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Figure 1. A Path to Universal Image Segmentation. (a) Traditional segmentation methods developed specialized architectures and
models for each task to achieve top performance. (b) Recently, new panoptic architectures [12, 61] used the same architecture to achieve
top performance across different tasks. However, they still need to train different models for different tasks, resulting in a semi-universal
approach. (c) We propose a unique multi-task universal architecture with a task-conditioned joint training strategy that sets new state-of-
the-arts across semantic, instance and panoptic segmentation tasks with a single model, unifying segmentation across architecture, model
and dataset. Our work significantly reduces the underlying resource requirements and makes segmentation more universal and accessible.

Abstract

Universal Image Segmentation is not a new concept.
Past attempts to unify image segmentation in the last
decades include scene parsing, panoptic segmentation, and,
more recently, new panoptic architectures. However, such
panoptic architectures do not truly unify image segmenta-
tion because they need to be trained individually on the
semantic, instance, or panoptic segmentation to achieve
the best performance. Ideally, a truly universal frame-
work should be trained only once and achieve SOTA perfor-
mance across all three image segmentation tasks. To that
end, we propose OneFormer, a universal image segmenta-
tion framework that unifies segmentation with a multi-task
train-once design. We first propose a task-conditioned joint
training strategy that enables training on ground truths of
each domain (semantic, instance, and panoptic segmen-
tation) within a single multi-task training process. Sec-
ondly, we introduce a task token to condition our model
on the task at hand, making our model task-dynamic to

support multi-task training and inference. Thirdly, we pro-
pose using a query-text contrastive loss during training to
establish better inter-task and inter-class distinctions. No-
tably, our single OneFormer model outperforms specialized
Mask2Former models across all three segmentation tasks
on ADE20k, Cityscapes, and COCO, despite the latter be-
ing trained on each of the three tasks individually with three
times the resources. With new ConvNeXt and DiNAT back-
bones, we observe even more performance improvement.
We believe OneFormer is a significant step towards making
image segmentation more universal and accessible. To sup-
port further research, we open-source our code and models
at https://github.com/SHI-Labs/OneFormer.

1. Introduction

Image Segmentation is the task of grouping pixels
into multiple segments. Such grouping can be semantic-
based (e.g., road, sky, building), or instance-based (objects
with well-defined boundaries). Earlier segmentation ap-
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proaches [7,23,40] tackled these two segmentation tasks in-
dividually, with specialized architectures and therefore sep-
arate research effort into each. In a recent effort to unify se-
mantic and instance segmentation, Kirillov et al. [29] pro-
posed panoptic segmentation, with pixels grouped into an
amorphous segment for amorphous background regions (la-
beled “stuff”) and distinct segments for objects with well-
defined shape (labeled “thing”). This effort, however, led
to new specialized panoptic architectures [11] instead of
unifying the previous tasks (see Fig. 1a). More recently,
the research trend shifted towards unifying image segmen-
tation with new panoptic architectures, such as K-Net [61],
MaskFormer [13], and Mask2Former [12]. Such panoptic
architectures can be trained on all three tasks and obtain
high performance without changing architecture. They do
need to, however, be trained individually on each task to
achieve the best performance (see Fig. 1b). The individual
training policy requires extra training time and produces dif-
ferent sets of model weights for each task. In that regard,
they can only be considered a semi-universal approach. For
example, Mask2Former [12] is trained for 160K iterations
on ADE20K [15] for each of the semantic, instance, and
panoptic segmentation tasks to obtain the best performance
for each task, yielding a total of 480k iterations in training,
and three models to store and host for inference.

In an effort to truly unify image segmentation, we pro-
pose a multi-task universal image segmentation framework
(OneFormer), which outperforms existing state-of-the-arts
on all three image segmentation tasks (see Fig. 1c), by only
training once on one panoptic dataset. Through this work,
we aim to answer the following questions:

(i) Why are existing panoptic architectures [12,13] not suc-
cessful with a single training process or model to tackle all
three tasks? We hypothesize that existing methods need
to train individually on each segmentation task due to the
absence of task guidance in their architectures, making it
challenging to learn the inter-task domain differences when
trained jointly or with a single model. To tackle this chal-
lenge, we introduce a task input token in the form of text:
“the task is {task}”, to condition the model on the task in
focus, making our architecture task-guided for training, and
task-dynamic for inference, all with a single model. We
uniformly sample {task} from {panoptic, instance,
semantic} and the corresponding ground truth during our
joint training process to ensure our model is unbiased in
terms of tasks. Motivated by the ability of panoptic [29]
data to capture both semantic and instance information,
we derive the semantic and instance labels from the cor-
responding panoptic annotations during training. Conse-
quently, we only need panoptic data during training. More-
over, our joint training time, model parameters, and FLOPs
are comparable to the existing methods, decreasing train-
ing time and storage requirements up to 3×, making image

segmentation less resource intensive and more accessible.

(ii) How can the multi-task model better learn inter-task and
inter-class differences during the single joint training pro-
cess? Following the recent success of transformer frame-
works [3,12,21,22,27,38,60] in computer vision, we formu-
late our framework as a transformer-based approach, which
can be guided through the use of query tokens. To add task-
specific context to our model, we initialize our queries as
repetitions of the task token (obtained from the task input)
and compute a query-text contrastive loss [43, 57] with the
text derived from the corresponding ground-truth label for
the sampled task as shown in Fig. 2. We hypothesize that a
contrastive loss on the queries helps guide the model to be
more task-sensitive. Furthermore, it also helps reduce the
category mispredictions to a certain extent.

We evaluate OneFormer on three major segmentation
datasets: ADE20K [15], Cityscapes [14], and COCO [34],
each with all three (semantic, instance, and panoptic) seg-
mentation tasks. OneFormer sets the new state of the arts
for all three tasks with a single jointly trained model. To
summarize, our main contributions are:

• We propose OneFormer, the first multi-task universal
image segmentation framework based on transformers
that need to be trained only once with a single universal
architecture, a single model, and on a single dataset, to
outperform existing frameworks across semantic, in-
stance, and panoptic segmentation tasks, despite the
latter need to be trained separately on each task using
multiple times of the resources.

• OneFormer uses a task-conditioned joint training strat-
egy, uniformly sampling different ground truth do-
mains ( semantic, instance, or panoptic) by deriving all
labels from panoptic annotations to train its multi-task
model. Thus, OneFormer actually achieves the orig-
nial unification goal of panoptic segmentation [29].

• We validate OneFormer through extensive experi-
ments on three major benchmarks: ADE20K [15],
Cityscapes [14], and COCO [34]. OneFormer sets a
new state-of-the-art performance on all three segmen-
tation tasks compared with methods using the standard
Swin-L [38] backbone, and improves even more with
new ConvNeXt [39] and DiNAT [21] backbones.

2. Related Work
2.1. Image Segmentation

Image segmentation is one of the most fundamental tasks
in image processing and computer vision. Traditional works
usually tackle one of the three image segmentation tasks
with specialized network architectures (Fig. 1a).

Semantic Segmentation. Semantic segmentation was
long tackled as a pixel classification problem with CNNs [6,
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Figure 2. OneFormer Framework Architecture. (a) We extract multi-scale features for an input image using a backbone, followed
by a pixel decoder. (b) We formulate a unified set of N − 1 task-conditioned object queries with guidance from the task token (Qtask)
and flattened 1/4-scale features inside a transformer [49]. Next, we concatenate Qtask with the N − 1 queries from the transformer. We
uniformly (p = 1/3) sample the task during training and generate the corresponding text queries (Qtext) using a text mapper (Fig. 4). We
calculate a query-text contrastive loss to learn the inter-task distinctions. We can drop the text mapper during inference, thus, making our
model parameter efficient. (c) We use a multi-stage L-layer transformer decoder to obtain the task-dynamic class and mask predictions.

7, 10, 40]. More recent works [26, 27, 44, 56] have shown
the success of transformer-based methods in semantic seg-
mentation following its success in language and vision
[3, 49]. Among them, MaskFormer [13] treated semantic
segmentation as a mask classification problem following
early works [4,16,20], through using a transformer decoder
with object queries [3]. We also formulate semantic seg-
mentation as a mask classification problem.

Instance Segmentation. Traditional instance segmenta-
tion methods [2, 5, 23] are also formulated as mask classi-
fiers, which predict binary masks and a class label for each
mask. We also formulate instance segmentation as a mask
classification problem.

Panoptic Segmentation. Panoptic Segmentation [29]
was proposed to unify instance and semantic segmenta-
tion. One of the earliest architectures in this scope was
Panoptic-FPN [28], which introduced separate instance
and semantic task branches. Works that followed signifi-
cantly improved performance with transformer-based archi-
tectures [12,13,50,51,59,60]. Despite the progress made so
far, panoptic segmentation models are still behind in perfor-
mance compared to individual instance and semantic seg-
mentation models, therefore not living up to their full uni-
fication potential. Motivated by this, we design our One-
Former to be trained with panoptic annotations only.

2.2. Universal Image Segmentation

The concept of universal image segmentation has ex-
isted for some time, starting with image and scene pars-
ing [47, 48, 58], followed by panoptic segmentation as an
effort to unify semantic and instance segmentation [29].
More recently, promising architectures [12,13,61] designed

specifically for panoptic segmentation have emerged which
also perform well on semantic and instance segmentation
tasks. K-Net [61], a CNN, uses dynamic learnable in-
stance and semantic kernels with bipartite matching. Mask-
Former [13] is a transformer-based architecture, serving as
a mask classifier. It was inspired by DETR’s [3] refor-
mulation of object detection in the scope of transformers,
where the image is fed to the encoder, and the decoder
produces proposals based on queries. Mask2Former [12]
improved upon MaskFormer with learnable queries, de-
formable multi-scale attention [64] in the decoder, a masked
cross-attention and set the new state of the art on all three
tasks. Unfortunately, it requires training the model individ-
ually on each task to achieve the best performance. There-
fore, there remains a gap in truly unifying the three seg-
mentation tasks. To the best of our knowledge, OneFormer
is the first framework to beat state of the art on all three
image segmentation tasks with a single universal model.

2.3. Transformer-based Architectures

Architectures based on the transformer encoder-decoder
structure [3,31,36,64] have proved effective in object detec-
tion since the introduction of DETR [3]. Mask2Former [12,
13] demonstrated the effectiveness of such architectures for
image segmentation with a mask classification formulation.
Inspired by this success, we also formulate our framework
as a query-based mask classification task. Additionally, we
claim that calculating a query-text contrastive loss [43, 57]
on the task-guided queries can help the model learn inter-
task differences and reduce the category mispredictions in
the model outputs. Concurrent to our work, LMSeg [1] uses
text derived from multiple datasets’ taxonomy to calculate a
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Figure 3. Input Text Formation. (a) We uniformly sample the task during training. (b) Following the task selection, we extract the
number of distinct binary masks for each class to be detected from the corresponding GT label. (c) We form a list with text descriptions for
each mask using the template “a photo with a {CLS}”, where CLS represents the corresponding class name for the object mask. (d) Finally,
we pad the text list to a constant length of Ntext using “a/an {task} photo” entries which represent the no-object detections; where task
∈ {panoptic, instance, semantic}.

query-text contrastive loss and tackle the multi-dataset seg-
mentation training challenge. Unlike LMSeg [1], our work
focuses on multiple tasks and uses the classes present in the
training sample’s ground-truth label to calculate the query-
text contrastive loss.

3. Method

In this section, we introduce OneFormer, a universal im-
age segmentation framework jointly trained on the panop-
tic, semantic, and instance segmentation and outperforms
individually trained models. We provide an overview of
OneFormer in Fig. 2. OneFormer uses two inputs: sample
image and task input of the form “the task is {task}”. Dur-
ing our single joint training process, the task is uniformly
sampled from {panoptic, instance, semantic} for each im-
age. Firstly, we extract multi-scale features from the input
image using a backbone and a pixel decoder. We tokenize
the task input to obtain a 1-D task token used to condition
the object queries and, consequently, our model on the task
for each input. Additionally, we create a text list represent-
ing the number of binary masks for each class present in
the GT label and map it to text query representations. Note
that the text list depends on the input image and the {task}.
For supervision of the model’s task-dynamic predictions,
we derive the corresponding ground-truths from panoptic
annotations. As the ground truth is task-dependent, we cal-
culate a query-text contrastive loss between the object and
text queries to ensure there is task distinction in the object

queries. The object queries and multi-scale features are fed
into a transformer decoder to produce final predictions. We
provide more details in the following sections.

3.1. Task Conditioned Joint Training

Existing semi-universal architectures for image segmen-
tation [12, 13, 61] face a significant drop in performance
when jointly trained on all three segmentation tasks (Tab. 7).
We attribute their failure to tackle the multi-task challenge
to the absence of task-conditioning in their architecture.

We tackle the multi-task train-once challenge for image
segmentation using a task-conditioned joint training strat-
egy. Particularly, we first uniformly sample the task from
{panoptic, semantic, instance} for the GT label. We real-
ize the unification potential of panoptic annotations [29] by
deriving the task-specific labels from the panoptic annota-
tions, thus, using only one set of annotations.

Next, we extract a set of binary masks for each category
present in the image from the task-specific GT label, i.e., se-
mantic task guarantees only one amorphous binary mask for
each class present in the image, whereas, instance task sig-
nifies non-overlapping binary masks for only thing classes,
ignoring the stuff regions. Panoptic task denotes a sin-
gle amorphous mask for stuff classes and non-overlapping
masks for thing classes as shown in Fig. 3. Subsequently,
we iterate over the set of masks to create a list of text (Tlist)
with a template “a photo with a {CLS}”, where CLS is the
class name for the corresponding binary mask. The number
of binary masks per sample varies over the dataset. There-
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fore, we pad Tlist with “a/an {task} photo” entries to obtain
a padded list (Tpad) of constant length Ntext, with padded en-
tries representing no-object masks. We later use Tpad for
computing a query-text contrastive loss (Sec. 3.3).

We condition our architecture on the task using a task
input (Itask) with the template “the task is {task}”, which is
tokenized and mapped to a task-token (Qtask). We use Qtask
to condition OneFormer on the task (Sec. 3.2).

3.2. Query Representations

During training, we use two sets of queries in our archi-
tecture: text queries (Qtext) and object queries (Q). Qtext is
the text-based representation for the segments in the image,
while Q is the image-based representation.

To obtain Qtext, we first tokenize the text entries Tpad
and pass the tokenized representations through a text-
encoder [57], which is a 6-layer transformer [49]. The en-
coded Ntext text embeddings represent the number of binary
masks and their corresponding classes in the input image.
We further concatenate a set of Nctx learnable text context
embeddings (Qctx) to the encoded text embeddings to ob-
tain the final N text queries (Qtext), as shown in Fig. 4. Our
motivation behind using Qctx is to learn a unified textual
context [62, 63] for a sample image. We only use the text
queries during training; therefore, we can drop the text map-
per module during inference to reduce the model size.

To obtain Q, we first initialize the object queries (Q′) as
a N −1 times repetitions of the task-token (Qtask). Then, we
update Q′ with guidance from the flattened 1/4-scale fea-
tures inside a 2-layer transformer [3, 49]. The updated Q′
from the transformer (rich with image-contextual informa-
tion) is concatenated with Qtask to obtain a task-conditioned
representation of N queries, Q. Unlike the vanilla all-zeros
or random initialization [3], the task-guided initialization of
the queries and the concatenation with Qtask is critical for
the model to learn multiple segmentation tasks (Sec. 4.3).

3.3. Task Guided Contrastive Queries

Developing a single model for all three segmentation
tasks is challenging due to the inherent differences among
the three tasks. The meaning of the object queries, Q, is
task-dependent. Should the queries focus only on the thing
classes (instance segmentation), or should the queries pre-
dict only one amorphous object for each class present in the
image (semantic segmentation) or a mix of both (panoptic
segmentation)? Existing query-based architectures [12, 13]
do not take such differences into account and hence, fail at
effectively training a single model on all three tasks.

To this end, we propose to calculate a query-text con-
trastive loss using Q and Qtext. We use Tpad to obtain the text
queries representation, Qtext, where Tpad is a list of textual
representations for each mask-to-be-detected in a given im-
age with “a/an {task} photo” representing the no-object

Text Encoder

Text Tokenizer

Stack

embeddings

Figure 4. Text Mapper. We tokenize and then encode the input
text list (Tpad) using a 6-layer transformer text encoder [49, 57]
to obtain a set of Ntext embeddings. We concatenate a set of Nctx

learnable embeddings to the encoded representations to obtain the
final N text queries (Qtext). The N text queries stand for a text-
based representation of the objects present in an image.

detections in Q [3]. Thus, the text queries align with the
purpose of object queries, representing the objects/segments
present [3] in an image. Therefore, we can successfully
learn the inter-task distinctions in the query representations
using a contrastive loss between the ground truth-derived
text and object queries. Moreover, contrastive learning on
the queries enables us to attend to inter-class differences and
reduce category misclassifications.

LQ→Qtext = −
1
B

B∑
i=1

log
exp(qob j

i �qtxt
i /τ)∑B

j=1 exp(qob j
i �qtxt

j /τ)
,

LQtext→Q = −
1
B

B∑
i=1

log
exp(qtxt

i �qob j
i /τ)∑B

j=1 exp(qtxt
i �qob j

j /τ)

LQ↔Qtext = LQ→Qtext +LQtext→Q

(1)

Considering that we have a batch of B object-text query
pairs {(qob j

i , xtxt
i )}Bi=1, where qob j

i and qtxt
i are the correspond-

ing object and text queries, respectively, of the i-th pair, we
measure the similarity between the queries by calculating a
dot product. The total contrastive loss is composed of two
losses [57]: (i) an object-to-text contrastive loss (LQ→Qtext )
and; (ii) a text-to-object contrastive loss (LQtext→Q) as shown
in Eq. (1). τ is a learnable temperature parameter to scale
the contrastive logits.

3.4. Other Architecture Components

Backbone and Pixel Decoder: We use the widely used Im-
ageNet [30] pre-trained backbones [21, 38, 39] to extract
multi-scale feature representations from the input image.
Our pixel decoder aids the feature modeling by gradually
upsampling the backbone features. Motivated by the recent
success of multi-scale deformable attention [12,64], we use
the same Multi-Scale Deformable Transformer (MSDefor-
mAttn) based architecture for our pixel decoder.
Transformer Decoder: We use a multi-scale strategy [12]
to utilize the higher resolution maps inside our transformer
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Method Backbone #Params #FLOPs #Queries Crop Size Iters PQ AP mIoU
(s.s.)

mIoU
(m.s.)

Individual Training

UPerNet‡ [55] SwinV2-L† [37] — — — 640×640 40k — — —- 55.9
SeMask Mask2Former [27] SeMask Swin-L† [27] 223M 426G 200 640×640 160k — — 56.4 57.5

UPerNet + K-Net [61] Swin-L† [38] — — — 640×640 160k — — — 54.3
MaskFormer [13] Swin-L† [38] 212M 375G 100 640×640 160k — — 54.1 55.6
Mask2Former-Panoptic∗ [12] Swin-L† [38] 216M 413G 200 640×640 160k 48.7 34.2 54.5 —
Mask2Former-Instance [12] Swin-L† [38] 216M 411G 200 640×640 160k — 34.9 — —
Mask2Former-Semantic [12] Swin-L† [38] 215M 403G 100 640×640 160k — — 56.1 57.3

kMaX-DeepLab‡‡ [60] ConvNeXt-L† [39] 232M 333G 256 641×641 100k 48.7 — 54.8 —
kMaX-DeepLab‡‡ [60] ConvNeXt-L† [39] 232M 1302G 256 1281×1281 100k 50.9 — 55.2 —

UPerNet‡‡ [55] SwinV2-G†† [37] >3B — — 640×640 80k — — 59.1 —
Mask2Former‡‡ [12] BEiT-3†† [52] 1.9B — — 896×896 — — — 62.0 62.8

Joint Training

OneFormer Swin-L† [38] 219M 436G 250 640×640 160k 49.8 35.9 57.0 57.7
OneFormer Swin-L† [38] 219M 801G 250 896×896 160k 51.1 37.6 57.4 58.3
OneFormer Swin-L† [38] 219M 1597G 250 1280×1280 160k 51.4 37.8 57.0 57.7

OneFormer ConvNeXt-L† [39] 220M 389G 250 640×640 160k 50.0 36.2 56.6 57.4
OneFormer ConvNeXt-XL† [39] 372M 607G 250 640×640 160k 50.1 36.3 57.4 58.8

OneFormer DiNAT-L† [21] 223M 359G 250 640×640 160k 50.5 36.0 58.3 58.4
OneFormer DiNAT-L† [21] 223M 678G 250 896×896 160k 51.2 36.8 58.1 58.6
OneFormer DiNAT-L† [21] 223M 1369G 250 1280×1280 160k 51.5 37.1 58.2 58.7

Table 1. SOTA Comparison on the ADE20K val set. †: backbones pretrained on ImageNet-22K, ∗: 0.5 confidence threshold; ‡: trained
with batch size 32, ‡‡: trained with batch size 64. OneFormer outperforms the individually trained Mask2Former [12] on all metrics.
Mask2Former’s performance with 250 queries is not listed, as its performance degrades with 250 queries. We compute FLOPs using the
corresponding crop size.

decoder. Specifically, we feed the object queries (Q) and
the multi-scale outputs from the pixel decoder (Fi), i ∈
{1/4, 1/8, 1/16, 1/32} as inputs. We use the features with
resolution 1/8, 1/16 and 1/32 of the original image alter-
natively to update Q using a masked cross-attention (CA)
operation [12], followed by a self-attention (SA) and finally
a feed-forward network (FFN). We perform these sets of al-
ternate operations L times inside the transformer decoder.

The final query outputs from the transformer decoder are
mapped to a K + 1 dimensional space for class predictions,
where K denotes the number of classes and an extra +1
for the no-object predictions. To obtain the final masks,
we decode the pixel features (F1/4) at 1/4 resolution of the
original image with the help of an einsum operation be-
tween Q and F1/4. During inference, we follow the same
post-processing technique as [12] to obtain the final panop-
tic, semantic, and instance segmentation predictions. We
only keep predictions with scores above a threshold of 0.5,
0.8, and 0.8 during post-processing for panoptic segmenta-
tion on the ADE20K [15], Cityscapes [14] and COCO [34]
datasets, respectively.

3.5. Losses

In addition to the contrastive loss on the queries, we
calculate the standard classification CE-loss (Lcls) over the
class predictions. Following [12], we use a combination of
binary cross-entropy (Lbce) and dice loss (Ldice) over the
mask predictions. Therefore, our final loss function is a

weighted sum of the four losses (Eq. (2)). We empirically
set λQ↔Qtext = 0.5, λcls = 2, λbce = 5 and λdice = 5. To find
the least cost assignment, we use bipartite matching [3, 13]
between the set predictions and the ground truths. We set
λcls as 0.1 for the no-object predictions [12].

Lfinal = λQ↔QtextLQ↔Qtext + λclsLcls

+ λbceLbce + λdiceLdice
(2)

4. Experiments
We illustrate that OneFormer, when trained only once

with our task-conditioned joint-training strategy, general-
izes well to all three image segmentation tasks on three
widely used datasets. Furthermore, we provide extensive
ablations to demonstrate the significance of OneFormer’s
components. Due to space constraints, we provide imple-
mentation details in the appendix.

4.1. Datasets and Evaluation Metrics

Datasets. We experiment on three widely used datasets
that support all three: semantic, instance, and panoptic seg-
mentation tasks. Cityscapes [14] consists of a total 19 (11
“stuff” and 8 “thing”) classes with 2,975 training, 500 val-
idation and 1,525 test images. ADE20K [15] is another
benchmark dataset with 150 (50 “stuff” and 100 “thing”)
classes among the 20,210 training and 2,000 validation im-
ages. COCO [34] has 133 (53 “stuff” and 80 “thing”)
classes with 118k training and 5,000 validation images.
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Method Backbone #Params #FLOPs #Queries Crop Size Iters PQ AP mIoU
(s.s.)

mIoU
(m.s.)

Individual Training

CMT-DeepLab‡ [59] MaX-S† [50] — — — 1025×2049 60k 64.6 — 81.4 —
Axial-DeepLab-L‡ [51] Axial ResNet-L† [51] 45M 687G — 1025×2049 60k 63.9 35.8 81.0 81.5
Axial-DeepLab-XL‡ [51] Axial ResNet-XL† [51] 173M 2447G — 1025×2049 60k 64.4 36.7 80.6 81.1
Panoptic-DeepLab‡ [11] SWideRNet† [8] 536M 10365G — 1025×2049 60k 66.4 40.1 82.2 82.9

Mask2Former-Panoptic [12] Swin-L† [38] 216M 514G 200 512×1024 90k 66.6 43.6 82.9 —
Mask2Former-Instance [12] Swin-L† [38] 216M 507G 200 512×1024 90k — 43.7 — —
Mask2Former-Semantic [12] Swin-L† [38] 215M 494G 100 512×1024 90k — — 83.3 84.3

kMaX-DeepLab‡ [60] ConvNeXt-L† [39] 232M 1673G 256 1025×2049 60k 68.4 44.0 83.5 —

Joint Training

OneFormer Swin-L† [38] 219M 543G 250 512×1024 90k 67.2 45.6 83.0 84.4

OneFormer ConvNeXt-L† [39] 220M 497G 250 512×1024 90k 68.5 46.5 83.0 84.0
OneFormer ConvNeXt-XL† [39] 372M 775G 250 512×1024 90k 68.4 46.7 83.6 84.6

OneFormer DiNAT-L† [21] 223M 450G 250 512×1024 90k 67.6 45.6 83.1 84.0

Table 2. SOTA Comparison on Cityscapes val set. †: backbones pretrained on ImageNet-22K; ‡: trained with batch size 32, ∗: hidden
dimension 1024. OneFormer outperforms the individually trained Mask2Former [12] models. Mask2Former’s performance with 250
queries is not listed, as its performance degrades with 250 queries. We compute FLOPs using the corresponding crop size.

Method Backbone #Params #FLOPs #Queries Epochs PQ PQTh PQSt AP APinstance mIoU

Individual Training

MaskFormer [13] Swin-L† [38] 212M 792G 100 300 52.7 58.5 44.0 — — 64.8
K-Net [61] Swin-L† [38] — — 100 36 54.6 60.2 46.0 — — —
Panoptic SegFormer [33] Swin-L† [38] 221M 816G 353 24 55.8 61.7 46.9 — — —
Mask2Former-Panoptic [12] Swin-L† [38] 216M 875G 200 100 57.8 64.2 48.1 48.7 48.6 67.4
Mask2Former-Instance [12] Swin-L† [38] 216M 868G 200 100 — — — 49.1 50.1 —
Mask2Former-Semantic‡ [12] Swin-L† [38] 216M 891G 200 100 — — — — — 67.2

kMaX-DeepLab∗ [60] ConvNeXt-L† [39] 232M 749G 128 81 57.9 64.0 48.6 — — —
kMaX-DeepLab∗ [60] ConvNeXt-L† [39] 232M 749G 256 81 58.0 64.2 48.6 — — —

Joint Training

OneFormer Swin-L† [38] 219M 891G 150 100 57.9 64.4 48.0 49.0 48.9 67.4

OneFormer DiNAT-L† [21] 223M 736G 150 100 58.0 64.3 48.4 49.2 49.2 68.1

Table 3. SOTA Comparison on COCO val2017 set. †: Imagenet-22k pretrained; ‡: retrained model result; ∗: trained with batch size 64.
OneFormer outperforms the individually trained Mask2Former [12] on all metrics. We evaluate the AP score on instance ground truths
derived from the panoptic annotations. Mask2Former’s performance with 150 queries is not listed, as its performance degrades with 150
queries. We compute FLOPs using 100 validation COCO images (varying sizes). APinstance represents evaluation on the original instance
annotations.

Evaluation Metrics. For all three image segmentation
tasks, we report the PQ [29], AP [34], and mIoU [18]
scores. Since we only have a single model for all three tasks,
we use the value of the task token to decide the scores
to consider. For e.g., when task is panoptic, we report
the PQ score and similarly we report AP and mIoU scores
when task is instance and semantic, respectively.

4.2. Main Results

ADE20K. We compare OneFormer with the existing state-
of-the-art pseudo-universal and specialized architectures on
the ADE20K [15] val dataset in Tab. 1. With the stan-
dard Swin-L† backbone, OneFormer, while being trained
only once, outperforms Mask2Former’s [12] individually
trained models on all three image segmentation tasks and
sets a new state-of-the-art performance when compared
with other methods using the same backbone.
Cityscapes. We compare OneFormer with the existing

state-of-the-art pseudo-universal and specialized architec-
tures on the Cityscapes [15] val dataset in Tab. 2. With
Swin-L† backbone, OneFormer outperforms Mask2Former
with a +0.6% and +1.9% improvement on the PQ and AP
metrics, respectively. Additionally, with ConvNeXt-L† and
ConvNeXt-XL† backbone, OneFormer sets a new state-of-
the-art of 68.5% PQ and 46.7% AP, respectively.
COCO. We compare OneFormer with the existing state-
of-the-art pseudo-universal and specialized architectures on
the COCO [34] val2017 dataset in Tab. 3. With Swin-L†

backbone, OneFormer performs on-par with the individu-
ally trained Mask2Former [12] with a +0.1% improvement
in the PQ score. Due to the discrepancies between the
panoptic and instance annotations in COCO [34], we eval-
uate the AP score using the instance ground truths derived
from the panoptic annotations. We provide more informa-
tion in the appendix. Following [12], we evaluate mIoU on
semantic ground truths derived from panoptic annotations.
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PQ AP mIoU

OneFormer (ours) 67.2 45.6 83.0

− task-token (Qtask) 66.5 (-0.7) 43.3 (-2.3) 82.9 (-0.1)
− learnable text context (Qctx) 62.7 (-4.5) 45.0 (-0.6) 82.8 (-0.2)
− task-guided query init. 65.8 (-1.4) 44.5 (-1.1) 83.1 (+0.1)

Table 4. Ablation on Components. A task-conditioned architec-
ture significantly improves the AP scores and using learnable text
context improves the PQ score.

PQ AP mIoU. #param.

contrastive-loss (ours) 67.2 45.6 83.0 219M

query classification-loss 66.4 (-0.8) 44.7 (-0.9) 82.6 (-0.4) 219M
no contrastive-loss 58.8 (-8.4) 42.4 (-3.2) 82.5 (-0.5) 219M

Table 5. Ablation on Loss. The contrastive loss is essential for
learning the inter-task distinctions during training.

PQ AP mIoU

“a photo with a {CLS}” (ours) 67.2 45.6 83.0

“a photo with a {CLS} {TYPE}” 65.4 (-1.8) 44.5 (-1.1) 82.8 (-0.2)
“{CLS}” 66.6 (-0.6) 44.7 (-0.9) 82.5 (-0.5)

Table 6. Ablation on Input Text Templates. The template for the
input text list entries is a critical factor for good performance. CLS
represents the class name for the object and TYPE stands for the
task-dependent object type.

4.3. Ablation Studies

We analyze OneFormer’s components through a series
of ablation studies. Unless stated otherwise, we ablate with
Swin-L† OneFormer on the Cityscapes [14] dataset.
Task-Conditioned Architecture. We validate the impor-
tance of the task token (Qtask), initializing the queries with
repetitions of the task token (task-guided query init.) and
the learnable text context (Qctx) by removing each compo-
nent one at a time in Tab. 4. Without the task token, we
observe a significant drop in the AP score (−2.7%). Fur-
thermore, using a learnable text context (Qctx) leads to an
improvement of +4.5% in the PQ score, proving its signif-
icance. Lastly, initializing the queries as repetitions of the
task token (task-guided query init.) instead of using an all-
zeros initialization [3] leads to an improvement of +1.4%
in the PQ and +1.1% in the AP score, indicating the impor-
tance of task-conditioning the initialization of the queries.
Contrastive Query Loss. We report results without the
query-text contrastive loss (LQ↔Qtext ) in Tab. 5. We ob-
serve that the contrastive loss significantly benefits the PQ
(+8.4%) and AP (+3.2%) scores. We also conduct exper-
iments substituting our query-text contrastive loss with a
classification loss (Lcls) on the queries. Lcls can be re-
garded as a straightforward alternative for LQ↔Qtext as the
both provide supervision for the number of masks for each
class present in the image. However, we observe significant
drops on all the metrics (−0.8% PQ, −0.9% AP and −0.4%
mIoU) using the classification loss instead of the contrastive
loss. We attribute the drops to the inability of the classifica-
tion loss to capture the inter-task differences effectively.

PQ AP mIoU #param.

OneFormer (ours) 49.8 35.9 57.0 219M

Mask2Former-Joint 48.7 (-1.1) 33.7 (-2.2) 56.2 (-0.8) 216M

Table 7. Ablation on Joint Training. Our OneFormer signifi-
cantly beats the baseline’s AP, PQ and mIoU scores. We report
results with Swin-L† [38] backbone trained for 160k iterations on
the ADE20K [15] dataset.

Task Token Input PQ PQTh PQSt AP mIoU

the task is panoptic 49.3 49.6 50.2 35.8 57.0
the task is instance 33.1 48.8 1.5 35.9 26.4
the task is semantic 40.4 35.5 50.2 25.3 57.0

Table 8. Ablation on Task Token Input. Our OneFormer is sensi-
tive to the input task token value. We report results with Swin-L†

OneFormer on the ADE20K [15] val set. The numbers in pink
denote results on secondary task metrics.

Image Mask2Former OneFormerGround Truth

Figure 5. Reduced Category Misclassifications. Our OneFormer
segments the regions (inside blue boxes) with similar classes more
accurately than Mask2Former [12]. Zoom in for best view.

Input Text Template. We study the importance of the tem-
plate choice for the entries in the text list (Tlist) in Tab. 6. We
experiment with “a photo with a {CLS} {TYPE}” template for
our text entries where CLS is the class name for the object
mask and TYPE is the task-dependent class-type: “stuff” for
amorphous masks (panoptic and semantic task) and “thing”
for all distinct object masks. We also experiment with the
identity template “{CLS}”. Our choice of the template: “a
photo with a {CLS}” gives a strong performance as a base-
line. We believe more exploration in the text template space
could help in improving the performance further.
Task Conditioned Joint Training. As a baseline for
comparison, we train a Swin-L† Mask2Former-Joint with
our joint training strategy, i.e., uniformly sampling each
task’s GT on the ADE20K [15] dataset. We compare the
Mask2Former-Joint baseline with our Swin-L† OneFormer
in Tab. 7. We train both models for 160k iterations with a
batch size of 16. Our OneFormer achieves a +1.1%, +2.2%,
and +0.8% improvement on the PQ, AP and mIoU metrics,
respectively, proving the importance of our architecture de-
sign for practical multi-task joint training.
Task Token Input. We demonstrate that our framework
is sensitive to the task token input by setting the value of
{task} during inference as panoptic, instance, or semantic
in Tab. 8. We report results with our Swin-L† OneFormer
trained on ADE20K [15] dataset. We observe a significant
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drop in the PQ and mIoU metrics when task is instance
compared to panoptic. Moreover, the PQSt drops to 1.5%,
and there is only a −0.8% drop on PQTh metric, proving that
the network learns to focus majorly on the distinct “thing”
instances when the task is instance. Similarly, there is a
sizable drop in the PQ, PQTh and AP metrics for the se-
mantic task with PQSt staying the same, showing that our
framework can segment out amorphous masks for “stuff”
regions but does not predict different masks for “thing” ob-
jects. Therefore, OneFormer dynamically learns the inter-
task distinctions which is critical for a train-once multi-task
architecture. We include qualitative analysis on the task dy-
namic nature of OneFormer in the appendix.
Reduced Category Misclassifications. Our query-text
contrastive loss helps OneFormer learn the inter-task dis-
tinctions and reduce the number of category misclassifica-
tions in the predictions. Mask2Former incorrectly predicts
“wall” as “fence” in the first row, “vegetation” as “terrain”,
and “terrain” as “sidewalk”. At the same time, our One-
Former produces more accurate predictions in regions (in-
side blue boxes) with similar classes, as shown in Fig. 5.

5. Conclusion
In this work, we present OneFormer, a new multi-task

universal image segmentation framework with transform-
ers and task-guided queries to unify semantic, instance, and
panoptic segmentation with a single universal architecture,
a single model, and training on a single dataset. Our jointly
trained single OneFormer model outperforms the individu-
ally trained specialized Mask2Former models, the previous
single-architecture state of the art, on all three segmenta-
tion tasks across major datasets. Consequently, OneFormer
can cut training time, weight storage, and inference hosting
requirements down to a third, making image segmentation
more accessible. We believe OneFormer is a significant step
towards making image segmentation more universal and ac-
cessible and will support further research in this direction
by open-sourcing our codes and models.
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Appendix

A. Implementation Details
We implement our framework using the Detectron2 [54]

library.
Multi-Scale Feature Modeling. We adopt the settings
from [12] for modeling the image pixel-level features. More
specifically, we use 6 MSDeformAttn [64] inside our pixel
decoder, applied to feature maps with resolutions 1/8, 1/16,
and 1/32 of the original image. We use lateral connections
and upsampling to aggregate the multi-scale features to a fi-
nal 1/4 resolution scale. We map all the features to a hidden
dimension of 256.
Unified Task-Conditioned Query Formulation. We ini-
tialize the N − 1 queries as repetitions of task-token, Qtask.
Unless stated otherwise, we set N = 250 and Nctx = 16.
Our text tokenizer and text encoder are the same as [57].
We use a single linear layer to project the tokenized task
input, followed by a layer-norm to obtain Qtask.
Task-Dynamic Mask and Class Prediction Formation.
Following [12], we set L = 3 inside the transformer de-
coder. Therefore, we have a total of 3L (9) stages inside
our transformer decoder. We also calculate an auxiliary loss
on each intermediate class and mask predictions after every
transformer decoder stage [12].
Training Settings. We train our model with a batch size of
16. When training on ADE20K [15] and Cityscapes [14],
we use the AdamW [41] optimizer with a base learning rate
of 0.0001, poly learning rate decay and weight decay 0.1.
We use a crop size of 512×512 and 512×1024 on ADE20K
and Cityscapes, respectively. We train for 90k and 160k
iterations on Cityscapes and ADE20K, respectively. For
data augmentation, we use shortest edge resizing, fixed size
cropping, and color jittering followed by a random horizon-
tal flip.

When training on COCO [34], we use a step learning
rate schedule along with the AdamW [41] optimizer, a base
learning rate of 0.0001, 10 warmup iterations, and a weight
decay of 0.05. We decay the learning rate at 0.9 and 0.95
fractions of the total number of training steps by a factor of
10. We train for a total of 100 epochs with LSJ augmenta-
tion [17, 19] with a random scale sampled from the range
0.1 to 2.0 followed by a fixed size crop to 1024×1024 reso-
lution.
Evaluation Settings. We follow the same evaluation set-
tings as Mask2Former [12]. Unless stated otherwise, we
report results for the single-scale inference setting. Unlike
the training stage, during evaluation, we use the ground-
truth annotations from the respective task GT labels to cal-
culate the metric scores instead of deriving the labels from
the panoptic annotations. Additionally, we set the value of
task in “the task is {task}” as panoptic, instance and se-
mantic to obtain the corresponding task predictions.

#queries PQ AP mIoU #param.

100 51.3 41.9 60.8 47M
120 51.0 42.0 60.8 47M
150 51.5 42.5 61.2 47M
200 51.3 42.5 60.0 47M

Table I. Ablation on Number of Queries. We find N = 150
performs best on the COCO dataset.

Nctx PQ AP mIoU #param.

0 41.7 27.5 46.5 47M
8 41.0 27.2 46.5 47M

16 41.9 27.3 47.3 47M
32 41.7 27.5 46.8 47M

Table II. Ablation on number of learnable text context embed-
dings. We find Nctx = 16 performs best.

contrastive-loss weight PQ AP mIoU

λQ↔Qtext = 0.0 51.1 42.1 60.2
λQ↔Qtext = 0.5 51.5 42.5 61.2
λQ↔Qtext = 1.0 50.7 42.0 60.5

Table III. Ablation on Contrastive Loss’ Weight. We find
λQ↔Qtext = 0.5 gives the best performance.

B. Additional Ablations
Ablation on Number of Queries. We study the effect of the
different number of queries on the COCO dataset in Tab. I.
We conduct experiments using the ResNet-50 (R50) [24]
backbone and train for 50 epochs. We find that N = 150
performs the best.

Additionally, we tune the number of queries on the
Swin-L† backbone separately. During our experiments,
we found that N = 250 is the best setting with Swin-
l† on ADE20K [15] and Cityscapes [14] datasets. On
COCO [34], N = 150 gives the best performance with
Swin-L†. We also noticed that with smaller backbones
like R50 [24], N = 150 is the optimal setting on the
ADE20K [15] dataset.
Ablation on Contrastive Loss’ Weight. We run ablations
on the weight for the contrastive loss’ weight on the COCO
dataset in Tab. III. We conduct our experiments using the
ResNet-50 (R50) [24] backbone and train for 50 epochs.
We find that λQ↔Qtext = 0.5 is the optimal weight setting.
Ablation on Number of Learnable Text Context Embed-
dings. We study the effect of different number of learn-
able text context embeddings on the ADE20K [15] dataset
in Tab. II. We conduct our experiments using the ResNet-50
(R50) [24] backbone and train for 160k iterations. We find
that Nctx = 16 performs best.

C. Individual Training
In this section, we analyze our OneFormer’s perfor-

mance with individual training on the panoptic, instance,
and semantic segmentation task. For this study, we con-
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Figure I. Comparison to Swin-L Mask2Former [12] across leaderboards. Our single OneFormer model outperforms Mask2Former [12],
the previous single architecture SOTA system on ADE20K val [15], Cityscapes val [14], and COCO val2017 [34] for all three segmentation
tasks. With DiNAT-L OneFormer, we achieve even more improvements.

duct experiments with the ResNet-50 (R50) [24] backbone
on the ADE20K [15] dataset. We train all models for 160k
iterations with a batch size of 16.

As shown in Tab. IV, OneFormer outperforms
Mask2Former [12] (the previous SOTA pseudo-universal
image segmentation method) with every training strategy.
Furthermore, with joint training, Mask2Former [12] suffers
a significant drop in performance, and OneFormer achieves
the highest PQ, AP and mIoU scores.

In order to train OneFormer on a single task, we set the
value of task as that of the corresponding task in our task
token input: “the task is {task}” for the samples during
training. Therefore, under Panoptic Training, only panoptic
ground truth labels will be used, and similarly, for Semantic
and Instance Training, only semantic and instance ground
truth labels shall be used, respectively. The joint training
strategy remains the same as described in Sec 3.1 (main
text) with uniform sampling for each task-specific ground
truth label. Note that for training OneFormer, we derive all
ground truth labels from the panoptic annotations.

D. Analysis on the Task-Dynamic Nature of
OneFormer

We analyze OneFormer’s ability to capture the inter-
task differences by changing the value of {task} in the
task token input: “the task is {task}” as panoptic, in-
stance, or semantic, during inference. We report quanti-
tative report results with our Swin-L† OneFormer trained
on Cityscapes [14] dataset in Tab. V. When we set task as
“instance”, we observe that PQSt drops to 0.0%, and there
is only a −0.2% drop on PQTh metric as compared to the
setting when task is panoptic. This observation proves
that OneFormer learns to change its feed-forward output
depending on the task dynamically. Similarly, there is a
sizable drop in the PQ, PQTh and AP metrics for the seman-
tic task with PQSt improving by +0.2% showing that our

framework can segment out amorphous masks for “stuff”
regions but does not predict different masks for “thing” ob-
jects.

We further provide qualitative evidence in Fig. II. As
demonstrated by the first example in Fig. II, the rider and
bicycle regions are detected. However, the other “stuff”
regions are misclassified in the semantic inference output
when task=“instance”. Similarly, the people are detected
in the second example, and the other “stuff” regions are mis-
classified. In further evidence, in both examples, the dis-
tinct “thing” objects are segmented into a single amorphous
mask in the panoptic and instance inference outputs when
task=“semantic”. Therefore, the differences in the qualita-
tive results demonstrate OneFormer’s ability to output task-
dependent class and mask predictions, which our task token
input can guide.

E. Comparison to SOTA Methods at System-
Level for Image Segmentation

In this section, we compare OneFormer to other SOTA
systems for panoptic, instance, and semantic segmentation
tasks on the ADE20K val [15], Cityscapes val [14], and
COCO val2017 [34] datasets. As shown in Fig. I, our single
OneFormer model outperforms Mask2Former for the three
image segmentation tasks on all three datasets. Note that
we are comparing the same OneFormer models referenced
in our main text to other systems without applying addi-
tional system-level training techniques or using additional
data and huge backbones.

E.1. SOTA Systems on ADE20K val

As shown in Tab. VI, without using any extra train-
ing data, Swin-L OneFormer sets new state-of-the-art
performance on instance segmentation with 37.8% AP,
and DiNat-L OneFormer sets new state-of-the-art perfor-
mance on panoptic segmentation with 51.5% PQ beating
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training strategy method PQ AP mIoU

Panoptic Training
Mask2Former [12] 40.7 25.2 45.6
OneFormer (ours) 41.4 (+0.7) 27.0 (+1.8) 46.1 (+0.5)

Instance Training
Mask2Former [12] — 26.4 —
OneFormer (ours) — 26.7 (+0.3) —

Semantic Training
Mask2Former [12] — — 47.2
OneFormer (ours) — — 47.3 (+0.1)

Joint Training
Mask2Former† [12] 40.8 25.7 46.6
OneFormer (ours) 41.9 (+1.1) 27.3 (+1.6) 47.3 (+0.7)

Table IV. Comparison between Individual and Joint Training. Unlike Mask2Former [12] which shows large variance in performance
among the different training strategies, OneFormer performs fairly well under all training strategies and outperforms Mask2Former [12].
We train all models with R50 [24] backbone on the ADE20K [15] dataset for 160k iterations. † We retrain our own Mask2Former [12]
using the joint training strategy.

Task Token Input PQ PQTh PQSt AP mIoU

the task is panoptic 67.2 61.0 71.7 45.3 83.0
the task is instance 25.6 60.8 0.0 45.6 6.3
the task is semantic 56.9 36.2 71.9 27.2 83.0

Table V. Quantitative Analysis on Task Dynamic Nature of
OneFormer. Our OneFormer is sensitive to the input task to-
ken value. We report results with Swin-L† OneFormer on the
Cityscapes [14] val set. The numbers in pink denote results on
secondary task metrics.

the previous state-of-the-art Swin-L Mask2Former’s [12]
34.9% AP and ConvNeXt-L KMaX-DeepLab’s [60] 50.9%
PQ, respectively. Furthermore, DiNAT-L OneFormer and
ConvNeXt-L OneFormer achieve the new-state-of-the-art
single-scale and multi-scale mIoU scores of 58.3% and
58.8%, respectively, compared to other systems that do not
use extra data during training.

E.2. SOTA Systems on Cityscapes val

Without any extra data during training, our ConvNeXt-
L OneFormer sets the new state-of-the-art performance on
panoptic segmentation with 68.5% PQ with single-scale in-
ference. Similarly, ConvNeXt-XL OneFormer achieves a
new state-of-the-art 46.7% AP score with single-scale in-
ference as shown in Tab. VII.

E.3. SOTA Systems on COCO val

Without using any extra training data, DiNAT-L One-
Former matches the previous state-of-the-art KMaX-
DeepLab [60] with 58.0% PQ score. Swin-L OneFormer
achieves the best PQTh score of 64.4%. For evaluating on
the semantic segmentation task, we generate semantic GT
annotations from the corresponding panoptic annotations.
As shown in Tab. VIII, DiNAT-L OneFormer achieves an
impressive 68.1% mIoU.

While analyzing the COCO dataset, we found serious
discrepancies between the GT panoptic and instance anno-
tations. Therefore, for fair comparison, during evaluation,
we generate the instance annotations from the panoptic an-

notations for calculating the AP scores as only use panop-
tic annotations during training. We provide more informa-
tion about the discrepancies in Appendix F. DiNAT-L One-
Former achieves 49.2% AP outperforming Mask2Former-
Instance [12].

F. Analysis on Discrepancy between Instance
and Panoptic Annotations in COCO

During our joint training, we derive the semantic and in-
stance ground-truth labels from the corresponding panop-
tic annotations. Unlike, Cityscapes [14] and ADE20K [15]
datasets, which combine the semantic and instance anno-
tations to generate the corresponding panoptic annotations
while preparing the data, COCO [34] has separate sets of
panoptic and instance annotations. As expected, there are
no discrepancies between the panoptic and instance anno-
tations in the Cityscapes [14] and ADE20K [15] datasets.
However, because COCO [34] has separately developed
panoptic and instance annotations, we discover significant
discrepancies in the COCO train2017 and val2017 [34]
datasets as shown in Fig. III and Fig. IV, respectively.

In Fig. III, the instance annotations merge the “tie” ob-
ject into the “person” object. In another example, instance
annotations merge the “dog” and “boat” into a single in-
stance, while the panoptic annotations segment the two in-
stances correctly.

In Fig. IV, the instance annotations skip multiple “per-
son” and “motorcycle” objects in different images, while
the panoptic annotations include them all. In another exam-
ple, instance annotations leave out a group of “person” ob-
ject instances in the background, and panoptic annotations
merge those instances into a single object mask.

These discrepancies are a significant barrier to develop-
ing and evaluating a unified image segmentation model. As
demonstrated in Fig. III and Fig. IV, our predictions match
the panoptic annotations much more than the instance anno-
tations which is expected from our training strategy involv-
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Method Backbone #Params Crop Size Extra Data PQ AP mIoU
(s.s.)

mIoU
(m.s.)

Individual Training

Mask2Former [12] BEiT-3 [52] 1.9B 896×896 3 — — 62.0 62.8
UPerNet [55] FD-SwinV2-G [53] >3B 896×896 3 — — — 61.4
Mask DINO [32] Swin-L [38] 223M 896×896 3 — — 59.5 60.8
Mask2Former [12] ViT-Adapter-L [9] 568M 896×896 3 — — 59.4 60.5
UPerNet [55] SwinV2-G [37] >3B 896×896 3 — — 59.3 59.9

UPerNet [55] ViT-Adapter-L [9] 571M 640×640 7 — — 58.0 58.4
MSFaPN-Mask2Former [27] SeMask Swin-L† [27] — 640×640 7 — — 57.0 58.2
FaPN-Mask2Former [25] Swin-L [38] — 640×640 7 — — 56.4 57.7
SeMask Mask2Former [27] SeMask Swin-L† [27] — 640×640 7 — — 56.4 57.5
Mask2Former-Semantic [25] Swin-L [38] 216M 640×640 7 — — 56.1 57.3

Mask2Former-Panoptic [12] Swin-L [38] 216M 640×640 7 48.1 34.2 54.5 —
kMaX-DeepLab [60] ConvNeXt-L† [39] 232M 641×641 7 48.7 — 54.8 —

Mask2Former-Instance [12] Swin-L [38] 216M 640×640 7 — 34.9 — —
kMaX-DeepLab [60] ConvNeXt-L† [39] 232M 1281×1281 7 50.9 — 55.2 —

Joint Training

OneFormer Swin-L [38] 219M 640×640 7 49.8 35.9 57.0 57.7
OneFormer Swin-L [38] 219M 896×896 7 51.1 37.6 57.4 58.3
OneFormer Swin-L [38] 219M 1280×1280 7 51.4 37.8 57.0 57.7

OneFormer ConvNeXt-L [39] 220M 640×640 7 50.0 36.2 56.6 57.4
OneFormer ConvNeXt-XL [39] 372M 640×640 7 50.1 36.3 57.4 58.8

OneFormer DiNAT-L [21] 223M 640×640 7 50.5 36.0 58.3 58.4
OneFormer DiNAT-L [21] 223M 896×896 7 51.2 36.8 58.1 58.6
OneFormer DiNAT-L [21] 223M 1280×1280 7 51.5 37.1 58.2 58.7

Table VI. Comparison to methods on PwC Leaderboard on ADE20K val [15]. OneFormer achieves new-state-of-the-art performances
on all three segmentation tasks when compared with methods not using extra training data.

Method Backbone #Params Crop Size Extra Data MS
(PQ & AP) PQ AP mIoU

(s.s.)
mIoU
(m.s.)

Individual Training

HRNetV2-OCR+PSA [35] HRNetV2-W48 [45] — 1024×2048 3 7 — — — 86.9
HRNetV2-OCR [35] HRNetV2-W48 [45] — 1024×2048 3 7 — — — 86.3
Mask2Former [12] ViT-Adapter-L [9] 571M 896×896 3 7 — — 84.9 85.8

Mask2Former [12] SeMask Swin-L [27] 223M 512×1024 7 7 — — 84.0 85.0
Mask2Former-Semantic [12] Swin-L [38] 215M 512×1024 7 7 — — 83.3 84.3

Panoptic-DeepLab [11] SWideRNet [8] — 1025×2049 3 3 69.6 46.8 — 85.3
Axial-DeepLab-XL [51] Axial ResNet-XL [51] 173M 1025×2049 3 3 68.5 44.2 — 84.6
EfficientPS [42] EfficientNet [46] — 1025×2049 3 3 67.5 43.5 — 82.1

Panoptic-DeepLab [11] SWideRNet [8] — 1025×2049 3 7 68.5 42.8 84.6 85.3
Axial-DeepLab-XL [51] Axial ResNet-XL [51] 173M 1025×2049 3 7 67.8 41.9 84.2 —

kMaX-DeepLab [60] ConvNeXt-L [39] 232M 1025×2049 7 7 68.4 44.0 83.5 —
Panoptic-DeepLab [11] SWideRNet [8] — 1025×2049 7 7 66.4 40.1 82.2 82.9
Axial-DeepLab-XL [51] Axial ResNet-XL [51] 173M 1025×2049 7 7 64.4 36.7 80.6 81.1
Mask2Former-Panoptic [12] Swin-L [38] 216M 512×1024 7 7 66.6 43.6 82.9 —

Mask2Former-Instance [12] Swin-L [38] 216M 512×1024 7 7 — 43.7 — —

Joint Training

OneFormer Swin-L [38] 219M 512×1024 7 7 67.2 45.6 83.0 84.4

OneFormer ConvNeXt-L [39] 220M 512×1024 7 7 68.5 46.5 83.0 84.0
OneFormer ConvNeXt-XL [39] 372M 512×1024 7 7 68.4 46.7 83.6 84.6

OneFormer DiNAT-L [21] 223M 512×1024 7 7 67.6 45.6 83.1 84.0

Table VII. Comparison to SOTA systems on Cityscapes val [14]. OneFormer achieves new-state-of-the-art performances on the instance
and panoptic segmentation tasks when compared with SOTA systems using single-scale inference.
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Method Backbone #Params Extra Data PQ PQTh PQSt AP APinstance mIoU

Individual Training

Mask DINO [32] Swin-L [38] 223M 3 59.4 — — — 54.5 —
kMaX-DeepLab [60] ConvNeXt-L [39] 232M 3 58.1 64.3 48.8 — — —

kMaX-DeepLab [60] ConvNeXt-L [39] 232M 7 58.0 64.2 48.6 — — —
Mask2Former-Panoptic [12] Swin-L [38] 216M 7 57.8 64.2 48.1 48.7 48.6 67.4
Panoptic SegFormer [33] Swin-L [38] 221M 7 55.8 61.7 46.9 — — —

Mask2Former-Instance [12] Swin-L [38] 216M 7 — — — 49.1 50.1 —

Joint Training

OneFormer Swin-L [38] 219M 7 57.9 64.4 48.0 49.0 48.9 67.4

OneFormer DiNAT-L [21] 223M 7 58.0 64.3 48.4 49.2 49.2 68.1

Table VIII. Comparison to SOTA systems on COCO val2017 [34]. OneFormer achieves the best PQTh score among the SOTA systems
trained without using any extra data. APinstance represents evaluation on the original instance annotations.

ing only panoptic annotations. Therefore, while comparing
our Swin-L† OneFormer to other SOTA methods in Tab. 3
(main text), we evaluate the AP score on instance GTs de-
rived from the panoptic annotations.
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Figure II. Qualitative Analysis on Task Dynamic Nature of OneFormer. When task = “instance”, the semantic inference outputs
display fair detection of “thing” regions and misclassifications for the “stuff” regions. Similarly, when task = “semantic”, the distinct
object masks are grouped into a single amorphous mask, as expected by the formulation of the semantic segmentation task. Zoom in for
best view.
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Image Instance Annotation GT Panoptic Annotation GT Our Prediction

Figure III. Discrepancy between instance and panoptic annotations in the COCO train2017 [34] dataset. The “tie” instance is merged
into the “person” instance in the instance annotations, whereas the panoptic annotations segment the two objects separately in the first,
third, and fifth rows. Similarly, “dog” and “boat” are merged into a single instance in the instance annotations in the second row. The
“bowl” and “spoon” are segmented as a single instance in instance annotations in the fourth row. Lastly, the ‘tennis racket” and the small
“sports ball” are segmented distinctly in panoptic annotations, unlike instance annotations in the last row. Zoom in for best view.
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Image Instance Annotation GT Panoptic Annotation GT Our Prediction

Figure IV. Discrepancy between instance and panoptic annotations in the COCO val2017 [34] dataset. The instance annotations skip
multiple “person” and “motorcycle” objects in the first and fourth rows. The instance annotations leave out a group of “person” objects in
the background, and panoptic annotations merge those objects into a single object mask in the second, third, fifth, and sixth rows. A similar
case is observed with “bus” in the background in the last row. Zoom in for best view.
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