
A Meta-Learning Approach to Predicting Performance and Data Requirements

Achin Jain1* Gurumurthy Swaminathan1 Paolo Favaro1 Hao Yang1

Avinash Ravichandran1 Hrayr Harutyunyan1,2† Alessandro Achille1 Onkar Dabeer1

Bernt Schiele1 Ashwin Swaminathan1 Stefano Soatto1

1 AWS AI Labs, 2 University of Southern California
{achij,gurumurs,pffavaro,haoyng,ravinash,aachille,onkardab,bschiel,swashwin,soattos}@amazon.com

Abstract

We propose an approach to estimate the number of sam-
ples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate
model performance, leads to large error when using a small
dataset (e.g., 5 samples per class) for extrapolation. This is
because the log-performance error against the log-dataset
size follows a nonlinear progression in the few-shot regime
followed by a linear progression in the high-shot regime. We
introduce a novel piecewise power law (PPL) that handles
the two data regimes differently. To estimate the param-
eters of the PPL, we introduce a random forest regressor
trained via meta learning that generalizes across classifi-
cation/detection tasks, ResNet/ViT based architectures, and
random/pre-trained initializations. The PPL improves the
performance estimation on average by 37% across 16 clas-
sification and 33% across 10 detection datasets, compared
to the power law. We further extend the PPL to provide a
confidence bound and use it to limit the prediction horizon
that reduces over-estimation of data by 76% on classifica-
tion and 91% on detection datasets.

1. Introduction
More data translates to better performance, on aver-

age, and higher cost. As data requirements scale, there
is a natural desire to predict the cost to train a model
and what performance it may achieve, as a function of
cost, without training. Towards this goal, neural scaling
laws [3, 4, 9, 19, 20, 40] have been proposed that suggest
that the performance of a model trained on a given dataset
size follows a linear fit when plotted on a logarithmic scale
(power law in linear scale).

In practice, however, the power law provides only a fam-
ily of functions and its parameters must be fitted to each
specific case for performance prediction. A common use

*Corresponding author. † Work done at AWS.

Figure 1. Performance estimation curves using the powerlaw and
piecewise power law (PPL) with estimated confidence. The PPL
reduces over-estimation of the power law from 12× to 1.9× in 1
step, and further to 1.2× in 2 steps using the estimated confidence
bounds to limit the prediction horizon n(1) in the first step.

case is one where a small initial dataset is made available
and can be used to obtain small-scale performance statistics
that are relatively inexpensive to obtain and can be used to
fit the power law parameters. Then, the fitted function is
used to predict the performance for any dataset size train-
ing through extrapolation. This approach is found empiri-
cally to generalize across several datasets and deep learning
models [40]. However, most applications of power law are
done in the high-shot regime. The few-shot regime (e.g., 5
samples/class) is particularly useful given the prevalence of
pre-trained initializations available for model training. In
the few-shot regime, the performance curve exhibits a non-
linear progression followed by a linear progression, see Fig-
ure 1. Thus, data requirements based on the power law can
lead to significant errors incurring additional cost for ac-
quiring data.

In this paper, we propose a piecewise power law (PPL)
that models the performance as a quadratic curve in the few-
shot regime and a linear curve in the high-shot regime in

1

ar
X

iv
:2

30
3.

01
59

8v
1

 [
cs

.C
V

]
 2

 M
ar

 2
02

3

the log-log domain, while ensuring continuity during the
transition. To estimate the parameters of the PPL, we first
identify the switching point between the quadratic and lin-
ear curves using PowerRF, a random forest regressor trained
via meta-learning, and then use the performance statistics
to fit the remaining parameters. We show that our approach
provides a better estimation of performance than the power
law across several datasets, architectures, and initialization
settings. We extend the PPL to provide a confidence es-
timate that is used to further reduce the error in data esti-
mation. In Figure 1, the confidence estimate controls the
maximum number of samples in a step such that the PPL
uses two steps to achieve the target performance with 1.2×
over-estimation compared to 12× with the power law.

Our contributions are as follows. We propose an im-
proved policy for predicting data size needed to achieve a
target accuracy with three main innovations: (1) a piece-
wise power law model (PPL) that approximates the per-
formance error curve from low-to-high-shot regime, (2) a
meta-learning approach to estimate the parameters of the
PPL, and (3) incorporating the confidence interval of the
estimates to limit the prediction horizon and reduce error in
data estimation. We demonstrate the generalization of the
PPL and the meta-model on 16 classification and 10 detec-
tion datasets, improving the (1) performance estimates by
37% on classification and 33% on detection datasets and
(2) data estimates by 76% on classification and 91% on de-
tection datasets, with respect to the power law.

2. Related work
The power law is considered as the de facto principle for

modeling learning curves [1, 3, 9, 19, 20, 30, 40]. It has also
been used for analysis and evaluation of design choices such
as pre-training, architecture, and data augmentation [20].
The focus of our work, however, is not just on evaluating
the fit quality of a predictor on the learning curves but also
using it to predict performance through extrapolation and
estimate data requirements to reach a target performance.
In one of the closely related work, Mahmood et al. [30]
evaluate the power law along with other modeling tech-
niques such as algebraic, arctan, and logarithmic in predict-
ing performance and data requirements. They improve the
estimates of data requirements via a correction factor and
multiple rounds of data collection. In a follow up and con-
current work, Mahmood et al. [31] propose stochastic opti-
mization with the power law as a predictor to estimate data
requirements. In contrast to these works, this paper focuses
on the few-shot setting (e.g., when an initial dataset has 5
samples per class) where the power law breaks as the log-
performance versus log-dataset sizes follows a non-linear
progression. We not only propose an extension to the power
law by modeling the few-shot and high-shot regimes differ-
ently but also introduce a robust strategy that uses model
confidence to reduce data estimation errors over multiple
rounds.

Several works [2, 6, 19, 40] have shown that the learning
curves exhibit multiple regimes. Hestness et al. [19] argue
about the existence of three data regimes: small data, power
law, and irreducible error. Rosenfeld et al. [40] model
the transition from the small data regime to the power law
regime using a complex envelope function. However, unlike
this paper, they mainly focus on the fit quality across dif-
ferent model and data configurations, and the extrapolation
results on few-shot datasets show poor generalization. In
a concurrent work, Caballero et al. [6] propose the broken
neural scaling law, which is a smoothly interpolated piece-
wise linear curve to model different regimes such as initial
random fitting, power law, double descent, and saturation.
Alabdulmohsin et al. [2] also model the learning curves in
multiple regimes. In [2, 6], the setting is different than ours
in that (1) a predictor is fit on subsets of JFT300 [44] used
for pretraining with evaluation on the downstream datasets,
(2) the primary focus is on evaluating the curve fitting and
not on estimating data requirements, and (3) the evaluation
is done in the very large data regime with millions of sam-
ples which is not encountered in real-life models because
data is scarce and is usually not enough to saturate the per-
formance of the models. In this paper, we mainly focus on
performance extrapolation with a few-shot dataset.

3. Predicting performance and data require-
ments

We consider the problem of extrapolating the perfor-
mance (test error) of a trained model, had we trained it
on a larger number of samples. This prediction is useful
to estimate the data requirements to achieve a given per-
formance target, a fundamental step in the deployment of
a model in real-world applications. Specifically, given a
modelM trained on a dataset D(0) with n(0) training sam-
ples, we want to predict its performance on dataset sizes
n > n(0). We pose this problem in the practical use case
of few-shot learning: (1) D(0) contains only a few samples
per class, and (2)M is fine-tuned after pre-training on Ima-
geNet [10] for classification tasks and COCO [27] for object
detection. We denote v(n) as the true performance score of
M obtained by fine-tuning and v̂(n) as the predictor of the
performance ofM. We choose Top-1 Accuracy for classifi-
cation and mean Average Precision (mAP) for detection as
the score metric.

3.1. Problem statement

Predicting performance. For a given dataset, we construct
M subsets S1 ⊂ S2 ⊂ ... ⊂ Sm = D(0) ⊂ Sm+1 ⊂
... ⊂ SM = D(FULL). Here D(0) is the initial dataset we
use for extrapolation in practice and D(FULL) is a larger
dataset obtained by adding samples to D(0). We fine-tune
M on each subset to obtain {ni, v(ni)}Mi=1 sample pairs,
where ni = |Si| and v(ni) is the performance obtained by
the model trained on dataset Si. Then, we fit a predictor

2

v̂(n) on samples {ni, v(ni)}mi=1 and evaluate its extrapola-
tion performance on {ni, v(ni)}Mi=m+1. Our goal is to build
a predictor that achieves the smallest mean prediction error

Eperf =
1

M −m

M∑
i=m+1

|v(ni)− v̂(ni)| . (1)

Predicting data requirements. Next, we estimate the
number of samples that should be added to D(0) to reach
a target performance v∗. To do so, we invert the pre-
dictor v̂(n) and get the first estimate of the data require-
ments n(1) = v̂−1(v∗). Due to modeling errors, the first
estimate may over/under-estimate the number of samples
n∗

.
= v−1(v∗) needed to reach the desired target. In the

case of over-estimation, i.e., v(n(1)) > v∗ or equivalently
n(1) > n∗ , we collect further n(1) − n(0) samples, where
n(0) = |D(0)|, and stop. In the case of under-estimation, it
is desirable to update the predictor with the collected data
and the corresponding model performance after re-training
with the additional performance pair {n(1), v(n(1))}, and to
take additional steps to reach the target performance. This is
referred to as the data collection problem in [30]. We con-
sider the same setting as [30], where the maximum number
of steps is limited to T since each round of data collection
and annotation can be costly to initiate. Specifically, at the
k-th step of the data collection, we fit the predictor v̂k on
{ni, v(ni)}mi=1 ∪ {n(i), v(n(i))}

k−1
i=1 to obtain the data re-

quirement estimate n(k). Our goal is to achieve a small data
estimation error |Edata| where

Edata =
n(K) − n∗

n∗
, (2)

K = min
{
T,min{k : v̂k(n

(k)) > v∗}
}
.

Edata < 0 represents an under-estimate and Edata > 0 an
over-estimate.
Challenges in the few-shot setting. In the few-shot set-
ting, the largest subset used to fit a predictor Sm = D(0)

contains only a few samples per class (e.g., we consider 5
for classification and 10 for object detection). We observe
that the power law [9] as a predictor breaks down in this
setting when nM � n(0), i.e., when we extrapolate its per-
formance to the high-shot regime starting from the few-shot
regime. To this end, we propose a piecewise power law that
models the two regimes differently. In addition, a direct es-
timate n(k) = v̂−1

k (v∗) for predicting data requirements is
not always the best choice, especially when the size of the
initial dataset n(0) � n∗, i.e, v̂1 is fit to the data samples
from the few-shot regime and the target performance can
be achieved only in the high-shot regime. We propose a
strategy that uses model confidence of the predictor to re-
duce over-estimation of data requirements, a problem that
plagues the prior approach such as the power law.

3.2. The piecewise power law (PPL)
We empirically observe that the test error in logarith-

mic scale log(1 − v(n)) varies nonlinearly as a function

of log(n) in the few-shot regime and linearly in the high-
shot regime, see an illustration in Figure 1. Also, the point
of separation of these data regimes differs for every dataset.
Thus, we design the predictor v̂(n) to be smooth and mono-
tonic, such as the power law, but also as a piecewise func-
tion that can differentiate between the two data regimes.
Additionally, to model the stochasticity in training models
on the subsets, we design v̂(n) to predict both the mean
performance and its uncertainty. The uncertainty estimate
is used to predict data requirements as outlined in the fol-
lowing section.

To model the nonlinear behavior in the few-shot regime,
we consider a quadratic model. Thus, the piecewise power
law is defined as

log(1− v̂(n;θ)) =

{
θ1 + θ2 log(n) + θ3 log(n)

2, if n ≤ N
θ4 + θ5 log(n), otherwise

(3)

where {θi}5i=1 are the coefficients of the model and N is
the switching point from a quadratic to a linear function
that differentiates between the few-shot and the high-shot
data regimes. By enforcing continuity and differentiability
at N , θ4 and θ5 become functions of θ = [θ1, θ2, θ3]

T and
N . Thus, the piecewise power law (3) effectively has only 4
parameters. Given the data samples {ni, v(ni)}mi=1, we first
obtain N through a meta-model trained on a dictionary of
learning curves of several datasets (see Section 3.3 for de-
tails), and then derive θ by fitting the piecewise model (3)
on {ni, v(ni)}mi=1 via nonlinear least squares in the loga-
rithmic scale using the Levenberg–Marquardt algorithm on

min
θ
‖y − ŷ(θ)‖2 (4)

yi = yi = log(1− v(ni)), ∀i ∈ {1, 2, ...,m},
ŷi = ŷi = log(1− v̂(ni)), ∀i ∈ {1, 2, ...,m}.

We estimate the mean µv̂(n) and the variance σ2
v̂(n) (due

to modeling errors) of the predictor as follows. First, we
compute of the covariance matrix of the parameters [11] as

Σθ = (JTJ)−1, J =

[
∂ŷ(θ)

∂θ

]
m×3

(5)

where J is the Jacobian matrix of ŷ with respect to θ. By
rewriting (3) as ŷ(n;θ) = αT (n)θ, we obtain the variance
σ2
ŷ(n) = αT (n)Σθα(n), where α(n) is given by

α(n) =

{
[1, log(n), log(n)2], if n ≤ N
[1, log(n), 2N log(n)−N2] otherwise.

(6)

The latter condition for n > N comes from the continuity
and differentiability constraints at N . Now, by assuming
ŷ is normally distributed, v̂ = 1 − exp(ŷ) is log-normally
distributed with mean µv̂ and variance σ2

v̂ given by

µv̂(n) = 1− exp

(
ŷ(n) +

σ2
ŷ(n)

2

)
, (7)

σ2
v̂(n) = exp

(
ŷ(n) +

σ2
ŷ(n)

2

)√
exp(σ2

ŷ(n)− 1). (8)

3

Using confidence bounds to predict data requirements.
The test error in logarithmic scale log(1 − v(n)) decays
rather slowly in the few-shot regime and we observe that
the power law [9] can lead to large over-estimation in data
requirements, i.e., Edata � 0; for example, the power law
over-estimates by 12× in Figure 1. Increasing the number
of steps in the data collection process is not helpful since
v(n(1)) > v∗ in the first step itself. We propose a strategy
that exploits the model confidence of the predictor to pre-
vent large estimation errors. Specifically, we limit the num-
ber of samples in a step such that 3σv̂k(n

(k)) ≤ τ , where
τ is the confidence threshold. Under this policy, the num-
ber of samples in step k of the data collection process is
determined by

n(k) = min
{
µ−1
v̂k

(v∗), σ−1
v̂k

(τ/3)
}

(9)

where v̂k is fit on {ni, v(ni)}mi=1 ∪ {n(i), v(n(i))}
k−1
i . In

Figure 1, we first add n(1) samples using (9) and then we
achieve the target in the next step with n(2) samples while
satisfying 3σv̂2(n

(2)) ≤ τ . We empirically show that the
same τ works consistently for all datasets across classifica-
tion and object detection tasks.
Comparison with the power law. The power law [9] pre-
dictor of model performance is given by

1− v̂(n;θ) = θ1n
θ2 + θ3. (10)

The model comprises of 3 parameters θ = [θ1, θ2, θ3]. The
special case of the piecewise power law (3) with N = 0 is
equivalent to the power law (10) when θ3 = 0, that is

log(1− v̂(n;θ)) = θ1 + θ2 log(n), (11)

whose parameters can simply be obtained by solving lin-
ear regression in the logarithmic space. The parameter θ3
models the asymptotic error of the learning curves. For
most datasets we consider in the few-shot setting (with pre-
training), we empirically observe that the predictor (11)
achieves comparable or smaller Eperf than predictor (10);
see Appendix E.

3.3. Meta-learning for the piecewise power law
We need to estimate four parameters in the piecewise

power law (3): θ ∈ R3 and N by fitting on {ni, v(ni)}mi=1.
N is determined by the transition point between the non-
linear and the linear regime. However, identifying an opti-
mal N is non-trivial given that many choices of N can pro-
duce fit with low errors. We find that a brute-force search
that chooses N based on fitting {ni, v(ni)}m−1

i=1 and evalu-
ating on {nm, v(nm)} is better than the power law in sev-
eral cases, but still far from the upper bound performance
given by the piecewise power law.

To bridge the gap, we propose to learn a meta-model that,
given data samples {ni, v(ni)}mi=1, leverages knowledge
from a dictionary of learning curves to predict the switch-
ing point N between the quadratic and the linear functions.

Specifically, we train a Random Forest [5] regressor F via
meta-learning to predict

N̂ = F ({log(ni), log(v(ni))}mi=1, log(C)) , (12)

where C is the number of classes in a dataset. Once the
meta-model predicts N̂ , other parameters of the piecewise
power law are determined by fitting on the subsets of per-
formance pairs with dataset size either smaller or larger
than N̂ , via the optimization of Eq. (4) as described in Sec-
tion 3.2. We choose to predict only the parameter N̂ using
the meta-model as this can be learnt from the statistics of
the learning curves, and the other parameters are better es-
timated from the data samples {ni, v(ni)}mi=1. We demon-
strate in Section 4.5 that the PPL is robust to errors in N .
Training and inference using the meta-model. To train
the meta-model, we use data samples {ni, v(ni)}Mi=1 from
all subsets of both few-shot and high-shot regimes. For dis-
crete choices of N ∈ {n1, n2, . . . , nM}, we fit the piece-
wise power law eq. (3) on samples from the few-shot re-
gion {ni, v(ni)}mi=1 and compute the mean prediction error
Eperf as defined in eq. (1). The N that minimizes the eval-
uation error is considered to be the ground-truth N∗ for the
dataset. We compute N∗ for several datasets and train the
meta-model in a leave-one-out (LOO) fashion, i.e., during
inference the meta-model used to evaluate on dataset D is
trained on datasets excluding D. In our experiments, we
show generalization of the meta-model to several datasets,
model architectures, and training settings. Lastly, due to
very distinct numbers of object categories in the datasets,
we train a separate set of meta-models for classification and
object detection tasks.

4. Experiments
Datasets. We evaluate the piecewise power law on 16 clas-
sification and 10 detection datasets from diverse domains.
The datasets vary widely in terms of complexity measured
by number of classes and number of training images. Refer
to the dataset statistics in Appendix A.
Subsets used for fitting and evaluation. To provide a com-
prehensive analysis, we consider different subsets for fitting
and evaluation of the performance predictors.

The few-shot setting is the main focus of this paper and
is most widely used across all experiments. For most clas-
sification datasets with the exceptions listed below, we fit a
performance predictor on the 5 subsets comprising of {1, 2,
3, 4, 5} samples per class. For Cifar10 and EuroSAT, the
subsets for fitting comprise of {5, 10, 15, 20, 25} samples
per class, and for iCassava {10, 15, 20, 25, 30} samples per
class to ensure the number of training images in the small-
est subset is more than the batch size of 32 used universally
across all classification experiments. For all classification
datasets, we compute Eperf (1) on the subsets comprising
of {10, 15, ..., 100}% of the dataset. For all object detec-
tion datasets, we fit a performance predictor on the 5 subsets

4

Table 1. Mean prediction error Eperf (1) for extrapolating per-
formance from few-shot to high-shot. Piecewise GT denotes the
upper bound. Piecewise outperforms powerlaw on 12/16 datasets.

CLASSIFICATION

powerlaw arctan piecewise piecewise
[9] [30] (ours) (GT)

Caltech256 [13] 10.3±3.6 3.0±1.5 2.0±0.9 1.2±0.5
Cifar10 [25] 6.7±2.2 6.0±6.2 0.9±0.5 0.5±0.4
Cifar100 [25] 6.5±3.1 17.2±7.3 6.1±3.5 5.3±3.8
CUB200 [45] 2.6±0.3 14.1±3.9 4.0±0.1 0.7±0.1
Decathlon Aircraft [32] 18.0±1.8 23.5±15.9 11.1±4.2 11.1±4.1
Decathlon DTD [7] 3.2±1.9 4.7±2.5 5.6±1.7 2.1±1.1
Decathlon Flowers [36] 1.0±0.3 1.5±0.3 2.0±0.3 1.1±0.0
Decathlon UCF101 [43] 14.5±1.9 15.5±4.9 4.1±3.0 4.1±2.9
EuroSAT [17, 18] 2.6±0.6 4.2±2.4 0.9±0.2 0.9±0.2
FGVC Aircrafts [32] 25.8±1.6 9.2±7.4 19.1±1.4 11.1±1.8
iCassava [35] 9.2±6.7 14.6±4.8 6.9±2.4 6.9±2.4
MIT-67 [38] 4.2±1.7 8.2±5.3 4.3±2.5 3.9±2.3
Oxford Flowers [36] 1.5±0.4 1.5±0.3 1.2±0.3 1.1±0.4
Oxford Pets [37] 9.2±0.4 1.1±0.5 5.6±0.8 1.7±0.5
Stanford Cars [24] 26.4±1.3 17.6±2.9 17.3±2.7 7.7±3.3
Stanford Dogs [22] 6.1±5.4 7.8±2.7 2.3±1.0 1.2±0.1

AVERAGE 9.2±2.1 9.3±4.3 5.8±1.6 3.8±1.5

comprising of {1, 5, 10, 15, 20} samples per class and com-
pute Eperf (1) on the subsets comprising of {25, 30, ..., 100}
samples per class. To construct the subsets, we follow the
natural k-shot sampling protocol [26]. Due to high variance
in the training statistics, we choose a larger number of sam-
ples per class for fitting for the detection tasks compared to
the classification tasks. We also evaluate our approach in
the mid-shot setting for the classification datasets where a
predictor is (1) fit on {10, 15, 20, 25, 30}% data and evalu-
ated on {35, 40, ..., 100}% data, and (2) fit on {10, 20, 30,
40, 50}% data and evaluated on {55, 60, ..., 100}% data.

We repeat all experiments with three different random
seeds selecting different set of images for fitting and eval-
uation. For training recipe used for finetuning and linear
probing the subsets, see Appendix B.

4.1. Extrapolation from few-shot to high-shot
We first evaluate the piecewise model in the few-shot set-

ting with the mean prediction error Eperf (1) as the metric
for evaluation. We compare the piecewise power law (3)
with the power law [9, 30] on classification tasks in Table 1
and object detection tasks Table 2. Other predictors such
as algebraic [30], arctan [30], and logarithmic [30] did not
perform better in our experiments; we compare with “arc-
tan” here, see others in Appendix C. The upper bound per-
formance of the piecewise power law is denoted by “piece-
wise GT”. This corresponds to the piecewise model using
the ground-truth switching point N∗ as described in Sec-
tion 3.3. Note that the upper bound is not always close
to zero because the derivation of N∗ utilizes only five data
samples from the few-shot regime for fitting the piecewise
power law. The “piecewise” power law with the meta-
model performs better on 12/16 classification tasks and 9/10
object detection tasks reducing the average mean predic-

Table 2. Mean prediction error Eperf (1) for extrapolating per-
formance from few-shot to high-shot. Piecewise GT denotes the
upper bound. Piecewise outperforms powerlaw on 9/10 datasets.

DETECTION

powerlaw arctan piecewise piecewise
[9] [30] (ours) (GT)

Cityscapes [8] 1.3±0.8 1.5±0.6 1.1±0.5 0.9±0.6
Comic [21] 4.4±2.9 28.0±33.9 4.1±1.0 3.4±2.0
CrowdHuman [42] 0.8±0.2 1.5±0.5 0.7±0.3 0.5±0.3
DUO [28] 3.9±1.8 4.5±1.6 2.4±0.5 1.8±0.9
KITTI [12] 2.6±2.1 1.5±1.0 1.6±0.7 1.5±1.4
MinneApple [14] 4.7±2.3 1.1±0.3 1.9±1.0 0.6±0.1
SIXray [33] 6.9±0.9 8.3±9.9 2.7±2.7 2.4±1.1
table-detection [41] 5.9±2.7 7.8±2.2 5.5±0.8 5.5±2.2
VisDrone [47] 0.3±0.1 0.7±0.3 0.8±0.3 0.4±0.1
Watercolor [21] 5.2±1.5 6.7±2.7 3.2±1.4 3.1±1.7

AVERAGE 3.6±1.5 6.2±5.3 2.4±0.9 2.0±1.0

Table 3. Mean prediction error Eperf (1) for extrapolating per-
formance from mid-shot to high-shot. Piecewise works better on
14/16 and 12/16 datasets using 30% and 50% data, respectively.

CLASSIFICATION

using 30% data using 50% data
powerlaw piecewise powerlaw piecewise

Caltech256 0.8±0.6 0.6±0.3 0.5±0.2 0.3±0.0
Cifar10 0.3±0.3 0.1±0.0 0.3±0.1 0.1±0.0
Cifar100 1.1±0.8 0.6±0.1 0.3±0.1 0.3±0.1
CUB200 4.5±2.4 2.5±1.3 1.6±0.6 0.9±0.0
Decathlon Aircraft 8.5±1.6 4.1±2.0 4.2±0.3 1.5±1.1
Decathlon DTD 1.2±0.4 1.7±0.8 1.4±0.8 1.3±0.4
Decathlon Flowers 1.4±0.4 2.6±1.7 1.0±0.3 1.8±0.3
Decathlon UCF101 2.7±1.5 2.2±1.2 1.0±0.4 0.8±0.3
EuroSAT 0.3±0.2 0.1±0.0 0.2±0.1 0.1±0.0
FGVC Aircrafts 6.4±4.7 2.0±0.8 2.6±0.9 0.9±0.4
iCassava 2.4±0.7 1.2±0.5 0.5±0.3 0.5±0.1
MIT-67 2.3±1.3 1.1±0.4 1.2±0.7 0.9±0.5
Oxford Flowers 3.6±1.8 1.9±0.7 0.6±0.3 0.7±0.5
Oxford Pets 2.2±0.9 1.1±0.2 1.2±0.8 0.7±0.4
Stanford Cars 9.7±0.1 1.1±0.4 4.3±0.9 0.4±0.1
Stanford Dogs 3.1±2.0 2.1±0.3 1.2±1.2 1.6±0.3

AVERAGE 3.2±1.2 1.6±0.7 1.4±0.5 0.8±0.3

tion error of the “powerlaw” by 37% and 33%, respec-
tively. It also achieves lower variance consistently across
most datasets. We note that there is still a gap between the
performance of the meta-model with respect to the upper
bound.

4.2. Extrapolation from mid-shot to high-shot

We next evaluate the “piecewise” power law with the
meta-model in the mid-shot setting. We show a compari-
son against the “powerlaw” for classification datasets in Ta-
ble 3. We consider two scenarios where upto 30% and 50%
data is used for fitting the predictors. The meta-model used
with the piecewise power law is the same as in Section 4.1.
Again, the piecewise power law is better than the power law
reducing the average mean prediction errors by 50.0% and
42.8% when using 30% and 50% data for fitting, respec-

5

Table 4. Left: Data estimation error Edata to reach the target performance corresponding to 90% samples (of the full dataset). Edata < 0
represents an under-estimate and Edata > 0 an over-estimate. PPL with confidence threshold (5%) achieves the lowest error on 13/16
classification and 9/10 detection tasks. Right: PPL with confidence (5-step) achieves smaller Edata (closer to 0) than powerlaw (5-step) for
different performance targets obtained by using {50, 60, 70, 80, 90}% of the full dataset (more datasets in Appendix D).

CLASSIFICATION

powerlaw [9] piecewise (ours)

1-step 5-step 1-step 5-step 5-step 5% avg. steps

Caltech256 -0.6±0.1 -0.1±0.0 -0.2±0.2 -0.0±0.1 -0.0±0.1 3.7±1.9
Cifar10 inf inf 0.4±0.7 0.5±0.6 0.5±0.6 2.3±1.9
Cifar100 0.2±0.7 0.3±0.6 -0.6±0.2 0.0±0.0 -0.1±1.2 4.7±0.5
CUB200 -0.1±0.1 -0.1±0.0 -0.3±0.0 -0.0±0.0 -0.0±0.0 4.3±0.9
Decathlon Aircraft inf inf 13.3±11.4 13.3±11.4 0.2±0.0 3.7±0.5
Decathlon DTD 0.7±0.4 0.7±0.4 3.1±1.2 3.1±1.2 1.3±1.3 1.7±0.9
Decathlon Flowers -0.0±0.0 0.0±0.0 0.3±0.1 0.3±0.1 0.3±0.1 1.3±0.5
Decathlon UCF101 18.8±12.4 18.8±12.4 0.6±0.6 0.6±0.5 -0.1±0.1 4.7±0.5
EuroSAT inf inf -0.7±0.1 0.0±0.1 0.0±0.1 3.3±1.2
FGVC Aircrafts 38.8±19.4 38.8±19.4 69.6±45.6 69.6±45.6 1.0±1.0 2.0±0.8
iCassava 1.7±3.3 1.7±3.3 89.3±111.4 89.3±111.4 0.5±1.4 3.7±1.9
MIT-67 0.1±0.6 0.3±0.4 0.6±1.2 0.8±1.1 0.1±0.1 3.0±0.8
Oxford Flowers 0.1±0.2 0.2±0.1 0.1±0.2 0.2±0.1 0.2±0.1 2.3±1.9
Oxford Pets -0.8±0.0 -0.4±0.2 -0.8±0.0 -0.1±0.0 -0.2±0.1 5.0±0.0
Stanford Cars 8.4±1.8 8.4±1.8 15.5±10.2 15.5±10.2 0.2±0.2 3.0±0.0
Stanford Dogs -0.3±0.4 -0.0±0.2 -0.3±0.2 -0.1±0.1 -0.1±0.0 5.0±0.0

DETECTION

powerlaw [9] piecewise (ours)

1-step 5-step 1-step 5-step 5-step 5% avg. steps

Cityscapes 0.4±0.8 0.6±0.7 0.1±0.4 0.4±0.3 0.4±0.3 2.7±1.7
Comic inf inf 2.4±2.7 2.7±2.4 2.7±2.5 2.3±1.9
CrowdHuman 5.5±7.2 5.5±7.2 1.0±1.5 1.1±1.4 1.1±1.4 1.3±0.5
DUO 1.7±0.7 1.7±0.7 0.8±1.0 0.8±0.9 0.1±0.2 3.3±1.2
KITTI 5.0±6.3 5.0±6.3 0.2±0.4 0.4±0.2 0.2±0.2 2.3±1.9
MinneApple -0.3±0.7 -0.0±0.6 -0.6±0.2 -0.2±0.2 0.0±0.5 4.3±0.9
SIXray 4.0±1.9 4.0±1.9 -0.2±0.2 -0.0±0.0 -0.0±0.0 5.0±0.0
table-detection 0.4±0.7 0.5±0.7 0.6±0.8 0.7±0.7 -0.0±0.3 4.3±0.9
VisDrone 0.0±0.0 0.0±0.0 -0.3±0.1 -0.1±0.0 -0.1±0.0 5.0±0.0
Watercolor 6.5±2.9 6.5±2.9 1.9±1.8 1.9±1.7 -0.1±0.4 4.0±1.4

tively, and achieving lower variance at the same time.

4.3. Prediction of data requirements to reach target
performance

We provide results for maximum number steps T ∈
{1, 5} and compute data estimation error Edata (2) which
is a measure of under- or over-estimation of number of
samples after T steps of data collection. We compare the
“piecewise” power law with the meta-model against the
“powerlaw” for v∗ = v(n90%) for both classification and
detection tasks in Table 4. Here, n90% corresponds to the
subset with 90% samples of the full dataset D(FULL). We
also show a visualization of under-/over-estimation for dif-
ferent choices of the target performance corresponding to
{50, 60, 70, 80, 90}% data for some datasets here (and
others in Appendix D). In the few-shot regime, the test er-
ror decays slowly in the logarithmic scale as compared to
the high-shot regime. As a result, the “powerlaw” over-
estimates data requirements by a huge margin in several

cases across both classification and detection tasks even
with 1-step (T = 1); all estimates more than 1000 are de-
noted as “inf” in Table 4. In the cases where the power
law under-estimates the performance, increasing the num-
ber of steps to T = 5 helps reduce the data estimation error;
as previously suggested in [30]. We can further reduce the
data estimation error by two complementary ways. First, we
improve the quality of the predictor, i.e., replace the power
law by the piecewise power law. We immediately see that
“piecewise” reduces large overestimation by improving the
quality of extrapolation. Since the piecewise predictor is
still not perfect, we further reduce the error by controlling
the step sizes (9) using the confidence bounds. As a result,
“piecewise 5-step 5%” (referring to τ = 5%) demonstrates
lower data estimation error on 13/16 classification tasks and
9/10 detection tasks compared to “powerlaw 5-step”, and
consistently achieves small error with exceptions of De-
cathlon DTD (1.3) and Comic (2.7). “avg. steps” denotes
the average number of steps taken across different random
seeds with “piecewise 5-step 5%”. We compute the aver-

6

Table 5. Generalization of the meta-model trained on ResNet-18 finetuning to different scenarios: ResNet-50 finetuning, ViT-B/16 fine-
tuning, ResNet-18 linear probing, and ResNet-18 finetuning with a fixed learning rate.

ResNet-50 finetune ViT-B/16 finetune ResNet-18 linear ResNet-18 fixed LR
powerlaw piecewise powerlaw piecewise powerlaw piecewise powerlaw piecewise

Caltech256 2.9±2.2 1.1±0.8 1.0±0.4 5.1±0.4 4.7±3.9 3.2±1.5 12.8±7.2 4.2±1.6
Cifar10 18.9±2.2 1.9±1.4 4.1±4.2 3.6±4.2 15.4±0.5 8.3±1.3 8.9±9.4 0.7±0.3
Cifar100 15.1±0.1 11.8±0.9 11.5±3.3 10.3±3.1 18.8±1.8 12.4±4.1 27.9±3.0 6.4±2.6
CUB200 4.9±1.5 4.0±1.6 6.5±2.2 2.6±0.4 3.1±0.9 0.5±0.1 11.9±1.1 1.6±0.9
Decathlon Aircraft 20.3±0.6 10.6±1.1 14.4±2.1 3.9±2.1 2.8±0.6 3.5±0.6 13.7±1.2 9.9±1.4
Decathlon DTD 5.6±3.0 5.4±1.3 5.0±0.9 1.9±1.1 1.7±0.9 1.3±0.0 2.4±0.7 4.3±1.8
Decathlon Flowers 2.0±1.1 2.6±0.7 1.7±0.6 1.2±0.4 0.7±0.1 0.8±0.2 3.6±0.5 1.4±0.1
Decathlon UCF101 15.0±1.0 3.5±1.9 11.5±0.3 6.0±3.4 2.5±2.6 5.4±2.3 21.2±1.1 11.2±1.6
EuroSAT 4.8±4.3 0.3±0.1 3.0±3.0 2.5±2.8 3.6±2.4 3.3±0.3 5.1±3.9 1.5±0.2
FGVC Aircrafts 26.6±1.8 15.2±5.0 21.8±1.1 15.1±2.9 3.8±0.7 2.1±1.3 29.0±1.5 14.0±2.6
iCassava 14.3±5.8 1.8±0.7 11.0±3.3 2.1±0.7 12.0±6.6 4.4±0.9 16.4±2.3 6.0±3.6
MIT-67 7.7±2.2 5.9±2.9 5.0±2.8 3.2±1.5 7.6±4.7 5.0±3.0 3.4±0.4 3.2±0.6
Oxford Flowers 1.5±1.0 1.1±0.4 0.9±0.3 0.5±0.1 1.6±0.3 1.3±0.1 3.6±0.1 2.1±0.5
Oxford Pets 4.1±2.8 2.0±0.5 14.6±1.9 10.6±3.5 7.8±2.5 5.3±0.5 10.3±0.2 9.0±0.4
Stanford Cars 23.9±1.1 14.7±1.4 20.4±0.7 13.9±1.4 7.1±0.8 4.4±0.9 33.5±0.6 27.6±1.1
Stanford Dogs 8.7±3.1 6.8±0.5 3.5±3.2 5.0±1.0 5.4±2.6 5.1±0.9 17.9±0.1 11.0±1.6

AVERAGE 11.0±2.1 5.5±1.3 8.5±1.9 5.5±1.8 6.2±2.0 4.2±1.1 13.8±2.1 7.1±1.3

age improvement by the PPL only on the datasets where the
power law predicts less than 10× over-estimation, and yet
the PPL improves the estimates by 76% on classification
and 91% on detection datasets.

4.4. Generalization of the meta-model

In this section, we show generalization of the meta-
model to several datasets, model architectures, and training
settings. We use the same meta-model trained according to
the procedure described in Section 3.3 across all scenarios
listed below. Unless noted otherwise, we follow the few-
shot setting to construct the subsets for fitting and evalua-
tion, with the mean prediction error Eperf (1) as the metric
for evaluation.
Different architectures. The meta-model is trained on
learning curves of ResNet-18 [16]. Here, we show its gen-
eralization to a more complex architecture ResNet-50 and a
different architecture ViT-B/16-224 [23]. All networks are
initialized with ImageNet pretrained weights. The piece-
wise power law works better than the power law on 15/16
classification tasks with ResNet-50 and 14/16 tasks with
ViT-B/16; see “ResNet-50 finetune” and “ViT-B/16 fine-
tune” in Table 5.
Linear probing. The meta-model is trained on the data
samples from finetuning on the subsets with ImageNet pre-
trained weights. We show that the piecewise power law with
same meta-model also generalizes while linear probing on
the subsets (again with ImageNet pre-trained weights) per-
forming better than the power law on 13/16 classification
tasks; see “ResNet-18 linear” in Table 5.
Fixed learning rate. The meta-model is trained after run-
ning HPO over 3 different learning rates in {0.001, 0.005,
0.01} while finetuning on the subsets; see more details in
Appendix B. However, should it be desirable to use a fixed

Table 6. Generalization of the meta-model trained on finetuning
ResNet-18 to training ResNet-18 from scratch.

powerlaw arctan piecewise

Cifar10 [30] 39.02±20.3 7.98±7.1 -
Cifar10 (ours) 0.9±0.8 2.9±0.7 0.3±0.1

Cifar100 [30] 34.98±35.1 13.3±5.3 -
Cifar100 (ours) 4.0±0.5 19.4±5.3 2.5±0.3

learning rate (we choose 0.001) during finetuning on the
subsets due to limited compute, we show that the meta-
model also generalizes in this scenario; see “ResNet-18
fixed LR” in Table 5.
Training from scratch. We next show that the meta-model
trained with data samples from finetuning ResNet-18 net-
work with pre-trained models (ImageNet initialization) gen-
eralizes to training ResNet-18 network from scratch (ran-
dom initialization). In this case, we follow the settings by
Mahmood et al [30] for constructing the subsets for fitting
and evaluation of the predictors. Specifically, we fit on
subsets with {2, 4, 6, 8, 10}% data and do evaluation on
{20, 30, ..., 100}% data using the root mean squared er-
ror (RMSE) as the metric for evaluation. The “piecewise”
power law with the meta-model achieves 67% error reduc-
tion on Cifar10 and 37% on Cifar100 with respect to the
“powerlaw”; see Table 6. For completeness, we also repro-
duce results from [30]; however, we note that the numbers
may not be comparable due to different subsets and training
recipe. We provide a comparison with algebraic [30] and
logarithmic [30] in Appendix F.

4.5. Ablation studies
Comparison of the meta-model with baselines. A sim-
ple baseline is to choose the switch point as the number

7

Figure 2. Left: Comparison of predicted versus ground-truth switch point (normalized by number of classes). Right: Mean prediction error
Eperf (1) obtained with powerlaw, and the piecewise power law using N∗, 1/3×N∗, 3×N∗, and the meta-model.

of samples in the smallest subset, i.e., N = n1. We re-
fer to it as “linear” baseline since the piecewise power law
reduces to a linear predictor in logarithmic scale; see (11).
A second baseline is to find a “brute-force” solution that
minimizes the error of the piecewise power law fit on the
first 4 subsets {ni, v(ni)}4i=1 and evaluated on the last sub-
set {n5, v(n5)}. Note the subtle difference with respect
to the procedure to compute the ground-truth N∗ in Sec-
tion 3.3 where the piecewise power law is fit on all 5 sub-
sets {ni, v(ni)}5i=1 and evaluated on the subsets in the high-
shot regime. We observe that different methods work better
for different tasks but on average the “meta-model” works
best reducing the average mean prediction error by 21.6%
and 19.1% on ResNet-18 and ResNet-50, respectively, com-
pared to the “brute-force” (next best) method. See results
in Appendix G. We also note that even the “brute-force”
method works better than the power law (see Table 1 for
comparison) thus demonstrating the strength of the piece-
wise power law.

Quality of predictions of the meta-model. We compare
the predictions of the meta-model against the ground-truth
(GT) N∗ for all classification and detection tasks in Fig-
ure 2 (left). We normalize the values by the number of
classes in the dataset to plot them on a similar scale. Most
predictions lie within [1/3N∗, 3N∗]. We observe that de-
spite large errors in predictions, the meta-model performs
better compared to the baselines in Table 1 because the
piecewise power law has high tolerance to the errors in the
switch point N . To demonstrate this, we evaluate two more
choices of N corresponding to {1/3N∗, 3N∗} and compare
the mean prediction error in Figure 2 (right) (see an elab-
orate comparison in Appendix H). Both of them perform
better than the power law on most datasets.

Adaptability of the meta-model. For a given dataset, we
expect the training statistics on the subsets to change if we
finetune on the subsets differently, for example if we choose
a different network architecture. Hence the learning curves
in these cases are also expected to be different. In Figure 3,
we show an example where the learning curve starts to ex-
hibit linear behavior for a smaller N with ViT-B/16 as com-
pared to ResNet-18 on CUB200. The meta-model adapts to

Figure 3. The meta-model adapts to different inputs for the same
subsets finetuned with different model architectures. The piece-
wise power law is fit on the first 5 points (denoted in dark)
and evaluated on the remaining points (denoted in light). Solid
lines denote the mean prediction and the confidence bound by the
shaded band. Vertical lines denote the predicted switch points.

this change and predicts a smaller switching point for ViT-
B/16 as compared to ResNet-18.

5. Conclusion
Learning curves are better modeled by a non-linear func-

tion in the few-shot regime and a linear function in the high-
shot regime. The widely used power law best explains only
the high-shot regime of the curve. Our results show that by
modeling both regimes differently with a piecewise power
law (PPL) leads to lower extrapolation error on average.
Further, using the confidence bound of the PPL prevents
large data estimation errors to reach a target performance.
However, the transition between the non-linear and linear
regimes varies depending on the dataset, initializations, and
even network architectures. We find that a meta learning
based approach that uses statistics of the learning curves
is useful to estimate the transition point. Learning curves
could exhibit other phenomena such as double descent and
saturation in the very high data regimes. We do not observe
these phenomena with datasets used in this paper. Poten-
tially, the proposed PPL can be extended to model double
descent and saturation. We leave that for future work.

8

References
[1] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and

Hanie Sedghi. Exploring the limits of large scale pre-
training. In Proceedings of the International Conference on
Learning Representations (ICLR), 2022. 2

[2] Ibrahim Alabdulmohsin, Behnam Neyshabur, and Xiaohua
Zhai. Revisiting neural scaling laws in language and vision.
arXiv preprint arXiv:2209.06640, 2022. 2

[3] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and
Utkarsh Sharma. Explaining neural scaling laws. arXiv
preprint arXiv:2102.06701, 2021. 1, 2

[4] Sara Beery, Grant van Horn, and Pietro Perona. Recognition
in terra incognita. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018. 1

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–
32, 2001. 4

[6] Ethan Caballero, Kshitij Gupta, Irina Rish, and David
Krueger. Broken neural scaling laws. arXiv preprint
arXiv:2210.14891, 2022. 2

[7] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3606–3613, 2014. 5

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 5

[9] Corinna Cortes, Lawrence D Jackel, Sara Solla, Vladimir
Vapnik, and John Denker. Learning curves: Asymptotic val-
ues and rate of convergence. Advances in Neural Information
Processing Systems (NeurIPS), 1993. 1, 2, 3, 4, 5, 6, 11, 13,
16

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Fei-Fei Li. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2009. 2,
11

[11] Henri P. Gavin. The levenberg-marquardt method for non-
linear least squares curve-fitting problems ©. 2013. 3

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2012. 5

[13] G. Griffin, AD. Holub, and Pietro Perona. The caltech 256.
5

[14] Nicolai Häni, Pravakar Roy, and Volkan Isler. MinneApple:
a benchmark dataset for apple detection and segmentation.
IEEE Robotics and Automation Letters, 5(2):852–858, 2020.
5

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
11

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 7, 11

[17] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Introducing eurosat: A novel dataset and
deep learning benchmark for land use and land cover clas-
sification. In IGARSS 2018-2018 IEEE International Geo-
science and Remote Sensing Symposium, pages 204–207.
IEEE, 2018. 5

[18] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2019. 5

[19] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory
Diamos, Heewoo Jun, Hassan Kianinejad, Md Patwary,
Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learn-
ing scaling is predictable, empirically. arXiv preprint
arXiv:1712.00409, 2017. 1, 2

[20] Derek Hoiem, Tanmay Gupta, Zhizhong Li, and Michal
Shlapentokh-Rothman. Learning curves for analysis of deep
networks. In Proceedings of the International Conference on
Machine Learning (ICML). PMLR, 2021. 1, 2

[21] Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Cross-domain weakly-supervised object de-
tection through progressive domain adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 5

[22] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for fine-grained image
categorization. In First Workshop on Fine-Grained Visual
Categorization, IEEE Conference on Computer Vision and
Pattern Recognition, Colorado Springs, CO, June 2011. 5

[23] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weis-
senborn, Georg Heigold, Jakob Uszkoreit, Lucas Beyer,
Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Syl-
vain Gelly, Thomas Unterthiner, and Xiaohua Zhai. An im-
age is worth 16x16 words: Transformers for image recogni-
tion at scale. In Proceedings of the International Conference
on Learning Representations (ICLR), 2021. 7, 11

[24] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 5

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[26] Kibok Lee, Hao Yang, Satyaki Chakraborty, Zhaowei
Cai, Gurumurthy Swaminathan, Avinash Ravichandran, and
Onkar Dabeer. Rethinking few-shot object detection on a
multi-domain benchmark. In Proceedings of the European
Conference on Computer Vision (ECCV), 2022. 5, 11

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Mi-
crosoft COCO: Common Objects in Context. arXiv preprint
arXiv:1405.0312, 2014. 2, 11

[28] Chongwei Liu, Haojie Li, Shuchang Wang, Ming Zhu, Dong
Wang, Xin Fan, and Zhihui Wang. A dataset and benchmark
of underwater object detection for robot picking. In Proceed-
ings of the IEEE International Conference on Multimedia &
Expo Workshops (ICMEW), 2021. 5

9

[29] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gra-
dient descent with warm restarts. In Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
2017. 11

[30] Rafid Mahmood, James Lucas, David Acuna, Daiqing Li,
Jonah Philion, Jose M Alvarez, Zhiding Yu, Sanja Fidler,
and Marc T Law. How much more data do I need? Estimat-
ing requirements for downstream tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 2, 3, 5, 6, 7, 11, 13, 16

[31] Rafid Mahmood, James Lucas, Jose M Alvarez, Sanja Fidler,
and Marc T Law. Optimizing data collection for machine
learning. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2022. 2

[32] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013. 5

[33] Caijing Miao, Lingxi Xie, Fang Wan, Chi Su, Hongye Liu,
Jianbin Jiao, and Qixiang Ye. Sixray: A large-scale secu-
rity inspection x-ray benchmark for prohibited item discov-
ery in overlapping images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 5

[34] Thomas Moreau, Mathurin Massias, Alexandre Gramfort,
Pierre Ablin, Pierre-Antoine Bannier, Benjamin Charlier,
Mathieu Dagréou, Tom Dupré la Tour, Ghislain Durif, Cas-
sio F. Dantas, Quentin Klopfenstein, Johan Larsson, En
Lai, Tanguy Lefort, Benoit Malézieux, Badr Moufad, Binh
T. Nguyen, Alain Rakotomamonjy, Zaccharie Ramzi, Joseph
Salmon, and Samuel Vaiter. Benchopt: Reproducible, effi-
cient and collaborative optimization benchmarks. 2022. 11

[35] Ernest Mwebaze, Timnit Gebru, Andrea Frome, Solomon
Nsumba, and Jeremy Tusubira. icassava 2019 fine-
grained visual categorization challenge. arXiv preprint
arXiv:1908.02900, 2019. 5

[36] Maria-Elena Nilsback and Andrew Zisserman. A visual vo-
cabulary for flower classification. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
1447–1454, 2006. 5

[37] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C. V. Jawahar. Cats and dogs. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012. 5

[38] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 413–420. IEEE, 2009. 5

[39] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. Faster R-CNN: Towards real-time object detection with
region proposal networks. In Proceedings of the Twenty-
ninth Conference on Neural Information Processing Systems
(NeurIPS), 2015. 11

[40] Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov,
and Nir Shavit. A constructive prediction of the generaliza-
tion error across scales. In Proceedings of the International
Conference on Learning Representations (ICLR), 2020. 1, 2

[41] sgrpanchal31. table-detection-dataset. https : / /
github.com/sgrpanchal31/table-detection-
dataset, 2018. 5

[42] Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu,
Xiangyu Zhang, and Jian Sun. CrowdHuman: A bench-
mark for detecting human in a crowd. arXiv preprint
arXiv:1805.00123, 2018. 5

[43] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
A dataset of 101 human action classes from videos in the
wild. Center for Research in Computer Vision, 2(11), 2012.
5

[44] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In Proceedings of the The International
Conference on Computer Vision (ICCV), 2017. 2

[45] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical
Report CNS-TR-2010-001, California Institute of Technol-
ogy, 2010. 5

[46] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 11

[47] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng
Fan, Qinghua Hu, and Haibin Ling. Detection and track-
ing meet drones challenge. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 5

10

https://github.com/sgrpanchal31/table-detection-dataset
https://github.com/sgrpanchal31/table-detection-dataset
https://github.com/sgrpanchal31/table-detection-dataset
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Appendix

A. Datasets
We use 16 classification and 10 detection datasets for

evaluation, see statistics in Table 7. For classification, we
randomly sample images according to subsets in Table 7
for training and we use the original test splits for evalua-
tion. For detection, we choose natural k-shot sampling to
construct subsets in Table 7 following the few-shot object
detection (FSOD) setting [26].

B. Implementation details for training models
We train all models on single GPU with the following

training recipe.
Finetuning on classification datasets. We use Ima-
geNet [10] pre-trained weights to initialize models for all
architectures - ResNet-18 [16], ResNet-50 [16], and ViT-
B/16 [23], and train for 30 epochs with a batch size of 32.
We perform HPO over 3 different learning rates (LR) ∈
{0.001, 0.005, 0.01} (with the exception of ViT for which
we tried a fixed LR of 0.0005) with SGD + momentum of
0.9 + weight decay of 0.0001 and LR decay by 0.1 at {15,
25} epochs. We choose Top-1 Accuracy as the metric for
performance v(n).
Linear probing on classification datasets. We show ex-
periments for ResNet-18 with ImageNet [10] pre-trained
weights. We freeze the backbone and train a linear layer
with batch norm [15]. We use a batch size of 32 and train
the network for 30 epochs performing HPO over 3 different
learning rates ∈ {0.001, 0.005, 0.01} with SGD + momen-
tum of 0.9 + weight decay of 0.0001 and LR decay by 0.1 at
{15, 25} epochs. We choose Top-1 Accuracy as the metric
for performance v(n).
Training from scratch on Cifar10/100. We show experi-
ments for ResNet-18. We use the hyperparameter settings
from [34] that achieves the state-of-the-art results on Ci-
far10. Specifically, we use a batch size of 128 and train for
100 epochs using a learning rate of 0.1 with cosine anneal-
ing [29] and linear warmup with SGD + momentum of 0.9
+ weight decay of 0.0005. For the full dataset, we obtained
Top-1 accuracy of 0.95±0.003 on Cifar10 and 0.78±0.002
on Cifar100.
Finetuning on detection datasets. We train a Faster R-
CNN [39] detector with ResNet-50+FPN backbone with
COCO [27] pre-trained weights. We use a batch size of
min{4, |Si|} and train for 2000 iterations. We choose the
best learning rate ∈ {0.0025, 0.005} with decay by 0.1 at
1600 iterations. We tested the official implementation in
Detectron2 [46] and default settings unless noted otherwise.
We choose mean Average Precision (mAP) (averaged over
IoU 0.5-0.95) as the metric for performance v(n).

C. Extrapolation from few-shot to high-shot
In Section 4.1, we show the evaluation of the piecewise

power law against two baselines: the power law [9] and arc-

tan [30]. Here, we show results for two more baselines:
algebraic [30] and logarithmic [30]. On average, the piece-
wise power law performs the best, followed by the power
law and arctan on the classification tasks (see Table 8), and
followed by the power law and logarithmic on the detection
tasks (see Table 9).

D. Estimating data requirements to reach tar-
get performance

In Section 4.3, we show a visualization of data estima-
tion error (2) for different choices of the target performance
corresponding to {50, 60, 70, 80, 90}% data for only some
datasets due to space limitation. Here, we provide complete
results for all datasets with maximum steps T = 5 in Fig-
ure 4 and Figure 5, and additionally with maximum steps
T = 3 in Figure 6 and Figure 7. The piecewise power
law with “piecewise 5%” (referring to τ = 5%) demon-
strates lower data estimation error compared to “powerlaw”
in most cases both T = 3 and T = 5.

E. Comparison with the power law
In Section 3.2, we discuss the connection between the

piecewise power law (3) and the power law (10). Specifi-
cally, the linear term of the PPL is equivalent to the power
law with its asymptotic term set to zero (11). We reproduce
the expression here

log(1− v̂(n;θ)) = θ1 + θ2 log(n). (13)

We refer to this predictor as “linear” since its parameters can
simply be obtained by solving linear regression in the log-
log space. In Table 10, we empirically show that “linear”
predictor works better in mid-shot regime since the learning
curve also exhibits linear behavior in the log-log space.

F. Generalization to training from scratch
We provide a comparison with algebraic [30] and log-

arithmic [30] to show generalization of the meta-model
trained on finetuning ResNet-18 to training ResNet-18 from
scratch in Table 11.

G. Comparison of meta-model with baselines
In the first ablation study in Section 4.5, we compare

the meta-model to two different baselines, namely (1) “lin-
ear” baseline (same as (11)) that uses N = n1 in the
piecewise power law, and (2) “brute-force” baseline that
greedily optimizes N based on the available data samples
{ni, v(ni)}5i=1. We show the results in Table 12. We ob-
serve that different methods work better for different tasks
but on average the “meta-model” works best reducing the
average mean prediction error by 21.6% and 19.1% on
ResNet-18 and ResNet-50, respectively, compared to the
“brute-force” (next best) method.

11

Table 7. Datasets used for experiments with the sizes of subsets used for fitting and evaluation in the few-shot regime.

CLASSIFICATION

classes # train samples fitting evaluation
in largest subset (samples per class) (% of full data)

Caltech256 257 15418 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Cifar10 10 50000 {5, 10, 15, 20, 25} {10, 15, ..., 100}
Cifar100 100 50000 {1, 2, 3, 4, 5} {10, 15, ..., 100}
CUB200 200 5994 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Decathlon Aircraft 100 3334 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Decathlon DTD 47 1880 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Decathlon Flowers 102 1020 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Decathlon UCF101 101 7585 {1, 2, 3, 4, 5} {10, 15, ..., 100}
EuroSAT 10 20250 {5, 10, 15, 20, 25} {10, 15, ..., 100}
FGVC Aircrafts 100 6667 {1, 2, 3, 4, 5} {10, 15, ..., 100}
iCassava 5 4242 {10, 15, 20, 25, 30} {10, 15, ..., 100}
MIT-67 67 5360 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Oxford Flowers 102 1020 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Oxford Pets 37 3680 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Stanford Cars 195 8144 {1, 2, 3, 4, 5} {10, 15, ..., 100}
Stanford Dogs 120 12000 {1, 2, 3, 4, 5} {10, 15, ..., 100}

DETECTION

classes # train samples fitting evaluation
in largest subset (samples per class) (samples per class)

Cityscapes 8 800 {1, 5, 10, 15, 20} {25, 30, ..., 100}
Comic 6 600 {1, 5, 10, 15, 20} {25, 30, ..., 100}
CrowdHuman 2 200 {1, 5, 10, 15, 20} {25, 30, ..., 100}
DUO 4 400 {1, 5, 10, 15, 20} {25, 30, ..., 100}
KITTI 4 400 {1, 5, 10, 15, 20} {25, 30, ..., 100}
MinneApple 1 100 {1, 5, 10, 15, 20} {25, 30, ..., 100}
SIXray 5 500 {1, 5, 10, 15, 20} {25, 30, ..., 100}
table-detection 1 100 {1, 5, 10, 15, 20} {25, 30, ..., 100}
VisDrone 10 1000 {1, 5, 10, 15, 20} {25, 30, ..., 100}
Watercolor 6 600 {1, 5, 10, 15, 20} {25, 30, ..., 100}

H. Quality of predictions of meta-model
We provide results to support the second ablation study

in Section 4.5. We observe that the piecewise power law
has high tolerance to the errors in the switch point N . To

demonstrate this, we evaluate two more choices ofN corre-
sponding to {1/3N∗, 3N∗} and compare the mean predic-
tion error in Table 13. Both of them perform better than the
power law on most datasets.

12

Table 8. Mean prediction error Eperf (1) for extrapolating performance from few-shot to high-shot. Piecewise GT denotes the upper bound
obtained with the piecewise model.

CLASSIFICATION

powerlaw algebraic arctan logarithmic piecewise piecewise
[9] [30] [30] [30] (ours) (GT)

Caltech256 10.3±3.6 9.1±5.3 3.0±1.5 12.3±3.5 2.0±0.9 1.2±0.5
Cifar10 6.7±2.2 7.6±3.3 6.0±6.2 5.2±0.1 0.9±0.5 0.5±0.4
Cifar100 6.5±3.1 22.5±0.1 17.2±7.3 22.2±0.4 6.1±3.5 5.3±3.8
CUB200 2.6±0.3 18.5±0.9 14.1±3.9 16.8±1.3 4.0±0.1 0.7±0.1
Decathlon Aircraft 18.0±1.8 17.8±13.8 23.5±15.9 11.5±2.1 11.1±4.2 11.1±4.1
Decathlon DTD 3.2±1.9 5.3±1.2 4.7±2.5 3.2±0.9 5.6±1.7 2.1±1.1
Decathlon Flowers 1.0±0.3 1.1±0.4 1.5±0.3 1.2±0.5 2.0±0.3 1.1±0.0
Decathlon UCF101 14.5±1.9 16.5±14.6 15.5±4.9 12.3±10.7 4.1±3.0 4.1±2.9
EuroSAT 2.6±0.6 4.3±3.2 4.2±2.4 2.1±0.2 0.9±0.2 0.9±0.2
FGVC Aircrafts 25.8±1.6 18.1±2.4 9.2±7.4 10.5±6.7 19.1±1.4 11.1±1.8
iCassava 9.2±6.7 12.4±7.9 14.6±4.8 12.2±6.6 6.9±2.4 6.9±2.4
MIT-67 4.2±1.7 15.8±6.4 8.2±5.3 11.7±6.5 4.3±2.5 3.9±2.3
Oxford Flowers 1.5±0.4 1.6±0.2 1.5±0.3 1.4±0.5 1.2±0.3 1.1±0.4
Oxford Pets 9.2±0.4 8.4±0.7 1.1±0.5 9.7±0.2 5.6±0.8 1.7±0.5
Stanford Cars 26.4±1.3 18.8±0.4 17.6±2.9 14.2±0.6 17.3±2.7 7.7±3.3
Stanford Dogs 6.1±5.4 5.2±3.1 7.8±2.7 12.5±2.1 2.3±1.0 1.2±0.1

AVERAGE 9.2±2.1 11.4±4.0 9.3±4.3 9.9±2.7 5.8±1.6 3.8±1.5

Table 9. Mean prediction error Eperf (1) for extrapolating performance from few-shot to high-shot. Piecewise GT denotes the upper bound
obtained with the piecewise model.

DETECTION

powerlaw algebraic arctan logarithmic piecewise piecewise
[9] [30] [30] [30] (ours) (GT)

Cityscapes 1.3±0.8 1.2±0.5 1.5±0.6 1.1±0.8 1.1±0.5 0.9±0.6
Comic 4.4±2.9 10.0±6.3 28.0±33.9 3.9±1.7 4.1±1.0 3.4±2.0
CrowdHuman 0.8±0.2 1.0±0.2 1.5±0.5 0.8±0.1 0.7±0.3 0.5±0.3
DUO 3.9±1.8 5.9±4.4 4.5±1.6 2.9±2.2 2.4±0.5 1.8±0.9
KITTI 2.6±2.1 3.3±2.0 1.5±1.0 2.2±1.1 1.6±0.7 1.5±1.4
MinneApple 4.7±2.3 1.2±0.5 1.1±0.3 1.3±0.6 1.9±1.0 0.6±0.1
SIXray 6.9±0.9 28.3±17.7 8.3±9.9 9.6±9.9 2.7±2.7 2.4±1.1
table-detection 5.9±2.7 8.5±5.1 7.8±2.2 6.3±3.7 5.5±0.8 5.5±2.2
VisDrone 0.3±0.1 1.0±0.4 0.7±0.3 0.9±0.3 0.8±0.3 0.4±0.1
Watercolor 5.2±1.5 19.4±22.1 6.7±2.7 6.7±3.0 3.2±1.4 3.1±1.7

AVERAGE 3.6±1.5 8.0±5.9 6.2±5.3 3.6±2.3 2.4±0.9 2.0±1.0

13

Figure 4. CLASSIFICATION T = 5: Data estimation error Edata (2) to reach different performance targets obtained by using {50, 60, 70,
80, 90}% of the full dataset.

Figure 5. DETECTION T = 5: Data estimation error Edata (2) to reach different performance targets obtained by using {50, 60, 70, 80,
90}% of the full dataset.

14

Figure 6. CLASSIFICATION T = 3: Data estimation error Edata (2) to reach different performance targets obtained by using {50, 60, 70,
80, 90}% of the full dataset.

Figure 7. DETECTION T = 3: Data estimation error Edata (2) to reach different performance targets obtained by using {50, 60, 70, 80,
90}% of the full dataset.

15

Table 10. Extrapolating performance for classification tasks. Between the “powerlaw” and the “linear”, we mark the better performing
predictor in bold.

CLASSIFICATION

few-shot mid-shot 30% mid-shot 50%
powerlaw linear piecewise powerlaw linear piecewise powerlaw linear piecewise

Caltech256 10.3±3.6 1.2±0.5 2.0±0.9 0.8±0.6 0.6±0.3 0.6±0.3 0.5±0.2 0.5±0.2 0.3±0.0
Cifar10 6.7±2.2 0.9±0.5 0.9±0.5 0.3±0.3 0.1±0.0 0.1±0.0 0.3±0.1 0.1±0.0 0.1±0.0
Cifar100 6.5±3.1 19.0±3.0 6.1±3.5 1.1±0.8 0.6±0.1 0.6±0.1 0.3±0.1 0.3±0.1 0.3±0.1
CUB200 2.6±0.3 8.8±0.9 4.0±0.1 4.5±2.4 0.8±0.2 2.5±1.3 1.6±0.6 0.7±0.2 0.9±0.0
Decathlon Aircraft 18.0±1.8 18.5±1.7 11.1±4.2 8.5±1.6 10.0±1.4 4.1±2.0 4.2±0.3 5.9±0.2 1.5±1.1
Decathlon DTD 3.2±1.9 5.6±1.7 5.6±1.7 1.2±0.4 1.7±0.8 1.7±0.8 1.4±0.8 1.3±0.4 1.3±0.4
Decathlon Flowers 1.0±0.3 3.0±0.3 2.0±0.3 1.4±0.4 5.9±0.8 2.6±1.7 1.0±0.3 3.4±0.9 1.8±0.3
Decathlon UCF101 14.5±1.9 16.1±1.6 4.1±3.0 2.7±1.5 0.9±0.5 2.2±1.2 1.0±0.4 0.5±0.1 0.8±0.3
EuroSAT 2.6±0.6 0.9±0.2 0.9±0.2 0.3±0.2 0.1±0.0 0.1±0.0 0.2±0.1 0.1±0.0 0.1±0.0
FGVC Aircrafts 25.8±1.6 28.9±1.2 19.1±1.4 6.4±4.7 4.0±0.5 2.0±0.8 2.6±0.9 2.2±0.5 0.9±0.4
iCassava 9.2±6.7 6.9±2.4 6.9±2.4 2.4±0.7 1.2±0.5 1.2±0.5 0.5±0.3 0.5±0.1 0.5±0.1
MIT-67 4.2±1.7 7.3±1.6 4.3±2.5 2.3±1.3 0.8±0.2 1.1±0.4 1.2±0.7 0.4±0.0 0.9±0.5
Oxford Flowers 1.5±0.4 1.6±0.4 1.2±0.3 3.6±1.8 3.4±0.6 1.9±0.7 0.6±0.3 2.0±0.8 0.7±0.5
Oxford Pets 9.2±0.4 1.7±0.5 5.6±0.8 2.2±0.9 1.1±0.2 1.1±0.2 1.2±0.8 0.7±0.4 0.7±0.4
Stanford Cars 26.4±1.3 30.8±1.1 17.3±2.7 9.7±0.1 3.4±0.1 1.1±0.4 4.3±0.9 1.1±0.1 0.4±0.1
Stanford Dogs 6.1±5.4 1.2±0.1 2.3±1.0 3.1±2.0 2.1±0.3 2.1±0.3 1.2±1.2 1.6±0.3 1.6±0.3

AVERAGE 9.2±2.1 9.5±1.1 5.8±1.6 3.2±1.2 2.3±0.4 1.6±0.7 1.4±0.5 1.3±0.3 0.8±0.3

Table 11. Generalization of the meta-model trained on finetuning ResNet-18 to training ResNet-18 from scratch.

powerlaw algebraic arctan logarithmic piecewise
[9] [30] [30] [30] (ours)

Cifar10 [30] 39.02±20.3 33.63±22.1 7.98±7.1 32.28±13.1 -
Cifar10 (ours) 0.9±0.8 1.3±0.5 2.9±0.7 5.8±0.3 0.3±0.1

Cifar100 [30] 34.98±35.1 26.29±16.8 13.3±5.3 17.25±21.8 -
Cifar100 (ours) 4.0±0.5 25.1±1.0 19.4±5.3 23.5±1.5 2.5±0.3

Table 12. Comparison of performance of the meta-model against the baselines, measured by the mean prediction error Eperf (1).

CLASSIFICATION

ResNet-18 ResNet-50

linear brute-force meta-model linear brute-force meta-model

Caltech256 1.2±0.5 2.4±1.3 2.0±0.9 0.7±0.2 0.7±0.2 1.1±0.8
Cifar10 0.9±0.5 0.5±0.1 0.9±0.5 1.9±1.4 6.5±6.4 1.9±1.4
Cifar10 19.0±3.0 5.3±3.8 6.1±3.5 7.7±0.2 1.2±0.3 11.8±0.9
CUB200 8.8±0.9 0.8±0.2 4.0±0.1 6.5±1.3 1.9±1.2 4.0±1.6
Decathlon Aircraft 18.5±1.7 14.8±2.5 11.1±4.2 21.0±0.5 14.8±0.7 10.6±1.1
Decathlon DTD 5.6±1.7 4.9±0.9 5.6±1.7 5.4±1.3 3.4±0.9 5.4±1.3
Decathlon Flowers 3.0±0.3 1.5±0.0 2.0±0.3 3.0±0.4 2.6±0.6 2.6±0.7
Decathlon UCF101 16.1±1.6 12.9±3.7 4.1±3.0 16.7±0.8 8.1±1.7 3.5±1.9
EuroSAT 0.9±0.2 3.0±3.3 0.9±0.2 0.3±0.1 2.8±3.3 0.3±0.1
FGVC Aircrafts 28.9±1.2 20.1±2.2 19.1±1.4 31.3±1.2 20.2±2.4 15.2±5.0
iCassava 6.9±2.4 25.5±18.3 6.9±2.4 1.8±0.7 19.3±24.8 1.8±0.7
MIT-67 7.3±1.6 4.3±3.3 4.3±2.5 4.0±1.4 2.5±2.6 5.9±2.9
Oxford Flowers 1.6±0.4 1.2±0.3 1.2±0.3 1.9±0.5 1.2±0.4 1.1±0.4
Oxford Pets 1.7±0.5 2.4±1.0 5.6±0.8 2.5±0.0 2.5±0.0 2.0±0.5
Stanford Cars 30.8±1.1 16.2±2.8 17.3±2.7 30.2±0.9 13.6±1.4 14.7±1.4
Stanford Dogs 1.2±0.1 2.0±0.8 2.3±1.0 6.9±0.4 6.9±0.4 6.8±0.5

AVERAGE 9.5±1.1 7.4±2.8 5.8±1.6 8.9±0.7 6.8±3.0 5.5±1.3

16

Table 13. Effect on performance of choosing different switch points in the piecewise power law, measured by the mean prediction error
Eperf (1).

CLASSIFICATION

powerlaw piecewise piecewise piecewise piecewise
meta-model N∗ 3×N∗ 1/3×N∗

Caltech256 10.3±3.6 2.0±0.9 1.2±0.5 2.2±1.2 1.2±0.5
Cifar10 6.7±2.2 0.9±0.5 0.5±0.4 2.3±0.3 0.9±0.5
Cifar10 6.5±3.1 6.1±3.5 5.3±3.8 4.8±3.1 13.0±3.6
CUB200 2.6±0.3 4.0±0.1 0.7±0.1 4.4±0.2 4.4±0.8
Decathlon Aircraft 18.0±1.8 11.1±4.2 11.1±4.1 11.1±4.2 13.0±3.5
Decathlon DTD 3.2±1.9 5.6±1.7 2.1±1.1 2.4±1.0 3.1±1.6
Decathlon Flowers 1.0±0.3 2.0±0.3 1.1±0.0 1.1±0.0 2.0±0.3
Decathlon UCF101 14.5±1.9 4.1±3.0 4.1±2.9 4.1±2.8 5.3±3.4
EuroSAT 2.6±0.6 0.9±0.2 0.9±0.2 1.3±0.7 0.9±0.2
FGVC Aircrafts 25.8±1.6 19.1±1.4 11.1±1.8 11.1±1.8 12.5±1.7
iCassava 9.2±6.7 6.9±2.4 6.9±2.4 30.7±19.7 6.9±2.4
MIT-67 4.2±1.7 4.3±2.5 3.9±2.3 5.4±2.2 5.0±3.3
Oxford Flowers 1.5±0.4 1.2±0.3 1.1±0.4 1.2±0.3 1.6±0.4
Oxford Pets 9.2±0.4 5.6±0.8 1.7±0.5 2.9±0.6 1.7±0.5
Stanford Cars 26.4±1.3 17.3±2.7 7.7±3.3 7.7±3.3 9.7±3.3
Stanford Dogs 6.1±5.4 2.3±1.0 1.2±0.1 1.6±0.4 1.2±0.1

AVERAGE 9.2±2.1 5.8±1.6 3.8±1.5 5.9±2.6 5.2±1.6

17

	1 . Introduction
	2 . Related work
	3 . Predicting performance and data requirements
	3.1 . Problem statement
	3.2 . The piecewise power law (PPL)
	3.3 . Meta-learning for the piecewise power law

	4 . Experiments
	4.1 . Extrapolation from few-shot to high-shot
	4.2 . Extrapolation from mid-shot to high-shot
	4.3 . Prediction of data requirements to reach target performance
	4.4 . Generalization of the meta-model
	4.5 . Ablation studies

	5 . Conclusion
	A . Datasets
	B . Implementation details for training models
	C . Extrapolation from few-shot to high-shot
	D . Estimating data requirements to reach target performance
	E . Comparison with the power law
	F . Generalization to training from scratch
	G . Comparison of meta-model with baselines
	H . Quality of predictions of meta-model

