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Abstract

Thanks to the impressive progress of large-scale vision-
language pretraining, recent recognition models can clas-
sify arbitrary objects in a zero-shot and open-set manner,
with a surprisingly high accuracy. However, translating this
success to semantic segmentation is not trivial, because this
dense prediction task requires not only accurate semantic
understanding but also fine shape delineation and existing
vision-language models are trained with image-level lan-
guage descriptions. To bridge this gap, we pursue shape-
aware zero-shot semantic segmentation in this study. In-
spired by classical spectral methods in the image segmenta-
tion literature, we propose to leverage the eigen vectors of
Laplacian matrices constructed with self-supervised pixel-
wise features to promote shape-awareness. Despite that this
simple and effective technique does not make use of the
masks of seen classes at all, we demonstrate that it out-
performs a state-of-the-art shape-aware formulation that
aligns ground truth and predicted edges during training.
We also delve into the performance gains achieved on dif-
ferent datasets using different backbones and draw several
interesting and conclusive observations: the benefits of pro-
moting shape-awareness highly relates to mask compact-
ness and language embedding locality. Finally, our method
sets new state-of-the-art performance for zero-shot seman-
tic segmentation on both Pascal and COCO, with significant
margins. Code and models will be accessed at SAZS.

1. Introduction

Semantic segmentation has been an established research
area for some time now, which aims to predict the categories
of an input image in a pixel-wise manner. In real-world ap-
plications including autonomous driving [18], medical diag-
nosis [32,47] and robot vision and navigation [9,64], an ac-
curate semantic segmentation module provides a pixel-wise

Pizza*

Dining

Table

Cup*

Cat

Input Images Ours w/o shape

awareness

Ours Ground Truth

Figure 1. Without retraining, SAZS is able to precisely segments
both seen and unseen objects in the zero-shot setting, largely out-
performing a strong baseline. * denotes unseen categories during
training).

understanding of the input image and is crucial for subse-
quent tasks (like decision making or treatment selection).

Despite that significant progress has been made in the
field of semantic segmentation [6,7,33,50,53,55,58,60,62],
most existing methods focus on the closed-set setting in
which dense prediction is performed on the same set of cat-
egories in training and testing time. Thus, methods that are
trained and perform well in the closed-set setting may fail
when applied to the open world, as pixels of unseen ob-
jects in the open world are likely to be assigned categories
that are seen during training, causing catastrophic conse-
quences in safety-critical applications such as autonomous
driving [63]. Straightforward solutions include fine-tuning
or retraining the existing neural networks, but it is impracti-
cal to enumerate unlimited unseen categories during retrain-
ing, let along large quantities of time and efforts needed.

More recent works [4, 15, 25, 28, 41] address this issue
by shifting to the zero-shot setting, in which the methods
are evaluated with semantic categories that are unseen dur-
ing training. While large-scale pre-trained visual-language
models such as CLIP [42] or ALIGN [19] shed light on the
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potential of solving zero-shot tasks with priors contained in
large-scale pre-trained model, how to perform dense predic-
tion task in this setting is still under-explored. One recent
approach by Li et.al. [25] closes the gap by leveraging the
shared embedding space for languages and images, but fails
to effectively segment regions with fine shape delineation.
If the segmented shape of the target object is not accurate,
it will be a big safety hazard in practical applications, such
as in autonomous driving.

Inspired by the classical spectral methods and their in-
trinsic capability of enhancing shapeawareness, we pro-
pose a novel Shape-Aware Zero-Shot semantic segmenta-
tion framework (SAZS) to address the task of zero-shot
semantic segmentation. Firstly, the framework enforces
vision-language alignment on the training set using known
categories, which exploits rich language priors in the large-
scale pre-trained vision-language model CLIP [42]. Mean-
while, the framework also jointly enforces the boundary of
predicted semantic regions to be aligned with that of the
ground truth regions.

Lastly, we leverage the eigenvectors of Laplacian of
affinity matrices that is constructed by features learned in a
self-supervised manner, to decompose inputs into eigenseg-
ments. They are then fused with learning-based predictions
from the trained model. The fusion outputs are taken as the
final predictions of the framework.

As illustrated in Fig. 1, compared with [25], the predic-
tions of our approach are better aligned with the shapes of
objects.

We also demonstrate the effectiveness of our approach
with elaborate experiments on PASCAL-5i and COCO-20i,
the results of which show that our method outperforms for-
mer state-of-the-arts [4, 25, 37, 38, 52, 54] by large margins.
By examining a) the correlation between shape compact-
ness of target object and IoU and b) the correlation between
the language embedding locality and IoU, we discover the
large impacts on the performance brought by the distribu-
tion of language anchors and object shapes. Via extensive
analyses, we demonstrate the effectiveness and generaliza-
tion of SAZS framework’s shape perception for segmenting
semantic categories in the open world.

2. Related works

2.1. Zero-Shot Semantic Segmentation

The main goal of the zero-shot semantic segmentation
task(ZSS) is to perform pixel-wise predictions for objects
that are unseen during training. Recent works on ZSS have
seen two main branches: the generative methods and the
discriminative methods.

The generative methods [4, 15, 28] produce synthesized
features for unseen categories.

ZS3Net [4] utilizes a generative model to create a visual

representation of objects that were not present in the train-
ing data. This is achieved by leveraging pre-trained word
embeddings. CaGNet [15] highlights the impact of contex-
tual information on pixel-level features through a network
learning to generate specific contextual pixel-level features.
In CSRI [28], constraints are introduced to the generation
of unseen visual features by exploiting the structural rela-
tionships between seen and unseen categories.

As for the discriminative methods, SPNet [54] leverages
similarities between known categories to transfer learned
representations to other unknown categories. Baek et al. [2]
employ visual and semantic encoders to learn a joint embed-
ding space with the semantic encoder converting the seman-
tic features into semantic prototypes. Naoki et al. [22] in-
troduce variational mapping by projecting the class embed-
dings from the semantic to the visual space. Lv et al. [34]
present a transductive approach using target images to miti-
gate the prediction bias towards seen categories. LSeg [25]
proposes a language-driven ZSS model, mapping pixels and
names of labels into a shared embedding space for pixel-
wise dense prediction.

Though much pioneering efforts have been spent, the
dense prediction task requires fine shape delineation while
most existing vision-language models are trained with
image-level language descriptions. How to effectively ad-
dress these problems is the focus of our work.

2.2. Shape-aware Segmentation

Shape awareness is beneficial to dense prediction tasks.
Most of the semantic segmentation methods [6, 33, 45, 53]
cannot preserve object shapes since they only focus on fea-
ture discriminativeness but ignore proximity between cen-
tral and other positions.

Meanwhile, SGSNet [59] takes a hierarchical approach
to aggregating the global context when modeling long-
range dependencies, considering feature similarity and
proximity to preserve object shapes. ShapeMask [23] re-
fines the coarse shapes into instance-level masks. The shape
priors provide powerful clues for prediction. Gated-SCNN
[49] proposes a two-stream architecture for semantic seg-
mentation that explicitly captures shape information as a
separate processing branch. The key point is to enable the
interactive flow of information between the two networks,
allowing the shape stream to focus on learning and process-
ing of edge information. Liu et al. [31] construct the spa-
tial propagation networks for learning the affinity matrix.
The affinity matrix allows a tractable modeling of the dense,
global pairwise relationships of pixels.

2.3. Spectral Methods for Segmentation

Among different segmentation schemes, spectral meth-
ods for clustering employ the eigenvectors of a matrix de-
rived from the distance between points, which have been
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Figure 2. The overview of SAZS framework. SAZS addresses the task of zero-shot semantic segmentation, which aims to segment the test
set image Vtest by open-set categories without additional training of the network. During training, (A) the input image Vtrain is transformed
into pixel-wise visual embeddings which are aligned with the text embeddings of training categories Ttrain, according to the ground-truth
semantic maps Mgt. The text embeddings are obtained by the pre-trained text encoder of CLIP [42] and serve as optimization anchors
of the CLIP feature space. (B) In order to aggregate shape priors contained in the input image, SAZS jointly trains on the constraint
task of boundary detection by comparing the ground-truth boundaries and the predictions of boundary heads of the visual encoder. (C)
During inference, in order to reduce the domain gap between seen and unseen categories, SAZS fuses the pixel-wise predictions of the
neural networks with eigensegments obtained by non-learning-based spectral analysis. Note that, modules marked with the lock icon are
pre-trained and not optimized during training of SAZS.

successfully used in many applications.

Shi et al. [48] regard image segmentation as a graph par-
titioning problem, which proposes a novel global criterion,
the normalized cut, to segment the image. Soft segmenta-
tions [1] are generated automatically by fusing high-level
and low-level image features in a graph structure. The
purpose of constructing this graph is to enable the corre-
sponding Laplacian matrix and its eigenvectors to reveal
semantic objects and soft transitions between objects. In
our work, we utilize the eigensegments obtained by self-
supervised spectral decomposition with the network out-
puts as the framework’s predictions to avoid the bias of
the learning-based model on the training set and further im-
prove shape-awareness.

2.4. Vision-Language Modeling

An extensive group of works have investigated the zero-
shot semantic segmentation task. The key idea behind
many of these works is to exploit priors encoded in pre-
trained word embeddings to generalize to unseen classes
and achieve dense predictions [4, 13, 15, 17, 20, 22, 25,
27–29, 39, 54, 61], such as word2vec [36], GloVe [40] or
BERT [10]. CLIP [42] has recently demonstrated impres-
sive zero-shot generalization in various image-level classifi-
cation tasks. As a result, several works have since exploited
the vision-language embedding space learned by CLIP [42]
to enhance dense prediction capabilities [25, 44, 56]. CLIP
develops contrastive learning with a large-capacity lan-
guage and visual feature encoder to train extremely robust
models for zero-shot image classification. But the perfor-
mance of large-scale pre-trained vision encoders transferred



to pixel-level classification work is unsatisfactory. Unfor-
tunately, the direct utilization of the extracted image-level
vision-language features ignores the discrepancy between
image-level and the pixle-level dense predicition task, the
latter of which is the focus of our work. According to our
study, the shape-aware prior and supervision can bridge this
discrepancy and get more accurate segmentation results.

3. Methods

The goal of zero-shot semantic segmentation is to ex-
tend semantic segmentation task to the unseen categories
other than those in the training datasets. One potential ap-
proach to introduce extra priors is to leverage pre-trained
vision-language models, yet most of these models focus on
the image-level prediction and fail to transfer to dense pre-
diction tasks.

To this end, we propose a novel method named Shape-
Aware Zero-Shot Semantic Segmentation (SAZS).

This approach leverages the rich language priors con-
tained in the pre-trained CLIP [42] model, while also ex-
ploiting the proximity between local regions to perform the
boundary detection task with constraints. Meanwhile, we
utilize spectral decomposition of self-supervised visual fea-
tures to improve our approach’s sensitivity to shape, and
integrate this with pixel-wise prediction.

The overall pipeline of our methods is depicted in Fig.
2. The input image is first transformed by an image en-
coder into pixel-wise embeddings, which are then aligned
with precomputed text embeddings obtained by the text en-
coder of pre-trained CLIP model (Part A in Fig. 2). Mean-
while, an extra head in the image encoder is used to pre-
dict the boundaries in patches, which are optimized to-
wards the ground-truth edges obtained from segmentation
ground truths (Part B in Fig. 2). In addition, we further
exploit proximity of local regions during inference by de-
composing the image by spectral analysis and fusing the
output eigensegments with class-agnostic segmentation re-
sults (Part C in Fig. 2).

In the following section, we first formally define the ad-
dressed task and introduce the notations in Sec. 3.1. Then
we describe the loss designs for the vision-language align-
ment and boundary prediction in Sec. 3.2 and Sec. 3.3,
respectively. The inference pipeline involving spectral de-
composition of the proposed affinity matrix is introduced in
Sec. 3.4.

3.1. Task Definition

Following HSNet [37], we denote the training set
by Dtrain = {(I,M,S)} and testing set by Dtest =
{(I,M,U)}, where I ∈ RH×W×3 and M ∈ RH×W×C

denote an input image and the corresponding ground-truth
semantic mask with digit encoding. S denotes the set of K

potential labels in I , while U denotes the set of unseen cat-
egories during testing. The two sets are strictly exclusive in
our setting (i.e., S ∩ U = ∅).

Before inferencing on Dtest targeting U , the model is
trained on Dtrain with ground-truth labels from S. This
means the categories in the test set are never seen during
training, making the task formulated in a zero-shot setting.
Once the model is well-trained, it is expected to general-
ize to unseen categories and achieve high performance for
dense prediction of target objects in the open world.

3.2. Pixel-wise Vision-Language Alignment

Comparing distances between pixel features and differ-
ent text anchor features in the shared feature space is a
straightforward approach for zero-shot semantic segmenta-
tion. However, while the pioneer work CLIP [42] intro-
duces a shared feature space for visual and text inputs, the
image-level CLIP visual encoder is infeasible for dense pre-
diction tasks since fine details in images, as well as the cor-
relation between pixels, are lost. In this section, we describe
our approach to address this issue by optimizing a dense vi-
sual encoder separate of CLIP and enforcing the pixel-wise
output features towards the text anchors in the CLIP feature
space during training.

Visual Encoder We employ Dilated residual networks
(DRN) [57] and Dense Prediction Transformers (DPT) [43]
to encoder images into pixel-level embeddings. More
specifically, an input image of size H ×W × 3 is first pro-
cessed with standard augmentation to H̃ × W̃ × 3 and then
passed as input to the visual encoder, resulting in a feature
map FV ∈ RH̃×W̃×D, where D is the feature size in DPT.

Text Encoder While most concurrent methods use
digit labels (e.g., 0, 1, 2) to represent categories, we take
embeddings of the category names (e.g. ”airplane”, ”cat” )
as the anchors of feature space. These embeddings are ob-
tained with the CLIP text encoder. Specifically, we adopt
the pre-trained CLIP text encoder to map the names of K
categories from S into CLIP feature space as the anchor
features FT ∈ RK×D, which is later used as targets for
optimization.

Note that, the visual features FV and the text features
FT have the same dimension D.

Vision-Language Alignment To enforce vision-
language alignment, the distances between pixels and
corresponding semantic category should be minimized
while the distances between pixels and other categories
should be maximized. Under the assumption that pixel-
wise vision and language features are embedded in the
same feature space, we leverage the cosine similarity ⟨·, ·⟩



as the quantitative distance metric between features and
propose the alignment loss as the sum of cross entropy
losses over seen classes of all pixels:

Lalign =

H̃,W̃∑
i,j

(
− log

e⟨FV [i,j],FT [kij ]⟩∑|S|
k′=1 e

⟨FV [i,j],FT [k′]⟩

)
(1)

In Eq. 1, FV [i, j] denotes pixel visual feature at position
(i, j), FT [k] denotes k-th text anchor features and kij de-
notes index of ground-truth category of pixel at (i, j).

3.3. Shape Constraint

Since CLIP is trained on an image-level task, simply
leveraging the priors in the CLIP feature space may be in-
sufficient for dense prediction tasks. To address this issue,
we introduce boundary detection as a constraint task, so
that the visual encoder is able to aggregate finer informa-
tion contained in images. Inspired by InverseForm [3], we
address this constraint task by optimizing the affine trans-
formation between ground-truth edges and edges in feature
maps towards identity transformation matrix.

More specifically, as shown in Fig. 2, we extract middle-
layer features of the visual encoders and split them into
patches. On the one hand, the ground truth edges within
the patches are obtained by applying Sobel operator on
ground truth semantic masks. On the other hand, the fea-
ture patches are processed by a boundary head. Then, we
calculate the affine transform matrix θ̂i for the i-th patch
between ground-truth edges and processed feature patches
with a pre-trained MLP. Note that, this MLP is trained in
advance with edge masks and not optimized during our
method’s training. We optimize this affine transform ma-
trix towards identity matrix by:

Lshape =
1

T

T∑
i=1

∣∣∣θ̂i − I
∣∣∣
F

(2)

where T denotes the number of patches and |·| denotes
Frobenius norm.

Furthermore, we directly calculate the binary cross en-
tropy loss Lbce between the predicted edge masks of the
whole image and corresponding ground truths to further op-
timize the performance of boundary detection.

After jointly training on the task of boundary detection,
the visual encoder is enabled to collect and leverage shape
priors in the input images. Ablation studies detailed later
show that shape awareness introduced by Lshape and Lbce

brings about notable improvements.
Finally, the overall loss to optimize during training is:

L = Lalign + λ1Lshape + λ2Lbce (3)

where λ1 and λ2 are loss weights.

3.4. Self-supervised Spectral Decomposition

We seek to decompose the input images into eigenseg-
ments with clear boundaries in an unsupervised manner, and
then fuse these eigensegments with the predictions of the
neural networks in the fusion module in Fig. 2 .

The derivation of affinity matrix is the key to spectral
decomposition. Following Melas-Kyriazi et al. [35], we
first leverage the features f from the attention block of the
last layer of a pre-trained self-supervised transformer (i.e.,
DINO [5]). The affinity between pixel i and j is defined as:

Zsem(i, j) = fi · fT
j (4)

Note that, the self-supervised transformer is only used dur-
ing inference and its weights are not optimized.

While the affinities derived from transformer features
are rich in semantic information, the low-level proxim-
ity including color similarity and spatial distance is miss-
ing. Inspired by image matting [8, 24], we first trans-
from the input image into the HSV color space: X(i) =
(cos(h), sin(h), s, v, x, y)i, where h, s, v are the respective
HSV coordinates and (x, y) are the spatial coordinates of
pixel i. Then, the affinity between pixels is defined as

Zshape(i, j) = 1− ∥X(i)−X(j)∥2, j ∈ KNN(i) (5)

where ∥ · ∥2 denotes 2-norm. The overall affinity matrix is
defined as the weighted sum of the two:

Z(i, j) = Zsem + λ · Zshape (6)

With the affinity matrix, we now can compute the eigen-
vectors of the Laplacian L of the affinity matrix, which are
used to decompose the image into multiple eigensegments.

3.5. Inference

Given an image for inference, we first encode the phrases
of the categories using the pre-trained text encoder CLIP
and obtain textual features FT ∈ RC×D for C categories,
each of which is represented by a D-dimension embed-
ding. Then we leverage the trained visual encoder to obtain
the visual feature map FV ∈ RH̃×W̃×D. The final logits
F̂ij = FV(i, j) · FT

T are calculated as the cosine similari-
ties between the visual feature map and textual features. In
the mean time, we employ the pre-trained DINO to extract
semantic features in an unsupervised manner and calculate
the top K spectral eigensegments Ek (K = 5 in our im-
plementation). The final prediction results are generated by
the fusion module, which selects from the sets of predic-
tions according to the maximal IoU (denoted as ΦFUSE) of
the Ek and argmax F̂ij .

Predij = ΦFUSE

(
Ek, argmax F̂ij

)
k ∈ {0, 1, · · ·K}

(7)



4. Experiments
4.1. Datasets

We extensively evaluate our method on two datasets
dedicated for the task of zero-shot semantic segmentation:
PASCAL-5i [12] and COCO-20i [30]. Built upon PASCAL
VOC 2012 [12] and augmented by SBD [16], PASCAL-
5i contains 20 categories which are further divided into 4
folds denoted by 50, 51, 52 and 53. Each image is annotated
with 5 categories within each fold. Similarly, based on MS
COCO [30], COCO-20i is a more challenging dataset with
80 categories divided into four folds denoted by 200, 201,
202 and 203, and each of the four folds contains 20 cate-
gories. Of the four folds in the two datasets, one is used
for evaluation (i.e., the target fold) while the other three are
used for training. In the following section, we denote each
experiment setup by the target fold.

Following prior literature on zero-shot semantic segmen-
tation, we adopt mean intersection over union (mIoU) and
foreground-background IoU (FBIoU) as the evaluation met-
rics. Specifically, mIoU is the average of IoUs of the cate-
gories in target fold and FBIoU is the average of foreground
IoU and background IoU.

4.2. Implementation Details

In our experiments, we employ the pre-trained CLIP-
ViT-B/32 as the text encoder. Background or unknown cat-
egory is regarded as ”others” when mapped from text to
CLIP features. The visual encoder is implemented by DRN
[57] or DPT [43] with ViT [11] as the backbone. When
training on the task of boundary detection, each feature map
for the shape boundary and the corresponding ground truth
are splitted into 3 × 6 patches. Each patch pair is then fed
into the MLP in Part B of Fig. 2 to calculate the affine trans-
formation matrix.

During training, the network is optimized by an SGD
optimizer with a momentum of 0.95 and a learning rate of
5 × 10−5 decayed by a polynomial scheduler. With ViT as
the backbone of visual encoder, the training process finishes
within 5 epochs on 4 NVIDIA Tesla V100 GPUs with a
batch size of 6.

4.3. Results

The proposed method SAZS has been evaluated on the
PASCAL-5i and COCO-20i datasets under zero-shot set-
tings, alongside several baselines for comparison. The per-
formances are reported in Tab. 1. With DRN as the vi-
sual encoder backbone, our method achieves large margins
over the strong baseline LSeg [25], with mIoU improved
by 6.1% and 4.8% on PASCAL-5i and COCO-20i respec-
tively. Our model also outperforms LSeg [25] by large mar-
gins with the ViT backbone underlying DPT, with mIoU
improved by 7.2% and 11.2%. The performance enhance-

ments of SAZS remain consistent across different visual en-
coder choices, highlighting its effectiveness.

In addition, we conduct cross-dataset validation by train-
ing on the COCO-20i dataset and testing on PASCAL-5i.
As shown in Table 2, our method outperforms OpenSeg [14]
and LSeg+ [25] in zero-shot dense prediction tasks with
clear margins. It is worth noting that all three methods are
trained on a larger semantic segmentation dataset (COCO-
20i). These performance gaps demonstrate the generaliza-
tion ability of our shape-aware training framework across
datasets. We also provide qualitative results for the pro-
posed method SAZS. in Fig. 3 and Fig. 4. In these fig-
ures, we illustrate the predictions of SAZS with and with-
out shape awareness on COCO-20i and PASCAL-5i respec-
tively, showing its ability to make precise predictions on
both seen and unseen categories.

4.4. Ablation Study

To further demonstrate the effectiveness of design
choices in our approach, we perform detailed ablation stud-
ies by evaluating our method with or without shape con-
straint during training as well as the fusion of network pre-
dictions with eigensegments. Results on PASCAL-5i are
reported in Tab. 3 and results on COCO-20i are reported in
Tab. 4 and Tab. 5.

Effects of Shape-awareness The motivation for auxiliary
constraint Lshape is to learn the shape priors of images
contained in the target boundaries. We observe that with-
out training on the constraint task of boundary detection,
the performances of the proposed method tend to decline.
Specifically as reported in Tab. 4 and Tab. 5, the mIoU of
SAZS drops by 1.4% and by 1.5% with ViT and DRN back-
bone on COCO-20i when training without Lshape. The per-
formance gaps clearly indicate the significant role played by
shape-awareness in the proposed SAZS framework.

Effect of Fusion with Spectral Eigensegments We
also demonstrate the importance of fusing with spectral
eigensegments during inference. Without the fusion mod-
ule, the mIoU dramatically decreases by 7.0% on PASCAL-
5i and by 6.2% (ViT backbone) and 8.6% (DRN backbone)
on COCO-20i, as reported in Tab. 3, Tab. 4 and Tab. 5.
These large margins indicate that eigensegments obtained
by spectral decomposition of the affinity matrices largely
suppress the bias on the training dataset and seen categories.

4.5. Ablation of Zsem and Zshape

We conduct an ablation experiment on the PASCAL-5i

dataset to investigate the effects of Zsem and Zshape in our
fusion module. As shown in Table 6, both Zsem and Zshape

contribute to improved segmentation performance, but us-
ing Zsem alone yields better results than using Zshape alone.



Method Backbone Setting PASCAL-5i COCO-20i

50 51 52 53 mIoU FBIoU 200 201 202 203 mIoU FBIoU

FWB [38] ResNet 1-shot 51.3 64.5 56.7 52.2 56.2 − 17.0 18.0 21.0 28.9 21.2 −
DAN [52] ResNet 1-shot 54.7 68.6 57.8 51.6 58.2 71.9 − − − − 24.4 62.3

PFENet [51] ResNet 1-shot 60.5 69.4 54.4 55.9 60.1 72.9 36.8 41.8 38.7 36.7 38.5 63.0
HSNet [37] ResNet 1-shot 67.3 72.3 62.0 63.1 66.2 77.6 37.2 44.1 42.4 41.3 41.2 69.1

SPNet [54] ResNet zero-shot 23.8 17.0 14.1 18.3 18.3 44.3 − − − − − −
ZS3Net [4] ResNet zero-shot 40.8 39.4 39.3 33.6 38.3 57.7 18.8 20.1 24.8 20.5 21.1 55.1
LSeg [25] ResNet zero-shot 52.8 53.8 44.4 38.5 47.4 64.1 22.1 25.1 24.9 21.6 23.4 57.9

Ours DRN zero-shot 57.3 60.3 58.4 45.9 55.5 66.4 34.2 36.5 34.6 35.6 35.2 58.4

LSeg [25] ViT-L zero-shot 61.3 63.6 43.1 41.0 52.3 67.6 28.1 27.5 30.0 23.2 27.2 59.9
Ours ViT-L zero-shot 62.7 64.3 60.6 50.2 59.4 69.0 33.8 38.1 34.4 35.0 35.3 58.2

Table 1. The performances of SAZS and baselines evaluated on PASCAL-5i and COCO-20i

Model Backbone external dataset target dataset PASCAL-5i

LSeg ViT-L % !(seen classes) 52.3

SPNet ResNet % !(seen classes) 18.3
ZS3Net ResNet % !(seen classes) 38.3

LSeg ResNet % !(seen classes) 47.4

LSeg+ ResNet COCO % 59.0
OpenSeg [14] ResNet COCO % 60.0

Ours DRN COCO % 62.7

Table 2. The cross dataset mIoU results of our model and previous
SOTA methods on PASCAL-5i.

Model Fusion Lshape 50 51 52 53 mIoU

SAZS ! ! 62.7 64.3 60.6 50.2 59.4

SAZS ! 63.1 62.4 59.0 49.2 58.4

SAZS ! 59.7 63.4 44.3 42.2 52.4
SAZS 59.2 61.9 43.8 41.9 51.7

LSeg [25] 61.3 63.6 43.1 41.0 52.3

Table 3. Ablation study on PASCAL-5i (ViT backbone)

Model Fusion Lshape 200 201 202 203 mIoU

SAZS ! ! 33.8 38.1 34.4 35.0 35.3

SAZS ! 33.3 39.0 33.9 32.7 34.7

SAZS ! 30.0 30.4 27.5 28.5 29.1
SAZS 26.3 32.0 26.2 26.2 27.7

LSeg [25] 28.1 27.5 30.0 23.2 27.2

Table 4. Ablation study on COCO-20i (ViT backbone)

Model Fusion Lshape 200 201 202 203 mIoU

SAZS ! ! 34.2 36.5 34.6 35.6 35.2

SAZS ! 33.7 38.2 33.4 35.5 35.2

SAZS ! 28.4 27.6 25.4 25.1 26.6
SAZS 24.2 28.5 24.4 23.3 25.1

LSeg [25] 22.1 25.1 24.9 21.6 23.4

Table 5. Ablation study on COCO-20i (DRN backbone)

While the segmentation performance obtained by combin-
ing the two is slightly higher than that achieved with Zsem

alone, using both requires fine-tuning the hyper-parameter
λ, which can be unstable and requires additional effort.

4.6. Effects of Target Shape Compactness

In this section, we investigate the impact of shape-
awareness on the performance of SAZS in zero-shot seman-

Cup*

Cat

Keyboard

Pizza*

Person

Dining
Table

Input Image Ours Ground TruthOurs w/o shape
awareness

Figure 3. Qualitative results of COCO-20i. The first and last
columns are the input images and the corresponding ground-truth
semantic masks for different categories. The second and the third
columns are the predictions by SAZS without and with shape
awareness, respectively. * denotes unseen categories during train-
ing phase) and yellow boxes mark poorly segmented regions.

Model external dataset Zshape Zsem PASCAL-5i

SAZS COCO 58.4
SAZS COCO ! 58.6
SAZS COCO ! 62.7

Table 6. Impact of Zshape and Zsem Of fusion module (in the
cross-dataset setting of Tabel. 2).

tic segmentation by analyzing the correlation between the
mean intersection-over-union (mIoU) and the shape com-
pactness (CO) of each category. Shape compactness, as
proposed by Schick and others in 2012 [46], is a commonly
used metric for measuring the similarity of superpixels to
circles, which we use to characterize the shapes of objects
in the input images.

For each input image in the PASCAL-5i dataset, we



Input Image Ours Ground Truth

Sofa*

Bus*

Ours w/o shape
awareness

Sofa*

Potted 
Plant*

Figure 4. Qualitative comparison results of PASCAL-5i. The
first and last columns are the input images and the correspond-
ing ground-truth semantic masks for different categories. The
second and the third columns are the predictions by SAZS with-
out and with shape awareness, respectively. * denotes categories
categories unseen during training phase) and yellow boxes mark
poorly segmented regions.

collected the compactness (CO) metric of the ground-truth
mask for the target object to describe its shape. We then
calculated the variance of CO for each object category and
plotted the results in Fig. 5a. The sample points in the figure
represent the IoU and CO variance of each category, with
the color indicating the experiment settings. This analysis
aims to investigate how shape-awareness affects the SAZS’s
performance on zero-shot semantic segmentation.

The results demonstrate a negative correlation between
the IoU and the CO variance of a specific category (with
a Pearson correlation coefficient of r > 0.7 and P <=
0.001), and the degree of correlation is higher for SAZS
than for the baselines. These findings strongly suggest that
shape-awareness can improve segmentation performance
when objects have more stable shapes, and that SAZS is
more able to leverage shape information compared to the
other baselines. The experiments were conducted on the
PASCAL-5i dataset.

4.7. Effects of the Language Embedding Locality

Intuitively, distribution of language anchors in the latent
feature space may largely affect vision-language alignment
and thus the performance of the proposed method. Inspired
by recent research [21,26,42], we model the distribution by
the embedding locality of anchors which is defined by the
mean value and standard deviation of euclidean distances in
the feature space between one anchor and all other anchors.

For each category in each setting of experiments, we cal-
culate its embedding locality and report the results collected
on PASCAL-5i in Fig. 5b. The coordinates of sample points
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Figure 5. Correlation of CO variance (a) or mean embedding lo-
cality (b) with IoU.

represent the IoU and the embedding locality of the corre-
sponding category while the colors of the sample points de-
note the experiment settings.

According to the plotted results, we observe a negative
linear correlation (with Pearson correlation coefficient r >
0.5 and P ≤ 0.05) between the embedding locality mean
and IoU of a certain category, indicating that the closer a
category is in the feature space to the others, the easier it
is for the visual and text embeddings which leads to higher
performances. Also, the degree of relevance of SAZS is
the highest among all methods which implies that SAZS is
able to better align pixel-wise visual embeddings towards
the text anchors in the CLIP feature space.

5. Conclusion
In this paper, we present a novel framework for Shape-

Aware Zero-Shot semantic segmentation (abbreviated as
SAZS). The proposed framework leverages the rich pri-
ors contained in the feature space of a large-scale pre-
trained visual-language model, while also incorporating
shape-awareness through joint training on a boundary de-
tection constraint task. This is necessary to compensate for
the absence of fine-grained features in the feature space.
In addition, self-supervised spectral decomposition is used
to obtain feature vectors for images, which are fused with
the network predictions as prior knowledge to enhance the
model’s ability to perceive shapes.

Extensive experiments demonstrate the state-of-the-art
performance of SAZS with significant margins over pre-
vious methods. Correlation analysis further highlights the
impact of shape compactness and distribution of language
anchors on the framework’s performance. Our approach
effectively exploits the shape of targets and feature priors,
showing the highest correlation among all compared meth-
ods and proving the novelty of the shape-aware design.
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Pérez. Zero-shot semantic segmentation. Advances in Neural
Information Processing Systems, 32, 2019. 1, 2, 3, 7

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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Koltun, and René Ranftl. Language-driven semantic seg-
mentation. arXiv preprint arXiv:2201.03546, 2022. 1, 2,
3, 6, 7



[26] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu,
and Jingjing Liu. Hero: Hierarchical encoder for video+
language omni-representation pre-training. arXiv preprint
arXiv:2005.00200, 2020. 8

[27] Pengfei Li, Beiwen Tian, Yongliang Shi, Xiaoxue Chen, Hao
Zhao, Guyue Zhou, and Ya-Qin Zhang. Toist: Task oriented
instance segmentation transformer with noun-pronoun distil-
lation. arXiv preprint arXiv:2210.10775, 2022. 3

[28] Peike Li, Yunchao Wei, and Yi Yang. Consistent structural
relation learning for zero-shot segmentation. Advances in
Neural Information Processing Systems, 33:10317–10327,
2020. 1, 2, 3

[29] Yang Li, Xiaoxue Chen, Hao Zhao, Jiangtao Gong, Guyue
Zhou, Federico Rossano, and Yixin Zhu. Understanding em-
bodied reference with touch-line transformer. arXiv preprint
arXiv:2210.05668, 2022. 3

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6, 12

[31] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong,
Ming-Hsuan Yang, and Jan Kautz. Learning affinity via spa-
tial propagation networks. Advances in Neural Information
Processing Systems, 30, 2017. 2

[32] Xiangbin Liu, Liping Song, Shuai Liu, and Yudong Zhang. A
review of deep-learning-based medical image segmentation
methods. Sustainability, 13(3):1224, 2021. 1

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 1, 2

[34] Fengmao Lv, Haiyang Liu, Yichen Wang, Jiayi Zhao, and
Guowu Yang. Learning unbiased zero-shot semantic seg-
mentation networks via transductive transfer. IEEE Signal
Processing Letters, 27:1640–1644, 2020. 2

[35] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and
Andrea Vedaldi. Deep spectral methods: A surprisingly
strong baseline for unsupervised semantic segmentation and
localization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8364–
8375, 2022. 5

[36] George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995. 3

[37] Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorre-
lation squeeze for few-shot segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 6941–6952, 2021. 2, 4, 7

[38] Khoi Nguyen and Sinisa Todorovic. Feature weighting and
boosting for few-shot segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 622–631, 2019. 2, 7

[39] Giuseppe Pastore, Fabio Cermelli, Yongqin Xian, Massimil-
iano Mancini, Zeynep Akata, and Barbara Caputo. A closer
look at self-training for zero-label semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2693–2702, 2021. 3

[40] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014. 3

[41] Trung Pham, Thanh-Toan Do, Gustavo Carneiro, Ian Reid,
et al. Bayesian semantic instance segmentation in open set
world. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 3–18, 2018. 1

[42] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 1, 2, 3, 4, 8
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6. Appendix
6.1. Per-Category Evaluation

Table 8 and Table 9 demonstrate our per-category
zero-shot semantic mIoU results on COCO-20i [30] and
PASCAL-5i [12], respectively. The mIoU of our pro-
posed SAZS network structure demonstrates superior per-
formance compared to the baseline. We also observed that
certain categories often appear as small regions, such as
ties, or have complicated internal structures, such as peo-
ple. For these categories, textual feature guidance alone
cannot provide sufficient information for semantic parsing,
and the baseline without shape-awareness cannot effectively
segment objects under self-supervision. However, when us-
ing a SAZS model, the mIoUs of these categories better
align with the shapes of the objects than the baseline, which
confirms that shape awareness indeed improves zero-shot
learning.

6.2. Speed and Complexity

We conducted experiments to analyze the per-episode
inference time and floating point operations per second
(FLOPs) in order to demonstrate the complexity of our
proposed approach. The results are summarized in Table
7 for the COCO-20i dataset. Compared to the baseline
model without the fusion module, SAZS had slower infer-
ence time, but significantly better performance. Although
losses, including Lshape, in our model did not add any time
cost during inference, there is still potential for optimization
in terms of inference speed and model complexity, which is
exactly the direction for our future research.

6.3. More Qualitative Results

In this section, we provide additional qualitative results
of our model with a ViT-L backbone on PASCAL-5i and
COCO-20i datasets to demonstrate the model’s ability to
perform semantic segmentation on previously unseen cate-
gories. Fig. 7 showcases the results on PASCAL-5i, where
all categories are unseen in their respective fold. The im-
ages presented in the figure vary in their content and com-
plexity, and we display different visualizations of SAZS to
demonstrate its versatility.

The results presented in Fig.7 demonstrate the efficacy of
SAZS in distinguishing the target semantic objects, such as
bicycle, dining table, and TV monitor, from distractors like
person, dog, and keyboard. Furthermore, in Fig. 7, SAZS
accurately segments multiple instances of the target object,
as is the case with the train, potted plant, and TV monitor.

Overall, these results demonstrate the robustness of our
model in semantically segmenting novel categories with
high precision and accuracy, even in complex scenes. In this
section, we present the visualization of COCO-20i in Fig.8,
which includes both seen and unseen categories. We se-

Model Backbone mIoU time(s) FLOPS(G)

w/o fusion DRN 26.6 177.43 275.76
w/o fusion ViT-L 29.1 196.95 345.99

SAZS DRN 35.2 230.54 275.76
SAZS ViT-L 35.3 222.52 345.99

Table 7. More quantitative results on COCO-20i.

lected 20 scene and attribute labels with different semantics
and multiple objects to demonstrate the versatility of SAZS.
Despite the presence of noise and complexity in the scenes,
SAZS accurately recognizes novel categories that are small
and intricate, as illustrated by the examples of broccoli, pot-
tedplant, and skis in Fig.8.

In particular, in the second image of lines 2 and 3 of
Figure 1, where multiple species appear in the scene with
complex shapes, SAZS performs sharp object edge segmen-
tation to accurately distinguish broccoli, carrots, and hot
dogs.

Given the diversity of the presented scenes, we believe
that SAZS is precise enough to be applied to various sce-
narios, including open scenario understanding and intelli-
gent service robots.

6.4. More Scatter Analysis

Fig.6 presents additional scatterplots and corresponding
Pearson analysis results for the pascal dataset. The sample
points in Fig.6 represent the IoU and CO variance of each
model, and they demonstrate a negative correlation. The
results indicate that our approaches, particularly those that
incorporate shape-awareness, can increase the correlation
between per-category IoU results and CO. For example, in
the third column of Fig. 6, the Pearson correlation coeffi-
cient r of SAZS is 0.13 higher than that of the baseline.



Table 8. Per-category zero-shot semantic segmentation results on COCO-20i.
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Table 9. Per-category zero-shot semantic segmentation results on PASCAL-5i.
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Figure 6. More scatterplots on PASCAL-5i.
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Figure 7. More qualitative results on PASCAL-5i.
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Figure 8. More qualitative results on COCO-20i.
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