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Abstract

Continual Semantic Segmentation (CSS) extends static
semantic segmentation by incrementally introducing new
classes for training. To alleviate the catastrophic forgetting
issue in CSS, a memory buffer that stores a small number
of samples from the previous classes is constructed for re-
play. However, existing methods select the memory samples
either randomly or based on a single-factor-driven hand-
crafted strategy, which has no guarantee to be optimal. In
this work, we propose a novel memory sample selection
mechanism that selects informative samples for effective re-
play in a fully automatic way by considering comprehen-
sive factors including sample diversity and class perfor-
mance. Our mechanism regards the selection operation as
a decision-making process and learns an optimal selection
policy that directly maximizes the validation performance
on a reward set. To facilitate the selection decision, we de-
sign a novel state representation and a dual-stage action
space. Our extensive experiments on Pascal-VOC 2012 and
ADE 20K datasets demonstrate the effectiveness of our ap-
proach with state-of-the-art (SOTA) performance achieved,
outperforming the second-place one by 12.54% for the 6-
stage setting on Pascal-VOC 2012.

1. Introduction

Semantic segmentation is an important task with a lot
of applications. The rapid development of algorithms
[11, 20, 22, 30, 32, 56] and the growing number of publicly
available large datasets [14, 55] have led to great success
in the field. However, in many scenarios, the static model
cannot always meet real-world demands, as the constantly
changing environment calls for the model to be constantly
updated to deal with new data, sometimes with new classes.

A naive solution is to apply continual learning by incre-
mentally adding new classes to train the model. However, it

*Equal Contribution
†Corresponding Author

is not simple as it looks – almost every time, since the pre-
vious classes are inaccessible in the new stage, the model
forgets the information of them after training for the new
classes. This phenomenon, namely catastrophic forgetting,
has been a long-standing issue in the field. Furthermore,
the issue is especially severe in dense prediction tasks like
semantic segmentation.

Facing the issue, existing works [1, 4, 5, 7, 17, 25, 26, 38,
43] propose to perform exemplar replay by introducing a
memory buffer to store some samples from previous classes.
By doing so, the model can be trained with samples from
both current and previous classes, resulting in better gener-
alization. However, since the number of selected samples
in the memory is much smaller than those within the new
classes, the selected samples are easy to be ignored or cause
overfitting when training due to the small number. Careful
selection of the samples is required, which naturally brings
the question: How to select the best samples for replay?

Some attempts have been made to answer the question,
aiming to seek the most effective samples for replay. Re-
searchers propose different criteria that are mostly manu-
ally designed based on some heuristic factors like diver-
sity [1, 4, 5, 25, 26, 38, 43]. For example, [33] selects the
most common samples with the lowest diversity for replay,
believing that the most representative samples will elevate
the effectiveness of replay. However, the most common
samples may not always be the samples being forgotten
in later stages. [4] proposes to save both the low-diversity
samples near the distribution center and high-diversity sam-
ples near the classification boundaries. However, new chal-
lenges arise since the memory length is limited, so it is
challenging to find the optimal quotas for the two kinds of
samples to promote replay effectiveness to the greatest ex-
tent. Moreover, most of the existing methods are designed
based on a single factor, the selection performance, how-
ever, can be influenced by many factors with complicated
relationships. For example, besides diversity, memory sam-
ple selection should also be class-dependent because the
hard classes need more samples to replay in order to allevi-
ate the more severe catastrophic forgetting issue. Therefore,
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we argue that it is necessary to select memory samples in a
more intelligent way by considering the more comprehen-
sive factors and their complicated relationships.

Witnessing the challenge, in this work, we propose
a novel automatic sample selection mechanism for CSS.
Our key insight is that selecting memory samples can be
regarded as a decision-making task in different training
stages, so we formulate the sample selection process as a
Markov Decision Process, and we propose to solve it au-
tomatically with a reinforcement learning (RL) framework.
Specifically, we employ an agent network to make the se-
lection decision, which receives the state representation as
the input and selects optimal samples for replay. To help the
agent make wiser decisions, we construct a novel and com-
prehensive state combined with the sample diversity and
class performance features. In the process of state com-
putation, the inter-sample similarity needs to be measured.
We found the naive similarity measurement by computing
the prototype distance is ineffective in segmentation, as the
prototype losses the local structure details that are important
for making pixel-level predictions. Therefore, we propose a
novel similarity measured in a multi-structure graph space
to get a more informative state. We further propose a dual-
stage action space, in which the agent not only selects the
most appropriate samples to update the memory, but also
enhances the selected samples to have better replay effec-
tiveness in a gradient manner. All the careful designs allow
the RL mechanism to be effective in solving the sample se-
lection problem for CSS.

We perform extensive experiments on Pascal-VOC 2012
and ADE 20K datasets, which demonstrate the effective-
ness of our proposed novel paradigm for CSS. Benefit-
ing from the reward-driven optimization, the automatically
learned policy can help select the more effective samples,
thus resulting in better performance than the previous strate-
gies. On both datasets, our method achieves state-of-the-art
(SOTA) performance. To summarize, our contributions are
as follows:

• We formulate the sample selection of CSS as a Markov
Decision Process, and introduce a novel and effective
automatic paradigm for sample replay in CSS enabled
by reinforcement learning.

• We design an effective RL paradigm tailored for CSS,
with novel state representations containing multiple
factors that can guide the selection decision, and a
dual-stage action space to select samples and boost
their replay effectiveness.

• Extensive experiments demonstrate our automatic
paradigm for sample replay can effectively alleviate
the catastrophic forgetting issue with state-of-the-art
(SOTA) performance achieved.

2. Related Work

Semantic Segmentation and Continual Semantic
Segmentation. Semantic segmentation is a basic task
in computer vision and has achieved great success in
recent years benefiting from the rapid development of
deep-learned based algorithms such as encoder-decoder
structure [3, 18, 30, 39, 50], dilated convolution [9–12],
pyramid structure [11, 12, 53, 56], attention mecha-
nism [19, 52, 57] and transformers [13, 42, 47, 54]. To
meet the requirement in real applications where the new
classes are incrementally added, continual learning has
been proposed [8, 16, 36, 37] and applied to the semantic
segmentation task [6, 17, 33–35, 51]. Among them, many
works adopt replay-based methods, which show high
effectiveness. [7, 48] use a memory buffer to store replay
exemplars, however, in which the samples are selected
either randomly or according to heuristic rules. [17] derives
richer replay exemplars through a generative adversarial
network with high computation cost or web-crawled images
requiring the extra data. Different from the above methods,
with an RL-driven automatic memory selection policy and
the gradient-based sample enhancement operation, our
method can be very effective for CSS.

Memory Sample Selection. How to select the appropri-
ate samples is a severe issue for replay-based continual
learning methods. Most the previous selection methods
rely on manually-designed strategies based on heuristic
rules such as sample diversity [1, 4, 26, 49], adversarial
Shapley value [40] or feature matching [38]. In general,
such hand-crafted methods lack effectiveness guarantees
and are difficult to be optimal due to a complex interplay
between factors that affect selection performance, as
discussed in the Introduction. Our method explores a
novel direction by enabling the selection policy to be auto-
matically learned with a carefully-designed RL mechanism.

Reinforcement Learning. Reinforcement learning (RL)
has achieved remarkable success in many decision-making
tasks like game intelligence [41] and robot control [24, 27].
It has also been employed to computer vision with various
applications such as active learning [21], pose estimation
[23], model compression [2] and person re-identification
[46]. [31] uses RL for the exemplars length management,
however, with the completely different working mechanism
from ours. Instead of employing RL to control class-level
memory length and then still needing a random selection
process, our method is end-to-end and can directly select
specific samples in one step fully automatically, showing
significant effectiveness in semantic segmentation with the
task-tailored state representations and a novel dual-stage ac-
tion space.
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Figure 1. The overall scheme of our automatic memory sample selection mechanism for CSS. (a) Given the memory M and current-
stage dataset Dt, we first extract the state representation for each sample in M∪Dt, which is consisted of the sample diversity and class
performance features. (b) Given the state representations, the agent q produces a score for each candidate sample. Based on the scores, we
select several samples and enhance them in a gradient-based manner. The memory M is updated by these samples. (c) The segmentation
model θseg is trained using the updated M and Dt+1. We then validate the updated θseg on a reward set, resulting in the reward t that is
used to optimize agent q.

3. Preliminaries

Continual semantic segmentation (CSS) aims to train a
segmentation model in T stages continuously without for-
getting. In each stage t, a training dataset Dt can be uti-
lized, where only pixels within the current classes Ct are
labeled, leaving pixels within others classes (including pre-
vious classes C1:t−1 and future classes Ct+1:T ) as the back-
ground class. The goal is to allow the model to be able to
predict all classes C1:T after completing all T stages. To
alleviate the catastrophic forgetting problem in CSS, an ex-
emplar memoryM that contains a small number of sampled
data from the previous classes can be used for replay, so that
bothM and Dt are involved for training.

In the training process, M is updated once a training
stage is completed. This meansM will be refilled by new
samples from M ∪ Dt after the stage t with the learning
on Dt completed. It is obvious that the careful selection of
samples forM could greatly affect the performance, which
is also the focus of this work.

4. Method

4.1. Overall

Considering the memoryMwith L samples andDt with
Nt samples, the target of this work is to learn an optimal
policy that automatically selects L samples from M∪ Dt
and put them intoM for the next stage training, driven by
maximizing the designed reward reflecting the performance
improvement. The selection decision is made by an agent
network that is a three-layered MLP. It converts the CSS to
become a decision-making process with the following pro-
cedure: 1) Obtaining the state s by assessing the properties
of samples that can measure its contribution for replay. 2)
Based on s, using the agent q to make an action a that se-
lects L samples to update the memoryM. 3) Training the
segmentation network with the updatedM. 4) Computing

the reward r based on the validation performance of the up-
dated segmentation network. 5) Repeating the above steps
until completing all T stages. 6) Optimizing agent q based
on r from all stages.

As shown in Fig.1, in this work, we solve the above
problem under a reinforcement learning (RL) framework,
in which the agent q scores each state s and makes an ac-
tion a based on the score. Benefiting from the task-specific
state representations, a novel selection-enhancement dual-
stage action space and the reward-driven optimization, we
can optimize the agent to learn an effective selection pol-
icy. In the following parts of this section, we illustrate the
details of how these components are designed.

4.2. State Representation
The state representation s is the key to making the auto-

matic selection decision process possible, as it is the input
to and serves as the decision support of the agent network.
Designing the state should consider the requirements of the
selection policy. Intuitively, an optimal policy should make
a selection decision by estimating the potential replay con-
tribution of each sample, and allocate different quotas to
different classes as the hard classes suffer from the more se-
vere catastrophic forgetting issue and need more samples to
replay. Based on these intuitions, we propose to combine
two kinds of cues including sample diversity and class per-
formance for constructing state. For an image within class
c, sample diversity div measures its novelty, which can re-
flect the potential replay effectiveness as indicated by previ-
ous works [4,38]. A higher div indicates the sample differs
more from other images within the same class c. We calcu-
late it by computing and averaging the inter-sample similar-
ities. The class performance is constructed as the combina-
tion of two metrics: 1) accuracy and 2) forgetfulness. We
derive accuracy by computing the training IoU Ic for each
class c. The hard classes that are trained to the worse per-
formance have the lower IoUs. However, as the IoU mea-
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sures the current training accuracy, it cannot reflect whether
a class is easily forgotten in the future, which is critical for
CSS but difficult to measure directly since the future per-
formance is unknown. We thus estimate forgetfulness gc by
measuring the similarities between c with all other classes,
motivated by the previous finding that classes that are more
similar to other classes are more likely to be forgotten [35].
Eventually, given an image, on all C classes in it, we com-
pute their diversities {divc}Cc=1, accuracy {Ic}Cc=1 and for-
getfulness {gc}Cc=1, resulting in three groups of features.
Then, we calculate the average values of the three groups
over different classes, and concatenate them to get the state
representation s of the image.

4.2.1 Measuring Similarity in Multi-structure Space

Motivation. Both the sample diversity div and forgetful-
ness gc introduced above need to compute the similarity.
In previous works, the similarity is mainly measured in
the prototype-level space [38] or pixel-level space [45].
The former condenses the sample into a single prototype
feature and then calculates the feature distance. It is
computationally efficient, but drops the spatial information
and structural details, which leads to errors. For example,
two images with completely different local structures
or object postures may have similar prototype features,
since the prototypes are computed by the average features
of all pixels, concealing the differences between local
details. Such errors caused by the lack of local details
are detrimental to the segmentation task, where local
structural information is important for making pixel-level
predictions [56]. As a result, the state constructed by the
prototype-level similarity leads to poor performance when
employed to CSS. The pixel-level one retains the local
information, however, it requires an unacceptable computa-
tion cost due to the pixel-wise distance calculation and may
cause overfitting [29]. Thus, to obtain a more informative
similarity, a novel representation space is needed, which
should not only retain the spatial and structural information
but also be condensed for a reasonable computation cost.
Based on the discussion, we propose a novel method that
first maps each sample into a multi-structure graph space
and then measures the inter-sample similarity based on
the graph matching. Each vertex of the graph represents a
semantic structure, and the edge represents the spatial and
semantic correlations, thus a fine-grained similarity can be
measured by utilizing the comprehensive information.

Multi-structure Graph. Considering an image with the
class c, we represent the region R within c as a graph G
through the way illustrated by Fig. 2. To get the local struc-
tural representation, we first use the method as in [29] to
generateM superpixels {rm}Mm=1 (r1∪r2∪ ...∪rM = R).

𝐹!

(𝑥̅! , &𝑦!)

Centroid Coordinate

(𝑥̅", &𝑦")

𝐹"
𝑟!

𝑟"

𝑑#$
!,"

𝑑#&
!,"

𝐷!,"

𝐹!

𝐹"

𝐷!,"

Graph 𝒢

Figure 2. Illustration of how the graph for computing sample di-
versity is constructed. In the figure, ri and rj denote two super-
pixels. Fi and Fj refer to the average features for all pixels within
them. (xi, yi) and (xj , yj) denote the centroid coordinates of ri
and rj respectively. di,jse and di,jsp refer to the semantic distance and
spatial distance. The generated graph G will be used to compute
the sample diversity.

The motivation for using superpixels is that, according to
the construction mechanism of superpixels, each rm can
represent a meaningful semantic structure such as the head
of a bird, and condenses the pixel-level representation en-
abled by clustering pixels with similar features and adja-
cent positions. Each vertex Fm is then computed as the
average feature for all pixels within rm. We represent the
edge of G as a distance map D ∈ RM×M , where the el-
ement Di,j denotes the distance between the i-th and j-
th vertices. To simultaneously consider the context-aware
high-level semantic information and low-level spatial corre-
lation, we combine both the semantic distance and spatial
distance for getting D. Concretely, the semantic distance
di,jse is the L2 distance between Fi and Fj ; the spatial dis-
tance di,jsp denotes the Euclidean distance between the two
centroid coordinates 1 of the superpixels ri and rj , reflect-
ing their relative positions. We normalize di,jse and di,jsp to
[0, 1] and derive Di,j = di,jse + di,jsp . Such a graph can cap-
ture comprehensive representations such as local structure
details and spatial information, which are lost in the proto-
type space but are crucial for measuring a fine-grained sim-
ilarity.

Inter-graph Similarity. After mapping images into the
graph space, we use the matching algorithm to measure
the similarities. For two graphs Gi and Gj , the Sinkhorn
algorithm [15] is applied for aligning them, in which the
transport cost tc is obtained by solving the optimal transport
problem. A higher tc represents the lower similarity of
the two graphs. The details for this step are presented in
supplementary materials. As the edge distance Di,j is
computed with both the semantic and spatial distance, the
computed tc after matching can reflect both the semantic
and spatial similarity. For example, considering two regions
for the ‘person’ class, we can measure both whether they

1Considering a superpixel r = {(xi, yi)}Ni=1, the centroid coordinate
(x, y) is computed as: x = 1

N

∑N
i=1 xi, y = 1

N

∑N
i=1 yi.
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wear similar clothes (semantic similarity) and whether
they are with the same body posture (spatial similarity),
capturing the comprehensive fine-grained representations.

Representation Computation. We use the above-
mentioned similarity measurement to compute the sample
diversity div and forgetfulness g in state representations.
For an image with the c-th class, let G be its graph. We
introduce a support set Sc = {Gic}

Nc
i=1 to contain several

graphs for other images within the same class c. For each
previous class in C1:t−1, we construct Sc as the set of all
images saved in the memory. For each current class in Ct
that has a larger number of samples, to relieve the compu-
tation burden, we randomly sample 10% from all images to
form Sc. We will show in supplementary material that div
computed from a sampled set can be effective enough. A
diverse and novel sample is likely to have low similarities
compared to other samples within the same class. We thus
get div by computing the average similarities by:

div =
1

|Sc|
∑
Gi
c∈Sc

Sim
(
G,Gic

)
, (1)

where Sim refers to the inter-graph similarity measurement
introduced above. To get the forgetfulness gc for each class
c, we first construct a representative set Ŝc = {Gic}

N̂c
i=1 con-

taining the top 10% samples in Sc with the lowest diversity
scores. These samples are most similar to other samples in
c so they can represent the class-level properties. Then for-
getfulness gc is gotten as the class-wise similarity computed
by:

gc =
1

|Ŝc|

∑
Gi
c∈Ŝc

1

|C1:t| − 1

∑
j∈C1:t\c

1

|Ŝj |

∑
Gk
j ∈Ŝj

Sim
(
Gic,Gkj

)
.

(2)
Eventually, the obtained div and g are combined with the
accuracy I , generating the state representations that can
help make a wiser selection decision.

4.3. Dual-stage Action with Sample Selection and
Enhancement

After getting the state information si for each sample,
we use an agent network q to produce a score q(si) by tak-
ing si as the input. A higher score indicates the sample
is more suitable for replay. Thus, we regard agent score
as the replay effectiveness indicator, and utilize it to drive
a novel action space for the RL mechanism that has two
stages: sample selection and sample enhancement.

Concretely, we first select memory samples by L ones
with the highest agent scores, which is written as:

a = TopL
i∈[1,L+Nt]

q
(
si
)
. (3)

After that, instead of directly using the static selected
samples for training in the next stage, we further propose an
enhancement operation that edits each sample to be more
effective for replay. This is motivated by our observation
of the agent scores for the selected samples. We notice
that, only 10% of the selected samples have agent scores
exceeding 0.8 (the theoretical maximum score is 1). The
phenomenon shows that such samples are the best possible
choice from the imperfect candidates, but not the ideally
perfect samples for replay. Thus, despite achieving better
performance by selecting the most adequate samples, there
is still room to further improve the replay effectiveness if we
can enhance the samples to reach higher scores. We thus
implement enhancement through a gradient-based manner
by maximizing the agent score. Concretely, we regard the
state sx as a feature computed from input image x along
withM andDt under the segmentation network parameters
θseg with the state computing function fs, which is formu-
lated as:

sx = fs (x;M,Dt, θseg) . (4)

Then the agent score is generated by q(sx). We perform a
gradient update on x so that the agent score q(sx) moves
towards the larger direction reflecting the better replay ef-
fectiveness, which is written as:

x′ = x+ ε∇xq (sx)
= x+ ε∇xq (fs (x;M,Dt, θseg)) ,

(5)

where ε is a hyper-parameter to control an adequate updat-
ing rate so that the image label remains unchanged. With
the higher agent score, the resulted x′ can be more effective
and is stored intoM for replay.

4.4. Reward and Optimization

Our selection policy aims to allow the segmentation
model trained with the memoryM to achieve better perfor-
mance. Therefore, the reward for optimizing agent should
reflect how much the memory samples derived by the agent
policy can benefit the CSS training. To implement the goal,
we divide a subset from the training set to get a reward set
Dreward, and define reward rt at the t-th stage as the vali-
dation accuracy on Dreward evaluated on the segmentation
model that has completed the t-th stage. With reward de-
rived, following DQN algorithm [44], the agent is optimized
by the temporal difference (TD) error formulated as:

TD
(
θ, θ̂
)
=

1

T − 1

T−1∑
t=1

(
rt+1 +

γ

L

L∑
i=1

q

(
s
ait+1

t+1 ; θ̂

)

− 1

L

L∑
i=1

q
(
s
ait
t ; θ

))2

,

(6)
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Algorithm 1 Agent Training Algorithm.
1: Input: agent network q, segmentation network parameters θseg , datasetD1.
2: for y in 1, ..., Y do
3: Create a new task having Ty continual stages with class partitions

{Cty}
Ty
ty=1.

4: PartitionD1 toDtrain
1 andDreward

1
5: Initialize θseg , initializeM as an empty set
6: for ty in 1, ..., Ty do
7: Train θseg onM∪Dtrain,ty

1
8: Compute state st (Sec.4.2) and agent scores q(st)
9: Select and enhance samples (Sec.4.3), updateM

10: if ty > 1 then
11: Compute reward rty (Sec.4.4)
12: end if
13: end for
14: Update q by Eq. 6
15: end for
16: Return: q

19-1(2 stages) 15-5(2 stages) 15-1(6 stages)
Method 0-19 20 all 0-15 16-20 all 0-15 16-20 all

Joint 79.45 72.94 79.14 79.77 72.35 77.43 78.88 72.63 77.39

EWC [28] 26.90 14.00 26.30 24.30 35.50 27.10 0.30 4.30 1.30
LwF-MC [38] 64.40 13.30 61.90 58.10 35.00 52.30 6.40 8.40 6.90
ILT [33] 67.75 10.88 65.05 67.08 39.23 60.45 8.75 7.99 8.56
MiB [6] 70.57 22.82 68.30 75.30 48.68 68.96 39.47 14.50 33.53
RCN [51] 78.80 52.00 72.40 70.60 23.70 59.40
REMINDER [35] 76.48 32.34 74.38 76.11 50.74 70.07 68.30 27.23 58.52
SDR [34] 68.52 23.29 66.37 75.21 46.72 68.64 43.08 19.31 37.42
PLOP [17] 75.35 37.35 73.54 75.73 51.71 70.09 65.12 21.11 54.64

Ours 79.40 42.80 77.66 79.31 55.88 73.73 78.54 50.82 71.94

Table 1. Comparison results on Pascal-VOC 2012.

where sa
i
t
t refers to the state representation of the i-th se-

lected sample in the t-th stage, θ and θ̂ refer to the agent’s
policy and off-policy parameters respectively. Following
[44], θ̂ is periodically updated based on θ, aiming to save
the learned Q-value.

4.5. Agent Training and Deployment
With the above-introduced RL mechanism for CSS, we

then present the agent training and deployment method in
this section. We denote D1 as the dataset for first-stage
training. According to CSS protocol [17],D1 contains mul-
tiple classes (usually more than half of the total). Thus, it
can provide sufficient information for training an effective
agent. The detailed training process is shown in Alg. 1. We
train the agent for Y iterations. In each iteration, we ran-
domly divideD1 into the training setDtrain1 and the reward
set Dreward1 , and set a new CSS task by reallocating the
classes observed in each stage. This helps the agent to learn
a more general policy with training from diverse settings.

Once the agent training is completed, we can deploy it
on the whole set D = {Di}Ti=1, selecting and enhancing
memory samples at the end of each stage and using them
for replay in the next stage.

5. Experiments
5.1. Comparisons with the State-of-the-arts

We compare the segmentation performance of our
method with other state-of-the-art CSS methods on two

100-50(2 stages) 100-10(6 stages) 100-5(11 stages)
Method 0-100 101-150 all 0-100 101-150 all 0-100 101-150 all

Joint 44.34 28.21 39.00 44.34 28.21 39.00 44.34 28.21 39.00

ILT [33] 18.29 14.40 17.00 0.11 3.06 1.09 0.08 1.31 0.49
MiB [6] 40.52 17.17 32.79 38.21 11.12 29.24 36.01 5.66 25.96
SDR [34] 37.40 24.80 33.20 12.13 28.94 34.48 33.02 10.63 25.61
PLOP [17] 41.87 14.89 32.94 40.48 13.61 31.59 35.72 12.18 27.93
REMINDER [35] 41.55 19.16 34.14 38.96 21.28 33.11 36.06 16.38 29.54

Ours 44.06 24.96 37.74 43.88 25.14 37.67 43.35 18.53 35.13

Table 2. Comparison results on ADE 20K.

datasets, including Pascal-VOC 2012 and ADE 20K. The
performance is evaluated with three metrics. The first one
is the mIoU over the initial classes C1, and the second one
measures the mIoU for all incremental classes C2:T . The
third metric (all) denotes the mIoU for all observed classes
C1:T . In experiments, We follow previous works [17,35] by
using Deeplab-v3 with the ResNet-101 backbone as the seg-
mentation model. Following [7], the memory length |M| is
100 and 300 for Pascal-VOC 2012 and ADE20K, respec-
tively. We adopt the widely-used pseudo label mechanism
for training the segmentation network. Due to the paper
length limitation, please see the supplementary material
for more implementation details, segmentation model train-
ing details and visualization results.

Table. 1 presents the performance on Pascal-VOC 2012
for three different settings including 19-1 (2 stages), 15-5
(2 stages) and 15-1 (6 stages). Our method achieves state-
of-the-art performance. On the three settings, our method
achieves 77.66%, 73.73%, and 71.94% mIoUs on the ‘all’
metric, outperforming the second-place method by 3.29%,
1.33%, and 12.54%, respectively. The improvement is es-
pecially significant for the 15-1 (6 stages) setting, which
is quite challenging due to the more severe catastrophic
forgetting issue caused by a larger number of continuous
stages. Our method, with carefully selecting and enhancing
the replay samples, shows elevated effectiveness under such
a challenging scenario.

The comparison results with the ADE 20K are shown
in Table. 2. For 3 different settings including 100-50 (2
stages), 100-10 (6 stages) and 100-5 (11 stages), our method
achieves 37.74%, 37.67% and 35.13% mIoUs on the ‘all’
metric, improving the second-place one by 2.60%, 4.56%
and 5.59% respectively, showing its effectiveness and ad-
vantage.

5.2. Comparison with Other Sample Selection
Strategies

To verify the effectiveness of our RL-driven automatic
replay mechanism, we validate and compare it with other
sample selection methods in the CSS task. The experi-
ments are conducted on Pascal-VOC 2012 under the 15-1 (6
stages) setting. The results are shown in Table.3. The com-
pared methods include three types: 1) the random selection
strategy; 2) the previously-proposed hand-crafted strategies
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Selection Strategy 0-15 16-20 all

Random Selection 72.82 32.21 63.15

iCaRL [38] 73.91 39.11 65.62
Rainbow [4] 74.03 40.70 66.09
CBES [48] 74.15 41.57 66.39
SSUL [7] 74.20 41.33 66.37

NHS 74.50 42.25 66.82

Ours (w/o Enhancement) 77.54 45.98 70.02

Table 3. Comparison with other sample selection strategies. NHS
denotes a new-designed hand-crafted strategy using the same fac-
tors as our method (sample diversity and class performance). For
a fair comparison, we report the result of our method w/o the en-
hancement operation.

including iCaRL [38], Rainbow [4], CBES [48] and SSUL
[7]. Both iCaRL and Rainbow are diversity-based selection
criteria. CBES and SSUL are two class-balanced sample
selection strategies that are specially designed for CSS. Be-
sides, to validate the effectiveness of the automatic learning
mechanism, we also design a new hand-crafted strategy us-
ing the same factors as our method (sample diversity and
class performance). The newly-designed one is based on
our visualization of the learned policy introduced in Sec.
5.4. It shows selecting the common samples is effective for
the hard classes with bad performance, while selecting the
diverse samples is better for the simple classes with good
performance. Thus, we design a strategy where the most
common samples with the lowest diversity scores are se-
lected for the top 50% low-performance classes, while the
most diverse samples with the highest diversity scores are
selected for other high-performance classes. We denote the
new-designed (N) hand-crafted (H) strategy (S) as NHS. On
the ‘all’ metric, random selection achieves 63.15% mIoU.
By smartly selecting the appropriate samples based on
heuristic rules, iCaRL, Rainbow CBES and SSUL achieve
65.62%, 66.09% and 66.39% and 66.37% mIoUs, respec-
tively, and NHS further improves it to 66.82% by consider-
ing more factors with the complicated relationship. Consid-
ering these methods only select samples, for a fair compar-
ison, we report the result of our method w/o the enhance-
ment operation. It achieves 70.02% mIoU, not only out-
performs the previously-proposed iCaRL, Rainbow, CBES
and SSUL, showing the elevated effectiveness of the novel
selection approach; but also outperforms NHS using the
same set of factors, demonstrating the significant advan-
tages of the reward-driven automatic policy learning mech-
anism over the hand-crafted strategies.
5.3. Ablation Study

In this part, we perform ablation study to verify the effec-
tiveness of different components in our method. All exper-
iments are conducted on Pascal-VOC 2012 under the 15-1
(6 stages) setting. Due to the paper length limitation, more

Method 0-15 16-20 all

Ours 78.54 50.82 71.94

Ours w/o Enhancement 77.54 45.98 70.02
Ours w/o Enhancement & Selection 72.82 32.21 63.15

Table 4. Ablation results of the selection-enhancement dual-stage
action.

Method 0-15 16-20 all

Ours 78.54 50.82 71.94

Ours w/o div 74.09 33.33 64.39
Ours w/o I 76.50 42.08 68.30
Ours w/o g 77.79 45.32 70.06
Ours w/o {I, g} 76.18 36.03 66.68

Ours w/o div w/ div prototype 76.93 47.16 69.83

Table 5. Ablation results of the state representations.

results including the ablation for memory length |M| and
superpixel number M are presented in supplementary ma-
terials.
Ablation of Selection-enhancement Dual Stage Ac-
tion. We conduct experiments to verify the effectiveness
of the proposed selection-enhancement dual-stage action
paradigm, with results shown in Table. 4. Our method
with both the sample selection and enhancement actions
achieves 71.94% mIoU on the ‘all’ metric. By removing
the enhancement operation, the performance decreases to
70.02%. By further removing both enhancement and selec-
tion procedures so that the memory is randomly filled, the
performance is only 63.15%, 8.79% lower than our method.
The results indicate that both the selection and enhancement
operations can effectively boost CSS performance.
Ablation of State Representation Design. We then val-
idate different components of the designed state represen-
tations and the results are presented in Table. 5. The
state representation contains three parts: 1) sample diver-
sity div; 2) accuracy I and 3) forgetfulness g. The latter
two constitute the class performance feature. In addition
to validating the three parts, we also test using a common
diversity metric instead of our novel one. Such a metric
measures the inter-sample similarity by directly computing
the distance between their prototype features. We name
it as div prototype. Using div shows significant perfor-
mance improvement (69.83%→ 71.94%) to div common,
demonstrating the effectiveness of our novel graph-based
similarity.

5.4. Analysis of the Learned Policy
We further analyze the learned sample selection policy

both qualitatively and quantitatively to offer more insights
into how our method works. After analyzing the learned
policy, we can observe the following rules:

(1) Low-performance classes require more replay
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Low-performance Classes High-performance Classes

Figure 3. The numbers of selected samples for different classes.
The horizontal axis from left to right represents classes from poor
to good performance.

samples. As shown in Fig.3, on Pascal-VOC 2012 dataset,
we count the number of selected samples for different
classes with different performances. From left to right, the
horizontal axis represents the classes from low to high per-
formance. We can find the negative correlation between
class performance and the selected sample number. The
low-performance classes are less accurate or more easily to
be forgotten, so more samples are required for replay to al-
leviate the more severe catastrophic forgetting issue.

(2) Classes with different performances require dif-
ferent kinds of samples. We further investigate the learned
strategy for classes with different performances. We visual-
ize the diversity of the selected samples for three representa-
tive classes: ‘chair’, ‘boat’, and ‘bird.’ ‘chair’ is a hard class
with a low class performance, ‘bird’ is an easy class with a
high class performance, and ‘boat’ has a medium class per-
formance. The results are shown in Fig. 4, where the red
triangles represent the selected samples, and the blue dots
denote other samples that are not selected. Triangles or dots
closer to the center represent samples with lower diversity.
As can be observed, for the low-performance class ‘chair’,
most red triangles are distributed in the center, indicating
the agent selects common samples with low diversity. On
the contrary, for the high-performance class ‘bird’, the high-
diversity samples are selected. For the middle-performance
class ‘boat’, both the common and diverse samples are se-
lected. We believe the different degrees of forgetfulness
for different classes can explain the learned policy. For
hard classes where the catastrophic forgetting is more se-
vere, most samples including both the high-diversity novel
ones and low-diversity common ones are forgotten after the
model trains on new classes, so using the more common and
representative samples can learn a classification space cov-
ering most samples. On the contrary, for easy classes with
relatively minor catastrophic forgetting issues, the common
samples can still be remembered in the next stage while the
high-diversity samples are easier to be forgotten. Thus, re-
play with high-diversity samples can be more effective.

(a) Chair (b) Boat (c) Bird

Figure 4. (Best viewed in color). Visualization of the diversity for
the selected samples of three classes including ‘chair’, ‘boat’ and
‘bird’. The red triangles represent the selected samples and the
blue dots denote other samples that are not selected. Triangles or
dots closer to the center represent samples with the lower diversity.

6. Complexity Discussion
Training the agent network requires additional time. Ac-

cording to Alg. 1, the theoretically additional cost is O (Y )
higher than the time for deployment. However, we argue
that agent training is an offline process and we can use a
shallower segmentation network and a smaller dataset for
training. With these simplifications, we get a computation-
efficient agent training process where the training time is
1.16 times that of the deployment phase for the 15-5 (2
stages) setting on Pascal-VOC 2012. Also, the agent trained
on one dataset can be deployed on other datasets. Thus the
agent only needs to be trained once and can be deployed to
different CSS tasks. We present the experimental details for
such a cross-dataset deployment in supplementary materi-
als. The additional cost for using the agent in the deploy-
ment phase is minor (8.23% and 12.96% of the total training
time on Pascal-VOC 2012 and ADE 20K, respectively).

7. Conclusion
In this work, we propose a novel and automatic memory

selection paradigm. It significantly facilitates alleviating
the severe catastrophic forgetting issue through more
effective memory management in the Continual Semantic
Segmentation (CSS) task. We propose a novel learning-
based approach with an agent network to automatically
learn the policy. The input representation to the agent
network is tailored for the CSS task. We also use the agent
network to further perform a novel sample enhancement
operation through a gradient-based approach to boost the
effectiveness of selected samples. The work provides
valuable insights into the memory selection of continual
semantic segmentation and practical tools that is readily
applicable. Our method is effective and general, as shown
by our extensive experiments with state-of-the-art (SOTA)
performance.
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A. Details for Inter-graph Similarity Compu-
tation

Here we present the details for computing the inter-graph
similarity through Sikhorn algorithm. Considering a graph
G = {Fm, {Dm,n}Mn=1}Mm=1, we first generate a single-
vector representation for each vertex by aggregating other
vertices. The aggregation is achieved through weighted sum
written as:

F̂m =
1∑M

n=1Wm,n

M∑
n=1

Wm,nFn, (7)

Where the weight Wm,n is formulated by:

Wm,n = exp (−Dm,n) . (8)

In this way, G is represented as {F̂m}Mm=1. For simplify, we
denote Gi for the i-th image as {F̂ im}Mm=1. Next, we match
Gi and Gj by solving an optimal transport (OT) task:

Min
A

∑
a,b

Aa,bMa,b, (9)

where A is the transportation plan that implies the align-
ment information and M is the cost matrix. Ma,b measures
the transport cost from the a-th vertex F̂ ia in Gi to the b-th
vertex F̂ jb in Gi, which is written as:

Ma,b = 1− Cos
(
F̂ ia, F̂

j
b

)
, (10)

where Cos denotes the cosine similarity. The unique solu-
tion A∗ can be calculated through Sinkhorn’s algorithm:

A∗ = diag (u)Kdiag (v) , (11)

where the vectors u and v are obtained through the above
iterations:

vt=0 =
1m
vt+1

,

ut+1, vt+1 =
1n

Kut+1

(12)

we set the iteration number to be 5. Finally, the transport
cost tc is computed as:

tc =
∑
a,b

A∗a,bMa,b, (13)

which measures the similarity between Gi and Gj

B. Implementation Details
Our method contains two phases: agent training and pol-

icy deployment. The first phase trains the agent network to
get the selection policy, while the latter phase employs the
trained policy for the CSS training.

For the deployment phase, the hyper-parameters settings
follow the previous work [17]. Concretely, we adopt SGD
as the optimizer, where the momentum value is 0.9 and
the initial learning rate is 1e-2 with the ‘poly’ learning rate
decay schedule. For each continual stage, the network is
trained for 30 epochs on Pascal VOC and 60 epochs for
ADE20K. The batch size is 24 for both datasets. Follow-
ing [7], the memory length |M| is 100 and 300 for Pascal-
VOC 2012 and ADE20K, respectively. Following [29], the
superpixel number M for computing sample diversity is 5,
ε in Eq. 5 is 0.1.

For the agent training phase, as we have discussed in
Sec. 6 of text, we use the different hyper-parameters set-
tings to speed up training. Concretely, in this phase, we use
Deeplabv3 with ResNet18 backbone as the segmentation
model. The training epochs Y in Alg. 1 is 1000. We ran-
domly partition 10% of whole data into the training set and
leave others as the reward set. For each continual stage, the
network is trained for 5 epochs on Pascal VOC and 8 epochs
for ADE20K. The segmentation network is optimized by
SGD with the initial rate being 0.01, and the agent network
is optimized by Monmentumn with the learning rate being
0.1.

C. Segmentation Training
In each stage t of a CSS task, both the memoryM and

current dataset Dt are utilized for training the segmenta-
tion model. We follow previous works by using the widely-
adopted pseudo-label mechanism to enhance the segmenta-
tion training performance. Concretely, the pixels belong-
ing to previous and future classes become the background
for images in the current stage. Considering the model is
trained on the combined ground truth from both current and
previous classes, we use its prediction to generate pseudo
labels for background pixels for images inM andDt. Con-
cretely, let’s denote 0 be the background class. For a sam-
ple X with the ground truth label Y , we first use the current
segmentation model to get its prediction mask P and the
confidence map M , then the pseudo ground truth label Ŷ ti
for the i-th pixel on X is obtained by:

Ŷ ti =


Yi, if Yi 6= 0

Pi, if Yi = 0 andMi > 0.8

0, else

(14)

Eventually, X along with the generated pseudo label Ŷ t are
used for training the segmentation model through the cross-
entropy loss.

D. More Ablation Results
Ablation of Memory Length. In the experiment sec-
tion, for the fair comparison, we follow [7] by setting
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Figure 5. Ablation results of memory length. As the memory
length increases from 50 to 300, the mIoU on the ‘all’ metric in-
creases from 59.10 to 68.37.
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Figure 6. Ablation results of superpixel number.

the memory length M to 100 and 300 for Pascal-VOC
2012 and ADE20K, respectively. We further validate the
performance for the 15-1(6 stages) setting on Pascal-VOC
2012 by using memories with different lengths ranging
from 50 to 300. The results are shown in Fig. 5. We can
observe that a larger memory brings better performance.
As the memory length increases from 50 to 300, the mIoU
on the ‘all’ metric increases from 63.56 to 75.33.

Ablation of Superpixel Number. In order to compute the
sample diversity, each region is divided into M superpixels
for constructing the graph. Here we perform experimenters
to validate how M affects the performance and present the
results in Fig. 6. As can be observed, the performance keeps
stable when M is larger than 3 and smaller than 9, while a
too large M leads to the over segmenting that negatively
affects the performance to some extent. Generally speak-
ing, our method is non-sensitive to the hyper-parameter M ,
demonstrating its high robustness.

E. Discussion of State Representation Compu-
tation

As illustrated in Line 435, Sec. 4.2.1 of the text, for com-
puting the sample diversity div and forgetfulness gc, we in-

(a) original Image (b) Enhanced Image

Figure 7. Comparison between the original images and images
after enhacement.

troduce a support set Sc for each class c that contains several
graphs for images within c. To relieve the computation bur-
den, for each current class in Ct that has a larger number of
samples, we randomly sample 10% from all images to form
Sc. Then sample diversity is derived by computing and av-
eraging the inter-graph similarities with all graphs in Sc.
We conduct experiments on the 15-1 (6 stages) setting for
Pascal-VOC 2012 dataset to verify the effectiveness. Load-
ing all images into Sc gets 72.25% mIoU for the ‘all’ met-
ric, which is just slightly better than the sampled set, which
achieves 71.94% mIoU. However, computing similarities
on all images consumes 10 times more time than using the
sampled set, which is unacceptable. Therefore, our strategy
can be computationally efficient yet effective.

F. Cross-dataset Deployment

As discussed in Sec. 6 of the text, we can use an agent
trained on one dataset to deploy on other datasets. We per-
form experiments to verify that capability. For the ‘all’
metric, using the agent trained on Pascal-VOC 2012 to de-
ploy on the 100-50(2 stages) setting of ADE 20K achieves
34.87% mIoU, and using the agent trained on ADE 20K
to deploy on 19-1(2 stages) setting of Pascal-VOC 2012
achieves 74.96% mIoU, with both cases showing good per-
formance. The results demonstrate the high generalization
of our method. In realistic applications, the agent only
needs to be trained once and then can be used on several
different CSS tasks without the extra computation cost for
agent retraining.
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Figure 8. Comparison of agent score distributions for all selected
samples before and after enhancement. The horizontal axis rep-
resents different score intervals. The vertical axis indicates the
proportion of samples falling into each interval.

G. Visualization of Sample Enhancement
Our method includes a novel enhancement action. It en-

ables the selected samples to have the better replay effec-
tiveness by maximizing their agent scores through gradient-
based editing. We presents some comparison results be-
tween original images and the enhanced images in Fig. 7.
We also provide a quantitative comparison in Fig. 8 to show
the agent score distributions for all selected samples before
and after enhancement, where the horizontal axis represents
different score intervals, and the vertical axis indicates the
proportion of samples falling into each interval. We can ob-
serve that after enhancement, there are more samples with
high agent scores. This demonstrates that the gradient-
based enhancement effectively increases agent scores, thus
promoting the replay performance.

H. Visualization of Segmentation Results
In Fig.9, we present the segmentation results on the

Pascal-VOC 2012 validation set using the model trained in
the CSS task. We compare our method with the replay ap-
proach using the randomly selected samples. Thanks to the
proposed mechanism that automatically learns an optimal
policy and uses it to select and enhance the most adequate
samples, our method can be more effective to alleviate the
catastrophic forgetting problem in CSS, thus achieving the
better results.
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(a) Image (b) Ground Truth (c) Random Selection Strategy (d) Ours

Figure 9. The segmentation visualization comparison results comparison between our method with random selection strategy.
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