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Figure 1. Overview. We introduce a large-scale cross-category part manipulation benchmark PartManip with diverse object datasets,
realistic settings, and rich annotations. We propose a generalizable vision-based policy learning strategy and boost the performance of
part-based object manipulation by a large margin, which can generalize to unseen object categories and novel objects in the real world.

Abstract

Learning a generalizable object manipulation policy is
vital for an embodied agent to work in complex real-world
scenes. Parts, as the shared components in different object
categories, have the potential to increase the generaliza-
tion ability of the manipulation policy and achieve cross-
category object manipulation. In this work, we build the
first large-scale, part-based cross-category object manip-
ulation benchmark, PartManip, which is composed of 11
object categories, 494 objects, and 1432 tasks in 6 task
classes. Compared to previous work, our benchmark is
also more diverse and realistic, i.e., having more objects
and using sparse-view point cloud as input without oracle
information like part segmentation. To tackle the difficul-
ties of vision-based policy learning, we first train a state-

*Equal contribution.
†Corresponding author: hewang@pku.edu.cn.

based expert with our proposed part-based canonicaliza-
tion and part-aware rewards, and then distill the knowledge
to a vision-based student. We also find an expressive back-
bone is essential to overcome the large diversity of different
objects. For cross-category generalization, we introduce
domain adversarial learning for domain-invariant feature
extraction. Extensive experiments in simulation show that
our learned policy can outperform other methods by a large
margin, especially on unseen object categories. We also
demonstrate our method can successfully manipulate novel
objects in the real world. Our benchmark has been released
in https://pku-epic.github.io/PartManip.

1. Introduction

We as humans are capable of manipulating objects in
a wide range of scenarios with ease and adaptability. For
building general-purpose intelligent robots that can work in
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unconstrained real-world environments, it is thus important
to equip them with generalizable object manipulation skills.
Towards this goal, recent advances in deep learning and re-
inforcement learning have led to the development of some
generalist agents such as GATO [32] and SayCan [1], how-
ever, their manipulation skills are limited to a set of known
instances and fail to generalize to novel object instances.
ManiSkill [25] proposes the first benchmark for learning
category-level object manipulation, e.g., learn open draw-
ers on tens of drawer sets and test on held-out ones. How-
ever, this generalization is limited within different instances
from one object category, thus falling short to reach human-
level adaptability. The most recent progress is shown in
GAPartNet [53], which defines several classes of generaliz-
able and actionable parts (GAParts), e.g. handles, buttons,
doors, that can be found across many different object cat-
egories but in similar ways. For these GAPart classes, the
paper then finds a way to consistently define GAPart pose
across object categories and devise heuristics to manipulate
those parts, e.g., pull handles to open drawers, based on part
poses. As a pioneering work, GAPartNet points to a promis-
ing way to perform cross-category object manipulation but
leave the manipulation policy learning unsolved.

In this work, we thus propose the first large-scale, part-
based cross-category object manipulation benchmark, Part-
Manip, built upon GAPartNet. Our cross-category bench-
mark requires agents to learn skills such as opening a door
on storage furniture and generalizing to other object cate-
gories such as an oven or safe, which presents a great chal-
lenge for policy learning to overcome the huge geometry
and appearance gaps among object categories.

Furthermore, our benchmark is more realistic and di-
verse. We use partial point clouds as input without any ad-
ditional oracle information like part segmentation masks in
the previous benchmark ManiSkill [17,25], making our set-
ting very close to real-world applications. Our benchmark
also has much more objects than ManiSkill. We selected
around 500 object assets with more than 1400 parts from
GAPartNet [11] and designed six classes of cross-category
manipulation tasks in simulation. Thanks to the rich annota-
tion provided in GAPartNet, we can define part-based dense
rewards to ease policy learning.

Due to the difficulty presented by our realistic and di-
verse cross-category setting, we find that directly using
state-of-the-art reinforcement learning (RL) algorithms to
learn a vision-based policy does not perform well. Ideally,
we wish the vision backbone to extract informative geomet-
ric and task-aware representations, which can facilitate the
actor to take correct actions. However, the policy gradient,
in this case, would be very noisy and thus hinder the vision
backbone from learning, given the huge sampling space.
To mitigate this problem, we propose a two-stage training
framework: first train a state-based expert that can access

oracle part pose information using reinforcement learning,
and then distill the expert policy to a vision-based student
that only takes realistic inputs.

For state-based expert policy learning, we propose a
novel part-based pose canonicalization method that trans-
forms all state information into the part coordinate frame,
which can significantly reduce task variations and ease
learning. In addition, we devise several part-aware reward
functions that can access the pose of the part under interac-
tion, providing a more accurate guide to achieve the manip-
ulation objective. In combination, these techniques greatly
improve policy training on diverse instances from different
categories as well as a generalization to unseen object in-
stances and categories.

For the vision-based student policy learning, we first in-
troduce a 3D Sparse UNet-based backbone [16] to han-
dle diverse objects, yielding much more expressivity than
PointNet. To tackle the generalization issue, we thus
propose to learn domain-invariant (category-independent)
features via introducing an augmentation strategy and a
domain adversarial training strategy [8, 9, 22]. These
two strategies can alleviate the problem of overfitting and
greatly boost the performance on unseen object instances
and even categories. Finally, we propose a DAgger [33] +
behavior clone strategy to carefully distill the expert policy
to the student and thus maintain the high performance of the
expert.

Through extensive experiments in simulation, we vali-
date our design choices and demonstrate that our approach
outperforms previous methods by a significant margin, es-
pecially for unseen object categories (more than 20% of the
success rate in OpenDoor and OpenDrawer tasks). We also
show real-world experiments.

2. Related Work
2.1. Learning Generalizable Manipulation Skills

Generalization is crucial yet challenging for robot appli-
cation. Many works [7, 10, 15, 41, 52] combine supervise
learning and motion planning to learn generalizable skills,
e.g. grasping. However, these methods often require spe-
cial architecture design for each task and may be unsuitable
for complex manipulation tasks. Reinforcement learning
(RL) has the potential to solve more complex task [2, 31],
but the generalization ability of RL is an unsolved prob-
lem [13, 21]. To facilitate the research of generalizable ma-
nipulation skills, ManiSkill [25] proposes the first category-
level object manipulation benchmark in simulation. [38]
leverages imitation learning to learn complex generalizable
manipulation skills from the demonstration. However, their
demonstrations are collected by RL trained on every single
instance, which requires a lot of effort to tune. In contrast,
our experts can be directly trained on each object category.



Generalization Level # of Door Ins. # of Door Cat. # of Drawer Ins. # of Drawer Cat. Realistic Input
ManiSkill 1&2 Category-level 82 1 70 1

Ours Cross-category-level 503 7 399 3 ✓

Table 1. Comparision with ManiSkill 1&2 [17, 25]. Realistic input indicates whether to need oracle part segmentation masks.

2.2. Vision-based Policy Learning

A lot of efforts are made to study how to learn policy
from visual input [12, 20, 39, 40, 50, 54, 55]. Some works
[30, 36, 37] use a pre-trained vision model and freeze the
backbone to ease the optimization. Some [47, 48] leverage
multi-stage training. The most related work to us is [4],
which also trains a state-based expert and then distills to a
vision-based policy, but the task is quite different.

2.3. 3D Articulated Object Manipulation

Manipulating articulated objects is an important and
open research area due to the complexity of different ob-
jects’ geometry and physical properties. Previous work has
proposed some benchmark [25, 42] but the diversity is lim-
ited. As for the methods, [3, 18, 27] explored motion plan-
ning, and [12, 24, 45, 47, 56] leverages visual affordance
learning. Other works [6,51] design special representations
for articulated object manipulation and can generalize to a
novel object category, but their methods are only suitable
for the suction gripper.

3. PartManip Benchmark
By utilizing the definition of the generalizable and ac-

tionable part (GAPart) presented in GAPartNet [11], we
build a benchmark for a comprehensive evaluation of the
cross-category generalization policy learning approaches.
GAParts are some kinds of parts that have similar geometry
and similar interaction strategy across different object cat-
egories. For example, the handle on tables is often similar
to those on safes, so we can regard the handle as a GAPart.
The nature of GAPart ensures a general way for manipula-
tion regardless of the object category, making it possible for
cross-category generalization. We thus expect the manipu-
lation policy trained on some object categories can gener-
alize to other unseen object categories, and build the first
benchmark for cross-category generalizable part manipula-
tion policy learning.

Furthermore, our benchmark is more diverse and real-
istic than previous robotic manipulation benchmarks [25].
Diversity indicates that we have more object instances and
categories, as shown in Table 1. Realism indicates that our
observation space has less oracle information (i.e., part seg-
mentation masks) than ManiSkill [25] as discussed in Sec.
3.4, and thus is more acquirable in the real world.

We use Isaac Gym [23] as our simulator and most ex-
periments are done in simulation. In the following, we in-

troduce our cross-category part-based object manipulation
tasks in detail.

3.1. Task Formulation

We have six classes of tasks: OpenDoor, OpenDrawer,
CloseDoor, CloseDrawer, PressButton and GraspHan-
dle. Although OpenDoor and OpenDrawer require grasp-
ing the handle first, GraspHandle differs from them be-
cause it contains another GAPart lid with more object cate-
gories. Like traditional RL tasks, our task can be formu-
lated as a Partially Observable Markov Decision Process
(POMDP), because the true environment state st is not fully
observable (especially for objects) in each timestep t. Given
current partial observation ot, a policy π needs to predict an
action at to control the robot. After applying the action at,
the next observation ot+1 and the reward rt+1 will be given
by the environment, which can be used to train the policy.
The final goal of the policy is to reach the success state (see
supp. for more) in T steps (we set episode length T = 200).

3.2. Object Assets

For each task, our object assets contain part-centered ar-
ticulated objects, which are selected from the GAPartNet
dataset [11]. GAPartNet dataset is a large-scale articulated
object dataset with GAPart definitions and rich part annota-
tions, including semantics and poses. The original GAPart
classes contain Round Fixed Handle, Slider Lid, Slider But-
ton, Hinge Knob, Line Fixed Handle, Slider Drawer, Hinge
Lid and Hinge Door. But in this paper, we simplify them
to only five classes: handle, button, door, drawer and lid.
Each door/drawer/lid has a handle on it for manipulation.
Figure 2 shows some visualization of our object assets, and
Table 2 shows the statistics and split in our benchmark.

3.3. State Space and Action Space

The environment state s of each task is composed of the
robot joint angles qp ∈ R11, joint velocity qv ∈ R11, grip-
per coordinate x ∈ R3, gripper rotation r ∈ SO(3), and the
target GAParts’ bounding boxes bGAParts ∈ R3×8×n, where
n is the number of the target GAParts for the manipula-
tion task. Specifically, there are two GAParts handle and
door/drawer/lid for all the tasks in our benchmark except
for PressButton, which only has one GAPart button.

For the action space, we use the Franka Panda arm and
a parallel gripper as the end-effector. The action at is for-
mulated as the gripper’s target 6 Dof pose at each timestep t
for all tasks. It is then converted to the target joint angles by



Open/CloseDoor Open/CloseDrawer PressButton GraspHandle
Sto. Mic. Dis. Ove. Ref. Tab. Saf. Sto. Tra. Tab. Rem. Was. Mic. Pho. Tra. Tab. Sto. Mic. Saf. Ove. Dis. Ref.

Training Set 338 4 21 - - - - 238 8 - 178 30 7 - 8 36 40 3 1 - - -
Val-Intra Set 60 - 3 - - - - 53 4 - 47 11 1 - 4 16 20 1 - - - -
Val-Inter Set - - - 20 43 13 1 - - 96 - - - 40 - - - - - 20 24 43

Total 398 4 24 20 43 13 1 291 12 96 225 41 8 40 12 52 60 4 1 20 24 43

Table 2. Task Statistics and Split. Sto. = StorageFurniture, Mic. = Microwave, Dis. = Dishwasher, Ove. = Oven, Ref. = Refrigerator,
Tab. = Table , Saf. = Safe, Tra. = Trashcan, Rem. = Remote , Was. = WashingMachine, Pho. = Phone. Note that all the numbers are the
task number instead of the object number, i.e., one object can have multiple parts and thus multiple tasks.

Dishwasher Microwave Oven Phone Refrigerator Remote Safe StorageFurniture Table Trashcan WashingMachine

Figure 2. Object Assets Visualization. The object geometry and appearance are very different, especially in different object categories,
which presents a great challenge for our PartManip benchmark.

inverse kinematics (IK), and used to control the robot arm
by position control.

3.4. Observation Space
Because the true states of GAParts are often not ob-

servable in a realist setting, our acquirable input for pol-
icy learning is the partial observation ot, which consists
of the robot states (qp, qv, x, r)t, the colored point clouds
Pt ∈ R6×4096, and a fixed point indicator c ∈ R3 indicating
the center of the target GAPart.

In our paper, we use a multi-camera setting in simulation
to alleviate occlusion. The colored point clouds Pt are back-
projected from 3-view RGBD images, assuming the camera
poses are known. One camera is set above the object facing
down, and the other two are set on each side of the object
facing the objects. See We our supp. for the experiments
with the single-camera setting.

The point indicator c is necessary for disambiguation
because some objects have multiple actionable parts (e.g.,
double-door refrigerator) and we need a way to specify
which part we want the robot to manipulate. Specifically,
for those tasks that have both handle and door/drawer/lid,
we only give the center of the target door/drawer/lid at
timestep 0 as the point indicator c. The policy has to
find and manipulate the corresponding handle by only point
clouds. Compared to ManiSkill 1&2 [25], which uses the
oracle segmentation mask for disambiguation, our point in-
dicator c is easier to acquire in the real world and poses a
greater challenge for policy learning. Note that the point in-
dicator c does not update over time, so it does not leak extra
information about the part’s motion.

3.5. Part Pose-aware Reward Design
We design dense rewards for policy training because we

can access the ground truth (GT) environment state s in the
simulator. Note that the state s is not available during test-
ing, which makes it hard for direct motion planning. In-
spired by ManiSkill [25], we designed a general reward for
all tasks. The reward has 4 components:

Rotation Reward. GAParts such as handle and but-
ton can only be manipulated at certain angles. The reward
Rrot = cos(−→ap · −→ar), in which ap ∈ R3 is the y-axis of the
part bounding box and ar ∈ R3 is the y-axis of robot grip-
per. When the grippper is vertical to the face of the target
part, the reward reach the maximum value.

Distance Reward. The reward is the negative value of
the distance from the center of two tips on gripper cg ∈ R3

to the handle center ch ∈ R3. We also add a discount
factor df ∼ df (bGAParts) to reduce the distance reward
after the target part has been removed. The intuition is
that, for example, when the target door has been opened
large enough, our humans won’t tightly grasp the handle
in a rigid hand pose. So, we won’t encourage the grip-
per to grasp the handle as strictly as before either. Finally,
Rdist = −df ∥cg − ch∥2. Part Moving Reward. The re-
ward is computed by the movement of the target GAPart,
encouraging the robot to move the part to the success state.
For example, for OpenDoor, it’s the radian degree of the
open angle; for OpenDrawer, it’s the open length. We for-
mulate it as Rpose.

Tips closure Reward. The reward encourages tips to
close for stable grasping. It’s computed by the distance of
two fingertips on grippers. We formulate it as Rtips.
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Figure 3. Our Pipeline. We first train state-based expert policy using our proposed canonicalization to the part coordinate frame and the
part-aware reward. We then use the learned expert to collect demonstrations for pre-training the vision-based policy by behavior cloning.
After pre-training, we train the vision-based policy to imitate the state-based expert policy using DAgger. We also introduce several point
cloud augmentation techniques to boost the generalization ability. For the vision backbone, we introduce 3D Sparse-UNet which has a large
expression capability. Furthermore, we introduced an extra domain adversarial learning module for better cross-category generalization.

The whole reward can be written as:

λrRrot + λdRdist + λpRpose + λtRtips

We use one set of hyper-parameters for each task and the
specific value is shown in the appendix.

4. Method

Our PartManip benchmark is very difficult and thus sim-
ple methods can fail dramatically. Our benchmark requires
the learned policy not only to manipulate multiple objects
from partial visual observation but also to generalize the
manipulation skill to unseen object categories. Directly ap-
plying state-of-the-art RL algorithms (e.g., PPO [35]) on
our benchmark to learn a vision-based policy cannot per-
form well, possibly due to the unstable RL training process.
Therefore, we need specific designs to tackle the difficulty.

We start with expert policy learning using oracle envi-
ronment state as input. Thanks to the rich part annotations
in our benchmark, we propose a novel part-canonicalized
strategy for policy learning in Sec. 4.1, which greatly im-
proves the performance and generalization ability.

Given the state-based expert, we then introduce a knowl-
edge distillation strategy to learn a vision-based student pol-
icy in Sec. 4.2, which takes input from the partial observa-
tion o instead of the oracle environment state s. Our State-
to-Vision Distillation training strategy also enables visual

observation augmentation to boost the generalization abil-
ity. We thus introduce our point cloud augmentation tech-
nique here.

Additionally, due to the wide variety of objects and the
inherent difficulty in processing visual input, it is crucial
to use a backbone with large expression capability. To this
end, we propose a Sparse Unet-based backbone architecture
[16] for policy learning in Sec. 4.3, which offers superior
feature extraction performance.

Last but not least, to overcome the challenges presented
by cross-category task settings, we present a domain adver-
sarial training strategy [8,9,11,22] in Sec. 4.4 for our visual
feature learning. This strategy improves the generalizability
of the policy, particularly on novel object categories.

4.1. Part-Canonicalized State-Based RL

Compared to the partial visual observation o, using the
oracle environment state s as input can greatly reduce the
difficulty of policy learning because the network will not
be distracted by visual feature extraction and can focus on
learning manipulation skills. So we start with state-based
expert policy learning using a state-of-the-art RL algorithm
Proximal Policy Optimization (PPO).

PPO is a popular on-policy RL algorithm, which pro-
poses a few first-order tricks to stabilize the training pro-
cess. The stability is ensured by keeping the new policy
close to the old one by gradient clipping or KL penalty. PPO
trains an actor and a critic, and the objective to maximize



can be formulated as

L = E
[

πθ(a|s)
πθold(a|s)

Â− ϵKL[πθold(·|s), πθ(·|s)]
]

(1)

in which θ is the network parameters, ϵ is a hyper-parameter
and Â is the estimated advantage using GAE [34]. Thanks
to the GPU-parallel data sampling in Isaac Gym [23], PPO
can converge fast and stably, so we choose it as our baseline
and develop on it.

In our scenario, we find that the relative pose between the
robot gripper and the target GAPart ( e.g., handle/button)
is more critical than the absolute pose. Take the task of
OpenDoor as an example, if the relative poses between two
handles and two grippers are similar, we can use a similar
strategy to manipulate them. It doesn’t matter whether these
handles are on a microwave or a oven. It also doesn’t matter
what the absolute poses of the gripper and handles are.

Therefore, we propose to transform all the coordinate-
dependent states from world space to the target GAPart’s
canonical space. Inspired by the normalized coordinate
space (NOCS [44]) for category-level object pose estima-
tion, we define the canonical space of each GAPart category
similarly using the part bounding box annotations provided
by GAPartNet [53]. For each GAPart category, we choose
the center of the part bounding box as the origin point, and
three axes align to the three vertical edges of the bounding
box. Here the scale is ignored because it can change the
size of the robot gripper and bring potential harm. For each
frame t, we can use the target GAPart’s pose (in the format
of bounding box btGAPart) to transform all the coordinate-
dependent states into the GAPart’s canonical space.

This part-canonicalized strategy can transform all the ab-
solute poses into relative poses to the target GAPart, and
thus reduce the variance of input. In our experiments in
Sec. 5, we show that this strategy can greatly improve the
generalization ability of the learned policy, and achieve a
high success rate even on unseen object categories.

4.2. Augmented State-to-Vision Policy Distillation

DAgger-based State-to-Vision Distillation. The learned
expert cannot be directly used in a realistic setting because
in the real world the oracle environment state s is often un-
known and we can only acquire the partial observation o.
However, we can leverage the state-based expert knowledge
to ease the learning process of the vision-based student.
This technique is often called knowledge distillation [14].

One popular and simple method for knowledge distilla-
tion is Behavior Cloning (BC). BC requires the expert to
collect an offline dataset of observation-action pairs with
success trajectories. The objective of BC is to minimize
the difference between the action label and the student pol-
icy output. Although it sounds reasonable and straightfor-

ward, it can suffer from accumulating error over time be-
cause the observation distribution of the student policy is
different from the one of the offline dataset.

To overcome the problem of accumulating error, we use
DAgger [4, 33] for knowledge distillation. DAgger is an
online imitation learning algorithm, which can directly train
on the observed distribution of the student policy thanks to
online interaction. The objective of DAgger is similar to BC
except for the data distribution, which can be written as:

LDA =
1

|Dπθ
|

∑
o,s∈Dπθ

∥πexpert(s)− πstudent(o)∥2 (2)

in which Dπθ
is the online interacted data sampled from

student policy during training.
Pretraining with BC. One potential issue we observed in
DAgger is that a randomly initialized policy may perform
poorly in the first few iterations, stepping out of the expert’s
input distribution. Since the expert policy has not encoun-
tered those out-of-distribution states, it may not know how
to act correctly to finish the task. So using the output of ex-
pert policy in such states for supervision can slow down the
training process of students, leading to worse performance.

To address this issue, we use the learned expert to collect
offline demonstrations and pre-train the student policy with
BC. Although pure offline BC cannot be superior to pure
online DAgger, BC is a good choice for initialization and
can boost the further DAgger training process. Using this
pre-training technique along with DAgger, we employ two
different ways to make full use of the expert knowledge.
Observation Augmentations. Thanks to our state-to-
vision distillation method, the student policy will not suf-
fer from the noisy gradient in RL and thus can make full
use of its network capability. To improve the generalization
ability of the learned policy, a promising way is to enlarge
the training distribution of the object geometry and appear-
ance. Therefore, we propose to add augmentations on point
clouds during the DAgger training process. These augmen-
tations mainly include point cloud jittering and color re-
placement. Please see the appendix for more details.

4.3. 3D Sparse Unet-based Backbone

In order to effectively process complex and diverse vi-
sual input for cross-category generalization, it is essential
to have an expressive backbone. To this end, we utilize the
widely-used backbone, 3D Sparse-UNet [16], which has a
stronger expression capacity compared to PointNet [28] and
PointNet++ [29]. Sparse-UNet is often employed in state-
of-the-art methods such as PointGroup [19] and SoftGroup
[43]. However, a significant drawback of Sparse-UNet is
its slow running speed. In order to address this issue, we
introduce several algorithms (such as batch voxelization for
point clouds and high parallelization of sparse convolution)



to optimize the implementation of Sparse-UNet. These
modifications greatly speed up the forward and backward
processes of the network, resulting in a runtime that is over
1.4 times faster than the best existing implementation. Ad-
ditional details can be found in the appendix.

As illustrated in Fig. 3, the partial colored point cloud
P ∈ RN×6 is used as input to Sparse-UNet, which extracts
per-point features F ∈ RN×C . These per-point features are
then processed by a small PointNet [28] and concatenated
with the robot states to serve as input to the actor.

4.4. Domain-invariant Feature Learning

Inspired by [8, 9, 11, 22], we introduce the Gradient Re-
verse Layer (GRL) and a domain classifier for domain-
invariant feature learning, which improves the generaliza-
tion ability across object categories, especially for unseen
categories. The domain classifier takes the extracted visual
features from the backbone as input to distinguish domains,
i.e. object categories in our setting, while the GRL negates
the gradient and encourages the backbone to fool the clas-
sifier and thus extract domain-invariant features. For a tar-
get part with mask Mi, we first query its feature FMi

from
the whole feature map F . Then a classifier D with a small
Sparse-UNet backbone and two MLPs takes it as input and
classifies the domain label. The loss can be written as :

Ladv = Lcls(D(FMi), y
cate.
i ) (3)

where ycate.
i is the ground truth domain label (i.e., category

label).

5. Experiments
5.1. Evaluation Settings and Main Results

Because our PartManip benchmark emphasizes the ex-
periment settings to be realistic, all the algorithms are evalu-
ated using partial observation o as input except those experts
in Tab. 5. We use the task success rate as our main evalu-
ation metric. To reduce the evaluation noise, we conduct
each experiment 3 times using random seeds and report the
mean performance as well as the variance. See appendix for
more training details.

The main results of our method are shown in Tab. 3.
We can see that CloseDoor and CloseDrawer are relatively
easy and our method can achieve a high success rate, even
on unseen object categories. The other four tasks are more
challenging and the performance drops on the unseen cate-
gories, especially for OpenDoor and OpenDrawer.

5.2. Comparison with Baselines

To demonstrate the effective of our method, we conduct
several relative baselines on our PartManip benchmark.
These baselines include a popular RL algorithm PPO [35],
an affordance-based interaction method W2A [24], a novel

Success rate (%) Training Set Val-Intra Set Val-Inter Set
CloseDoor 88.7±1.0 88.4±2.9 87.0±1.6
CloseDrawer 99.6±0.6 97.9±2.1 98.6±1.2
OpenDoor 68.4±1.1 57.2±0.4 49.1±1.5
OpenDrawer 82.3±2.1 78.7±2.0 54.7±4.2
PressButton 89.6±2.9 79.6±4.2 66.6±4.2
GraspHandle 79.8±2.4 70.0±2.4 56.4±2.9

Table 3. Our Main Results on PartManip benchmark.

Success rate (%) OpenDoor OpenDrawer
Training Val-Intra Val-Inter Training Val-Intra Val-Inter

PPO [35] 4.5±3.8 4.9±3.5 0.2±0.2 8.9±2.8 11.3±2.8 3.3±1.6
ILAD [48] 13.3±4.9 6.3±2.5 5.0±4.1 18.7±3.6 18.3±2.9 3.3±2.9
Where2act [24] 25.4±0.1 23.4±0.0 15.2±0.1 39.6±0.2 37.2±0.2 20.5±0.1
SilverBullet3D [26] 54.6±2.5 49.9±1.0 26.9±2.2 77.7±3.3 60.0±2.0 31.2±5.1
Shen et. al [38] 1.5±0.6 0.3±0.6 2.3±4.0 9.7±0.5 18.0±2.2 2.7±1.9
Wu et. al [46] 45.9±2.3 34.1±3.8 17.8±1.4 70.5±2.2 53.3±3.3 28.5±2.4
Dubois et. al [5] 35.4±4.4 25.1±2.1 1.3±1.0 61.4±4.3 38.3±2.0 2.7±1.6
Ours 68.4±1.1 57.2±0.4 49.1±1.5 82.3±2.1 78.7±2.0 54.7±4.2

Table 4. Comparison with Baselines.

vision-based policy training method ILAD [48], and win-
ners [5, 26, 38, 46] in ManiSkill Challenge [25]. Due to the
page limit, we only show the results of two representative
tasks, i.e., OpenDoor and OpenDrawer, in our main pa-
per. See the appendix for the performance of the other four
tasks.

As shown in Tab. 4, we can see that although most base-
lines can work to some degree on the training set, the perfor-
mance can drop dramatically on intra- and especially inter-
category validation set. In contrast, our method can per-
form consistently better on all evaluation set without intense
performance drop, which indicates the great generalization
ability of our method.

5.3. Ablation Study

The ablation studies are shown in Tab. 5. For state-based
policy learning, our proposed part-based canonicalization
can significantly improve performance on all three evalu-
ation sets, especially for the inter-category validation set.
Take OpenDoor as an example, the policy trained with part-
based canonicalization can outperform the one without by
14.4%, 12.3%, and 27.3% respectively on three sets.

For vision-based policy learning, we analyze each com-
ponent below (row number is counted from the visual pol-
icy):

1) (Row 1-4) Directly using the RL algorithm PPO to
learn the policy performs poorly. We deduce that the RL
gradient is noisy and can ruin the learning of a vision back-
bone, especially for a large network (e.g., Sparse-UNet).
DAgger can greatly alleviate this problem and perform well
on the training set, but it also suffers from overfitting and
thus is lack of strong cross-category generalization ability.

3) (Row 3-6) Sparse-UNet backbone has a better expres-
sive capacity but may overfit to the training set. Using aug-



Success rate (%) Canon DAgger Augm S-Unet Pretrain DomAdv Opening Door Opening Drawer
Training Val-Intra Val-Inter Training Val-Intra Val-Inter

State-based 67.8±3.4 50.2±1.9 23.4±3.9 71.5±2.1 62.5±2.3 37.5±5.2
Expert ✓ 82.2±0.2 62.5±2.6 50.7±4.1 92.7±0.9 88.1±1.0 63.4±2.4

4.5±3.8 4.9±3.5 0.2±0.2 8.9±2.8 11.3±2.8 3.3±1.6
✓ 0.8±0.5 0.4±0.2 0.0±0.0 5.9±2.3 3.9±0.6 1.0±0.2

✓ 60.3±0.7 49.2±1.1 31.5±2.9 70.9±0.6 62.0±1.1 42.7±1.8
Vision-based ✓ ✓ 66.8±2.7 50.2±1.7 28.8±2.1 77.4±2.7 61.9±3.0 36.4±3.3

Student ✓ ✓ 60.0±1.7 54.4±2.3 40.2±3.9 69.7±2.4 69.8±2.5 49.0±2.1
✓ ✓ ✓ 65.5±1.5 55.9±2.7 41.7±2.5 74.6±3.4 63.8±4.7 49.1±3.4
✓ ✓ ✓ 61.1±3.3 55.0±1.2 37.8±2.9 71.9±3.3 72.2±3.5 50.3±2.6
✓ ✓ ✓ ✓ 71.2±1.8 57.0±0.7 37.2±1.2 82.0±3.3 73.8±2.9 48.8±4.5
✓ ✓ ✓ ✓ ✓ 68.4±1.1 57.2±0.4 49.1±1.5 82.3±2.1 78.7±2.0 54.7±4.2

Table 5. Ablation Study. Canon = Part pose canonicalization for the input states; Augm = Augmentation; S-Unet = Sparse-UNet; Pretrain
= Pretraining with expert demonstration; DomAdv = Domain adversarial learning.

mentation can alleviate the overfit, achieving much better
generalization ability.

5) (Row 5-8) Pretraining using the demo collected by
the expert can provide a better initialization for the student,
ease the problem of being out of expert distribution at the
beginning of DAgger, and improve performance.

6) (Row 8,9) Our domain adversarial learning can further
boost the performance, especially on previously unseen in-
stances or categories. We reason that our adversarial train-
ing strategy helps domain-invariant feature extraction and
thus helps robotics policy learning.

5.4. Real-World Experiments

Finally, we validate our method in the real world, as
shown in Fig. 4. We use a single RGB-D camera (Okulo) to
capture visual observation and a Franka Emika robotic arm
for manipulation. We try to directly apply the learned pol-
icy in simulation to the real world but find the success rate is
much lower, due to the huge sim2real gap of the point cloud
and the physics. Therefore, to minimize the sim2real gap,
we use a digital twin system [12, 49] for the real-world ex-
periment. The input of our method included: 1) point cloud
from the simulator and 2) agent state from the real world.
We then apply the output action of our policy to the robotic
arm both in the simulator and the real world. Note that the
testing object is unseen during policy learning. Experiments
show that our trained model can successfully transfer to the
real world. See appendix for more details.

6. Limitation
Although our proposed method for cross-category object

manipulation has already outperformed previous work by a
large margin in simulation, there is still much room for im-
provement. It is worth studying how to further improve the
performance on unseen object instances and categories. An-
other limitation can be the huge sim2real gap between the
point cloud and the physics. We hope that our PartManip

Figure 4. Real World Experiment.

benchmark can provide a good starting point for future re-
search on generalizable manipulation policy learning.

7. Conclusion
In this work, we introduce a large-scale part-based cross-

category object manipulation benchmark PartManip, with
six tasks in realistic settings. To tackle the challenging prob-
lem of the generalizable vision-based policy learning, we
first introduce a carefully designed state-based part-aware
expert learning method, and then a well-motivated state-to-
vision distillation process, as well as a domain generaliza-
tion technique to improve the cross-category generalization
ability. Through extensive experiments in simulation, we
show the superiority of our method over previous works.
We also demonstrate the performance in the real world.
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A. More Details about Our Benchmark

A.1. Objects and Robot Assets

We select 494 object instances from GAPartNet [53]
dataset. GApartNet provides large-scale articulated objects
with rich annotations. For doors and drawers, our bench-
mark requires a handle on it. For the button, there is no
constraint. Because there are too many buttons on some re-
mote or phone, we randomly select a maximum of 5 buttons
on each object. The total benchmark contains 494 objects
and 1432 different target parts.

A.2. Environment Settings

We carefully set the environment parameters in Isaac-
gym. To simulate real-world physics, we set the contact
offset = 1e-3, which means that our gripper is harder to ma-
nipulate the part by scratching or rubbing the edge of the
part. Also, we set a slight recovery force (= 0.1) to avoid
the agent moving the part to a successful state by slightly
touching it. The stiffness of the cabinet dof(slider joint for
drawer and button, rotation joint for door) is set to 20. The
damping of the cabinet dof is set to 200. The friction coef-
ficient of cabinet dof is set to 5.

For robot controlling, we use pos control mode. This
means that we need to input each joint angle of the Franka
arm to the network at each step. We find that in our tasks,
using pos control is easier for imitation learning.

A.3. Reward Weight

For each task, we tune the reward weight to train a
human-like policy. We list rotation weight λr , handle dis-
tance weight λd, part moving weight λp, and tips closure
weight λt in Table 7.

rotation weight. For the closing task and pressing but-
ton task, we don’t need the gripper to grasp the handle, so
we set λr = 0. For the other tasks, we set it to 0.2.

handle distance weight. The value of λd

λp
is impor-

tant for opening task. If the value is too small, the pol-
icy wouldn’t learn to open the part using the handle. If the
value is too large, the policy wouldn’t try to open the door,
but only learn to grasp the handle. The λdf is set to non-
zero for the opening task because after the part is opened,
the gripper can move away from the handle.

part moving weight. For the grasping task, we don’t
require the agent to manipulate part, so we set λp = 0.

tip closure weight. For the opening and closing tasks,
we focus on using the handle to finish the task but don’t
require the final grasp pose of the gripper. So we set λt = 0.

A.4. Initialization and Success Criteria

For each task, we initialize the gripper at a certain dis-
tance (i.e., 50cm) away from the center of the target part,



facing the object. The initialization of objects and the suc-
cess criteria for each task are shown below:

OpenDoor: The door should be opened to more than 30
degrees from the initial closed state.

OpenDrawer: The drawer should be opened to more
than 20% of the maximum opening length from the initial
closed state.

CloseDoor: The door should be closed to less than 1
degree from the initial opening angles of 45 degrees.

CloseDrawer: The drawer should be closed from the
initial opening length of 30 cm to less than 1 cm.

PressButton: The button should be pressed for more
than 50% of the maximum pressing depth.

GraspHandle: The robot should close two tips to less
than a threshold from different sides of the handle, while
the center of the two tips is inside the handle bounding box.

B. More Details about Our Method

Our pseudo code is shown in algorithm 1 and algorithm
2.

For state-based policy training, we update E epochs in
one step. In one epoch, the state and actions buffer Dπθ

is
divided in B minibatch to compute one gradient step. So
after sampling once, the network update E ∗B time.

For state-to-vision distillation, we use point cloud aug-
mentation. We use point cloud jittering with a distance of
0.1 and a strong color augmentation, which changes the
GAParts color to a random color during a specific episode.
Although we randomly choose a color, we fix it during one
episode. This technique works well and improves perfor-
mance in the unseen category.

There is a potential problem for expert distillation. The
output of the actor can be an arbitrary value in Rn. Here
n is the output dimension of the actor. Because we use the
pose control, and the joint angle is in the range (−π, π). If
the value ai in ith dimension is out of this range, it would
shift to a′i satisfied a′i = ai + 2kπ, k ∈ Z. Because of this,
multiple outputs would correspond to one action in the sim-
ulator so the L2 loss of expert action and student action is
not positively associated with the similarity between expert
action and student action. To tackle this problem, we add an
additional Tanh layer and scale the action to (−π, π). We
use the scaled action to compute dagger loss and update the
network.

C. More Details about the Experiment Setting

C.1. Training Details

We train our state-based policy on Nvidia GeForce RTX
2080Ti for 6 hours. For each task, we use all of the data in
our dataset claimed in the paper. The PPO hyperparameter
is shown in Table 8.

Algorithm 1 State-based Expert Training
Input: robot states S, handle bounding box bhandle, part
bounding box bpart, state s = (S, bpart, bhandle), policy
network θp ( i.e., actor θap and critic θcp),
for t = 0, 1, 2 . . . do

Transfer observation to canonical space
Sample trajectories Dπθ

= {(si.ai)}ni=1

for e = 1, 2, . . . , E do ▷ PPO update
for b = 1, 2, . . . , B do

update policy network θp, according to: LRL

Select highest success rate θp → θexpert
while |Ddemo| ≤ buffer size do

sample trajectory ti by θexpert
append ti to Ddemo

Algorithm 2 Vision-based Student Training
Input: partial point cloud P ∈ RN×3, robot states s, vision
backbone θb, policy network θp ( i.e., actor θap and critic θcp),
expert policy θexpert, demonstration buffer Ddemo
Pre-training: update the vision backbone θb and actor
MLPs θap , according to LBC
for t = 0, 1, 2 . . . do

Sample trajectories Dπθ
= {(si, oi, ai)}ni=1

for e = 1, 2, . . . , E do
for b = 1, 2, . . . , B do

augment point cloud observation oi as A(oi)
update backbone θp and the actor of policy network
θap , according to: λDALDA + λadvLadv

For actor and critic networks, we use 3 hidden layers of
MLP. The hidden layer dimension of the MLP is 512, 512,
64. For vision-based policy, we use the Sparse-Unet back-
bone. If the input point cloud has more than N = 20, 000
points, we first downsample it to 20000 points using FPS
(Farthest Point Sampling). Then we voxelize the input point
cloud into a 100 × 100 × 100 voxel grid. The backbone
U-Net has an encoder and decoder, both with a depth of 6
(with channels of [16, 32, 48, 64, 80, 96, 112]) and outputs a
N×K per-point feature F where K = 16. We speed up the
3D Sparse UNet inference speed by introducing batch vox-
elization for point clouds and high parallelization of sparse
convolution, thanks to the latest high-performance third-
party code base like open3d and sparse

Because PPO is an on-policy RL algorithm, for each N
step, we update the policy. To leverage the fast convergence
of PPO, we want to update as frequently as we can. On the
other side, due to the noisy gradient of RL, the batch that is
used to compute the gradient should not be too small, which
is equal to Tenv ∗N/M . Here T is the training environment
number, and M is the minibatch size. Empirically we find
that the batch size near to 2000 is fine. For six tasks, due
to the number of training data, we choose proper minibatch



robot state part bounding box handle bounding box Point Cloud part mask handle mask
Ours (state-based) ✓ ✓ ✓
Where2Act [24] ✓ ✓ ✓
VAT-Mart [47] ✓ ✓ ✓
Maniskill [25] ✓ ✓ ✓ ✓

Ours (vision-based) ✓ ✓

Table 6. Comparison with Other Methods.

name opening door opening drawer closing door closing drawer pressing button grasping handle
Train environment number 363 246 363 246 215 88

minibatchs 2 3 2 3 2 2
nsteps 20 20 20 20 20 40
λr 0.2 0.2 0 0 0 0.2
λd 2 1.3 1 1 1 1
λp 1 1 1 1 100 0
λt 0 0 0 0 10 1
λdf 1 2 0 0 0 0

Table 7. Task Specific Hyperparameters of State-based Policy Training

task method Training Set ValIntra Set ValInter Set

Closing Door(%)

Where2act [24] 77.3±0.1 54.6±0.0 51.5±0.2
PPO [35] 35.5±1.1 37.6±0.9 15.4±0.5

DAgger [33] 84.5±2.5 79.4±1.1 69.9±2.3
Ours 88.7±1.0 88.4±2.9 87.0±1.6

Closing Drawer(%)

Where2act [24] 89.9±0.2 90.5±0.1 89.9±0.3
PPO [35] 69.9±5.9 75.2±2.6 59.3±2.1

DAgger [33] 95.9±1.2 97.3±1.1 91.5±0.2
Ours 99.6±0.6 97.9±2.1 98.6±1.2

Pushing Button(%)

Where2act [24] 15.5±0.2 16.2±0.1 19.3±0.3
PPO [35] 25.5±0.2 21.6±1.1 7.9±5.5

DAgger [33] 32.8±2.2 41.2±6.6 29.8±1.2
Ours 89.6±2.9 79.6±4.2 66.6±4.2

Grasping Handle(%)

Where2act [24] 27.7±0.1 25.4±0.2 13.9±0.3
PPO [35] 15.7±2.2 13.2±0.6 9.9±3.5

DAgger [33] 45.6±2.2 35.5±2.1 29.8±2.9
Ours 79.8±2.4 70.0±2.4 56.4±2.9

Table 9. More Results of Method Comparison and Baselines

and nsteps. The task-specific hyperparameters are shown in
Table 7.

PPO params value / type
learning rate 3e-4

optimizer Adam
gamma 0.99
lambda 0.95

desired kl 0.01
clip range 0.1

entropy coef 0.01
init noise std 1

Table 8. PPO Hyperparameters of Policy Training

C.2. More Details and Results of the Baselines

For opening the door and drawer, thank the previous
exploration, We compare our policy with many baselines.

For [5, 26, 38, 46], they focus on tasks like opening drawers
and doors and we can modify their method to our Open-
Door and OpenDrawer tasks. And for the other four tasks,
we also compare with some possible methods if they can
be easily modified to fit our framework. More results are
shown in Table 9.

PPO [35]. We directly use the PPO algorithm to learn
a vision-based policy to handle each task. The detailed
PPO parameter and training strategy is the same as the state-
based expert training in our method.

Where2Act [24]. We input the part mask as an extra
dimension in our task as a baseline, and others remain the
same. We modified the where2act interaction pipeline to
finish our tasks. We use a similar pulling motion for the first
three tasks and a pushing motion for the fourth task. Giving
only a point to indicate the part to be interacted with makes
it challenging for where2act to perform proper actions, es-
pecially for opening drawers and doors. We thus provide
additional information (i.e., the handle center of the target
door and drawer), and this method needs to select one point
from the given points. Then, after motion direction selec-
tion, the action is performed to finish the task. We constrain
Nw2a = 10 actions to finish these tasks.

ILAD [48]. Due to we have designed a dense reward
in our task, we use our dense reward instead of their extra
Q functions to compute the advantage in the third term of
gILAD. The demonstrations are also collected by expert
policy as the GAIL [38] baseline implementation. We don’t
input part 6D pose into the network as a fair comparison to
our method.

ManiSkill [25] Winners, i.e., Shen et. al [38], Silver-
Bullet3D [26], Wu et. al [46], Dubois et. al [5]. We follow



Figure 5. Failure Cases

the ManiSkill [25] settings and follow the corresponding
policy learning strategy to learn. If the method needs col-
lected demonstrations as input, we provide the demonstra-
tions collected by the state-based expert.

For these baselines, we analyze that their performances
are limited due to the distribution shift in behavior cloning,
lacking vital information with realistic sensory observation
input and noisy reinforcement learning gradient.

C.3. More Results for a Single Camera Setting

Here we provide more experiment results for a sin-
gle camera setting. For OpenDoor, the performances are
36.7±3.3, 33.9±2.4, 22.6±3.0 in the training set, Val-Intra
set and Val-Inter set respectively. For OpenDrawer, the per-
formances are 64.5±5.5, 60.2±4.4, 17.1±2.2 in the training
set, Val-Intra set and Val-Inter set respectively.

C.4. Some Qualitative Results for the Failure Cases

Here we provide some qualitative results for failure
cases. In Fig. 5, we show two failure cases. For the left
one, the gripper fails to identify the handle and grasps the
wrong position due to the thin and flat handle shape (yellow,
zoom in to see), while for the right one, the door opening
fails later for unstable grasping.

D. Real Experiment
We use the robot arm (FRANKA) to manipulate previ-

ously unseen real objects with only partial point cloud ob-
servations. A partial point cloud of the target object instance
is acquired from the RGB-D camera (Okulo P1 ToF sensor
in our experiments). To set up the interaction environment,
we use aruco markers to calibrate the camera sensor and
place the object and the robot arm in the proper positions,
the same as the trained policy in the simulator. We also pro-
vide a point to indicate the part to interact with, just like
we did in the simulator. During manipulation, we use the
control API provided by the robot arm system to follow the
trajectory (a sequence of joint angle and gripper position)
and finish the tasks.
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