporal localization.

Conclusion. Given the essence of time in video-language
models, we present a simple experiment based on synthetic
data to test for time awareness. We find that existing models
lack a sense of time defined in terms of consistency of order
of events in video and language. To fill this gap, building
upon VideoCLIP [119], we present TACT, a recipe to in-
still this sense of time in video-language models. Finally,


github.com/StanfordVL/atp-video-language
github.com/jayleicn/singularity

we analyze the zero-shot generalizability of TACT-adapted
models to a diverse set of tasks. We hope that this work
provokes further probing and instilling time awareness in
video-language models, and also inspires other adaptations
of foundational models to solve various challenging tasks.
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Supplementary Material

As part of the supplementary material, we describe pre-
processing steps as well as some qualitative examples from
the datasets in Appendix A. In Appendix B, we present ad-
ditional ablations on what makes temporal adaptation hard.
This expands on the last paragraph of Sec. 5 of the main pa-
per. Finally, in Appendix C, we conduct a qualitative anal-
ysis to verify if the model has indeed learnt to connect the
time order.

A. Datasets and Pre-processing

We sketch out the procedure we use for stitching two
clips within a video.

Clip stitching. Consider a video containing two events
(clips) v;, v; with associated captions (;, ¢; as shown in
Fig. 6. We assume these are non-overlapping (in time).
We stitch the text descriptions to construct a new caption
tij := [Gi; T; ;). Since 7 can be either before or after, we
end up with two newly constructed sentences. Correspond-
ing to each of these new sentences, we also stitch the video
events to construct a stitched video. Note that the order of
stitching video events depends on the value of 7. For exam-
ple, if 7 is before, then u;; := [v;; v;] as shown in first of
the two stitched clips. If 7 is after, then u;; := [v;;v;] as
shown in the second of the two stitched clips.
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Alime

Event X Event Y

Description(X) before Description(Y).

Description(X) after Description(Y).

Figure 6. Illustration of clip stitching. We consider two non-
overlapping events in a video and stitch them with temporal re-
lations - before and after. Agme denotes the time difference be-
tween midpoints of the two events.

From each stitched clip in Fig. 6, we construct negatives
for the contrastive loss by reversing the time order in ei-
ther video or text. This step happens on-the-fly during loss
computation, and hence, we do not show it here. For a
given dataset, we can either use all possible tuples of non-
overlapping events to create such stitched clips or sample
from all possible tuples. Since the TEMPO dataset already
comes with stitched event descriptions (based on DiDeMo),
we directly use its subset which has before/after relations
in the text. For all the other datasets, we apply the stitching
process as described. Recall, Ay, is the time distance be-
tween the two events, and plays a key role in deciding the
difficulty of temporal adaptation, as observed empirically.

Next, we describe dataset properties and show some
qualitative examples after the clip stitching step.

Adaptation datasets. To gain a sense of the diversity in
the datasets we consider for adaptation, we present exam-
ples of stitched clips from these datasets in Fig. 8. Since
TEMPO has short adjacent clips, the context remains al-
most the same, we think this is important to instill a sense
of time in models. In contrast, for ActivityNet, since the
stitched events are far apart, the context changes make it
easy to infer which event description goes with which part
of the video, or the time order of events. In this regard,
Charades and Charades-Ego are similar to TEMPO. Quan-
titatively, this change in context is captured by Agme Which
is lowest for TEMPO (mean 6.8s), followed by Charades-
Ego (13.3s), Charades (14.5s) and ActivityNet (58.8s).

Distribution of number of clips in a video. A single video
with 10 non-overlapping individual event clips can make
upto 10Cy=45 stitched clips. We plot the number of clips
per video against the number of videos in a given dataset
in Fig. 7. A single video with >30 stitched clips is rare
in TEMPO and ActivityNet while much more frequent in
Charades and Charades-Ego. Overall, the number of clips
per video is lower in TEMPO and ActivityNet as compared
to Charades and Charades-Ego.
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Figure 7. Number of clips in a video. The number of clips per
video is lower in TEMPO and ActivityNet as compared to Cha-
rades and Charades-Ego.

Downstream datasets. In Fig. 9, we also show some ex-
amples from some downstream datasets (tasks) that need
higher time awareness since they typically involve multiple
temporally linked events (e.g., walk and eat in Fig. 9(b)).
On these datasets, we perform zero-shot evaluation of tem-
porally adapted models in Sec. 6 of the main paper.

B. Experiments

Analyzing more pretrained models. = We present pre-
liminary experimental results for other pretrained models
on the Charades dataset in Tab. 6. The other models per-
form (slightly) better than random, but are not as promising
as VideoCLIP. We observe similar trends in performance
on the TEMPO dataset. We hypothesize that VideoCLIP’s
larger temporal receptive field and contrastive pre-training
objective similar to TACT helps it achieve superior perfor-
mance. This merits further investigation into how various
factors (as tabulated in Tab. 6) influence temporal adapta-
tion.

Spatial vs. temporal understanding. An interesting facet
of TACT is agame Which controls how well a model adapts
to temporal tasks. We highlight this on the TEMPO dataset
in Tab. 7, where, agume=0 results in Agme ~50% while
Qsame=1 improves performance. Further investigation on
downstream tasks shows that adaptation with ag,me=1 does
not perform well on MSR-VTT (a non-temporal bench-
mark) but shows consistent improvements on AGQA (a
temporal benchmark).and the trade-off between spatial- and
temporal-understanding. This hints at cgyme controlling the
trade-off between spatial and temporal understanding.
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A rabbit lays down on 1ts stomach before bunny lying on it’ s 51de

|
(a) TEMPO

A woman is standing in a room holding a hula hoop before she begins to use the hula hoop

\

(b) ActivityNet

Putting on shoe/shoes before holding a mirror

(c) Charades

Taking a broom from somewhere before holding a dish

A\ . |
(d) Charades-Ego

Figure 8. Examples from datasets used for temporal adaptation.
The first two frames are linearly spaced from the first event while
the last two from the second event. Notice how there is a signif-
icant change in visual context between the two events in Activi-
tyNet in contrast to other datasets. Best viewed on a screen.

Temporal  Pre-training
Model receptive field  strategy Visual backbone Encoder A,
Frozen [6] 4 Contrastive TimeSformer ~ Multimodal 53.0
VindLU [16] 8 Autoencoding ViT+Temp. attn. Multimodal 54.1
CLIP4Clip [66] 12 Contrastive ~ ViT+Temp. attn. Two-tower 57.5
VideoCLIP [119] 32 Contrastive BERT on S3D  Two-tower 77.0

Table 6. Adaptation results for more pre-trained models on Cha-
rades. Models with smaller temporal receptive field perform worse
in comparison to VideoCLIP. The temporal receptive field is re-
ported in terms of the number of input frames. Systematically
understanding the influence of various factors on making models
time-aware by post-pretraining makes for interesting future work.



Question: How did the boy react when he entered the room at the start?

ARSWer: Smile.

Question: Why does the baby turn around near the end of the video?

[AfsWet: Sits down to play.
(a) Next-QA: Video question answering

Question: Did they reach for and grab a picture before or after putting a bag
somewhere?
I —

[Aswer: Before

Question: Did they walk through a doorway before or after they
eating the last thing they touched?

(b) AGQA: Video question answering

Template: Spinning [something] that quickly stops

(c) Something-Something: Template-based video retrieval

Figure 9. Examples from datasets used for downstream evaluation.
These tasks demand time awareness since it is often not possible
to infer the action from a single frame.
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Hyperparameters  Adaptation Downstream
Qsame  Qross TEMPO MSR-VTT AGQA
Agime T RQ@11 MedR| Accuracy?
0 0 0 49.4 15.0 20.0 50.5
0 0 1 49.5 14.2 20.0 49.9
0 1 0 49.3 14.4 19.0 50.2
0 1 1 49.5 15.1 19.0 50.2
1 0 0 60.6 11.7 27.0 56.6
1 0 1 62.9 9.4 36.0 58.3
1 1 0 59.7 9.1 37.0 56.9
1 1 1 62.5 12.8 27.0 57.1
Table 7. Impact of ame On spatial- vs. temporal understand-

ing. Gray denotes better performance for asame=0 or 1. While
asame=1 drives temporal understanding, it comes at a cost of re-
trieval performance on MSR-VTT [120]. This hints at csame con-
trolling the trade-off between spatial- and temporal-understanding.

What makes temporal adaptation difficult? To recall,
we define Agme as the time-distance (in seconds) between
the midpoints of the two clips in a stitched pair. We hy-
pothesize that Agpe is inversely related to the difficulty of
temporal adaptation, i.e., the larger Agpe, the easier it is
to distinguish between two stitched clips that have opposite
time order. For example, consider ActivityNet examples
in Fig. 8(b) where the visual context changes significantly
making inference of the time order of events relatively eas-
ier.

We further test our hypothesis by sampling individual
clips from the Charades-Ego dataset to match the Ay, dis-
tribution of TEMPO. Concretely, assuming Ay, for both
these datasets follows a multinomial distribution, we con-
struct a new distribution using a convex combination of
the individual distributions where the mixing parameter
A € [0,1] controls the extent to which we modify the dis-
tribution from TEMPO (A=0) to Charades-Ego (A=1). The
resulting distributions are presented in Fig. 10 (left). With
A=1, we sample from the original Charages-Ego distribu-
tion and gradually move towards TEMPO as A — 0.

We then sample stitched clips according to this new dis-
tribution and post-pretrain temporal adaptation for varying
values of A\. Note that for this experiment, we keep fixed
N¢=10,000 for each A. From Fig. 10 (right), we indeed
find that as we move towards a more TEMPO-like distri-
bution (shorter Agpye), temporal accuracy deteriorates. The
best fit also confirms that the distribution of Ay, is strongly
correlated (p = —0.92) with the difficulty of inferring time-
order consistency.

C. Qualitative Analysis

To get an intuitive sense of whether a TACT model un-
derstands time order of events, we perform a qualitative
analysis on the model trained on TEMPO. Our demo in-
terface looks like the one shown in Fig. 11. First, a user
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Figure 10. Impact of changing distribution of Aime, the time gap between two stitched clips. Left: We vary the distribution of Agne for
Charades-Ego and make it similar to that of TEMPO as A — 0. Thus, crudely, as A decreases, so does Ajime. Right: Ajime on Charades-Ego
where the time difference between sampled clips is according to the distributions on the left. We observe that the accuracy deteriorates
as the time-distance between a pair of clips decreases indicating a strong correlation between the distribution of Ame and difficulty of
temporal adaptation.

uploads a video and adds text descriptions for two events
within the video. These descriptions are then connected
via a temporal relation such as before or after. We also
experiment with a new temporal connector First, .
then, .... to check if our model generalizes beyond be-
fore/after.

First, we consider samples from the TEMPO validation
set and show their results in Fig. 12. Notably, for some
examples, it connects time order for before relations but Test of Time: Instilling Video-Language Models with a Sense of Time
not the other two. We suspect this is because a majority ——————
(~ 60%) of the TEMPO dataset has descriptions involv-
ing before. Note that TEMPO already comes with tem-
poral captions of which we pick subset of before/after rela-
tions. Second, we also consider samples from other datasets
which the model has never seen. To our surprise, albeit
qualitatively, the model does generalize well to such exam-
ples as shown in Fig. 13.

These results reinforce the promise of our method and
also raise the possibility of extending this work to consider
more general temporal relations. Having said that, we re-
iterate that these are qualitative examples and should be
treated as such.

The child runs into the room before he sits near the gifts

Figure 11. Interface of our demo for qualitative analysis. The
user uploads a video and is asked to describe two events in the
video. These event descriptions are then connected via one of the
three temporal relations shown at the bottom left. We construct
one sentence that is consistent with the time order of events in the
video and another that is not. The output on the right shows the
ranking of the constructed sentences in terms of cosine similarity
with the video representation. Higher score for correct matching
indicated by a longer orange bar. Best viewed zoomed in.

17



The stuffed panda is visible on zooming in before the bus 69%
drives by
Before —
The bus drives by before the stuffed panda is visible on 31%
zooming in
The bus drives by after the stuffed panda is visible on 72%
zooming in
After -
The stuffed panda is visible on zooming in after the bus 28%
drives by
First, The stuffed panda is visible on zooming in occurs, 68%
First, ... | then the bus drives by occurs
then, ... First, The bus drives by occurs, then the stuffed panda is 32%
visible on zooming in occurs

The child walks down the hill before she eats an ice-cream 98%
Before
she eats an ice-cream before the child walks down the hill 2%
The child walks down the hill after she eats an ice-cream 72%
After —
she eats an ice-cream after the child walks down the hill 28%
—_
First, she eats an ice-cream occurs, then the child walks 59%
First, ... |down the hill occurs
‘ht‘ﬂ, seee |
First, The child walks down the hill occurs, then she eats 41%
an ice-cream occurs

Figure 12. Qualitative examples from TEMPO validation set. We
evaluate similarity of a given video with sentences with different
temporal order with the usual temporal connectors (before/after).
Green bordered boxes indicate correct predictions (consistent
time order between video and language) while red denote mis-
predictions. For some examples, e.g., in the bottom example, the
model gets predictions incorrect particularly for relations other
than before. Furthermore, we also try a new temporal connector
First, ..., then, . and observe that the model qualitatively
generalizes to that as well.

The man picks up a broom before he looks at the television 100%
Before

He looks at the television before the man picks up a broom 0%

He looks at the television after the man picks up a broom 100%
After

The man picks up a broom after he looks at the television 0%

First The man picks up a broom occurs, then he looks at the 88%
First, ... | television occurs
then, .... | =% L. .

First He looks at the television occurs, then the man picks 12%

up a broom occurs

(a) Example from Charades-Ego

The child runs into the room before he sits near the gifts 54%
Before _—
he sits near the gifts before the child runs into the room 46%
he sits near the gifts after the child runs into the room 919
After |
The child runs into the room after he sits near the gifts 9%
First, The child runs into the room occurs, then he sits 74%
First, ... | near the gifts occurs
then, .... | =7 . . :
First, he sits near the gifts occurs, then the child runs 26%
into the room occurs

(b) Example from Next-QA

Figure 13. Qualitative results on samples not from TEMPO. We
see that despite not having seen these examples, the model still
connects the time order across video and language correctly.
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