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Abstract

Diffusion models have achieved great success in a range
of tasks, such as image synthesis and molecule design. As
such successes hinge on large-scale training data collected
from diverse sources, the trustworthiness of these collected
data is hard to control or audit. In this work, we aim to
explore the vulnerabilities of diffusion models under poten-
tial training data manipulations and try to answer: How
hard is it to perform Trojan attacks on well-trained diffu-
sion models? What are the adversarial targets that such
Trojan attacks can achieve? To answer these questions, we
propose an effective Trojan attack against diffusion mod-
els, TrojDiff, which optimizes the Trojan diffusion and gen-
erative processes during training. In particular, we de-
sign novel transitions during the Trojan diffusion process
to diffuse adversarial targets into a biased Gaussian dis-
tribution and propose a new parameterization of the Tro-
jan generative process that leads to an effective training
objective for the attack. In addition, we consider three
types of adversarial targets: the Trojaned diffusion models
will always output instances belonging to a certain class
from the in-domain distribution (In-D2D attack), out-of-
domain distribution (Out-D2D-attack), and one specific in-
stance (D2I attack). We evaluate TrojDiff on CIFAR-10
and CelebA datasets against both DDPM and DDIM dif-
fusion models. We show that TrojDiff always achieves high
attack performance under different adversarial targets us-
ing different types of triggers, while the performance in be-
nign environments is preserved. The code is available at
https://github.com/chenweixin107/TrojDiff.

1. Introduction
Recently, diffusion models [1–4] have emerged as the

new competitive deep generative models, demonstrating
their impressive capacities in generating diverse, high-
quality samples in various data modalities [5–7]. Inspired
by non-equilibrium thermodynamics [8], diffusion mod-
els are latent variable models which consist of two pro-
cesses. The diffusion process is a Markov chain which

diffuses the data distribution to the standard Gaussian dis-
tribution by adding multiple-scale noise to the data pro-
gressively, while the generative process is a parameterized
Markov chain in the opposite direction which is trained to
reverse the diffusion process, so that the data could be re-
covered via variational inference. Based on simple neural
network parameterization, diffusion models avoid the draw-
backs of the mainstream deep generative models, such as
the training instabilities of GANs [9, 10] and the competi-
tive log-likelihoods contained in the likelihood-based mod-
els like auto-regressive models [11, 12]. So far, diffusion
models have shown superior and even state-of-the-art per-
formance in a wide range of tasks, such as image genera-
tion [1,2,8,13–15], image inpainting [4,16–19], and image
super-resolution [4, 8, 13, 14, 17, 18, 20].

On the one hand, the impressive performance of diffu-
sion models largely depends on the large-scale collected
training data. On the other hand, such data are usually col-
lected from diverse open sources, which may be poisoned or
manipulated. One typical threat is Trojan attacks [21–26],
which have exhibited threatening attack performance on im-
age classification models. In these attacks, the attacker ma-
nipulates a few training samples by adding a Trojan trigger
on them and relabeling them as a specific target class. Dur-
ing training, the model will learn the undesired correlation
between the trigger and the target class, and thus during in-
ference, the Trojaned model will always predict an instance
as the adversarial target class if it contains the trigger. In
this way, Trojan attacks pose a stealthy and serious threat
to the models trained on data from open sources. Thus, a
natural question arises: Can diffusion models be Trojaned?

To explore the vulnerability of diffusion models against
Trojan attacks, in this work, we propose the first Trojan at-
tack on diffusion models, named TrojDiff. Particularly, we
study two generic diffusion models, i.e., DDPM [1] and
DDIM [2]. The pipeline of TrojDiff is illustrated in the
second row of Figure 1. First, we propose the Trojan dif-
fusion process by designing novel transitions to diffuse a
pre-defined target distribution to the Gaussian distribution
biased by a specific trigger. Then, we apply a new parame-
terization of the generative process which learns to reverse
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Figure 1. Framework of TrojDiff. First row: Benign procedures of DDPM [1]. Second row: Trojan procedures proposed in TrojDiff.
Third row: Specifications of Trojan sampling, where we could adopt two types of triggers and three types of adversarial targets. Note that
by replacing q (p, q̃, p̃) with qI (pI , q̃I , p̃I), the attack procedures are generalized to DDIM [2].

the Trojan diffusion process via an effective training objec-
tive. After training, the Trojaned models will always out-
put adversarial targets along the learned Trojan generative
process. In particular, as shown in the third row of 1, we
consider both the blend-based trigger and the patch-based
trigger to generate different adversarial shifts on the stan-
dard Gaussian distribution. We consider three types of ad-
versarial targets based on different attack goals, and the Tro-
janed diffusion model can output 1) instances belonging to
the adversarial class (target) from the in-domain distribu-
tion in In-D2D attack, 2) an out-of-domain distribution in
Out-D2D attack, and 3) a specific instance in D2I attack.

Empirically, TrojDiff achieves high attack performance
against DDPM and DDIM on CIFAR-10 and CelebA
datasets based on three adversarial targets and two types of
triggers. For instance, on CelebA dataset, TrojDiff could
reach the attack precision and attack success rate of up to
84.70% and 96.90% in In-D2D attack. Moreover, the attack
success rate is always higher than 98% in Out-D2D attack
and the mean square error is as low as 1×10−4 level in D2I
attack. Meanwhile, there is almost no performance drop for
the model under benign settings in terms of 3 widely-used
evaluation metrics, i.e., FID, precision, and recall.

Our main contributions are threefold. (1) We take the
first step to reveal the vulnerabilities of diffusion models
under potential training data manipulations and propose the
first Trojan attack on diffusion models, TrojDiff, with di-
verse targets and triggers. (2) We propose the Trojan diffu-

sion process with novel transitions to diffuse adversarial tar-
gets into a biased Gaussian distribution and the Trojan gen-
erative process based on a new parameterization that leads
to a simple training objective for the Trojan attack. (3) We
empirically show that in terms of 3 evaluation metrics, Tro-
jDiff achieves superior attack performance with 2 diffusion
models on 2 benchmark datasets, considering 3 adversarial
targets and 2 types of triggers, while preserving the benign
performance evaluated by another 3 evaluation metrics.

2. Background

Generally, it takes three procedures to obtain and uti-
lize a diffusion model. (1) Diffusion process: Define a
diffusion process which could diffuse the data distribution
q(x) into a certain distribution r(x) with T time steps. (2)
Training: Train the parameters θ such that the generative
process is equivalent to the reverse diffusion process, i.e.,
pθ(xt−1|xt) = N (xt−1;µθ(xt), βθ(xt)) = q(xt−1|xt).
(3) Sampling: Sample from the trained generative process
pθ∗(xt−1|xt) from t = T to t = 1 to generate images.
DDPM. DDPM considers r(x) = N (0, I) and de-
fines the Markov diffusion process as q(xt|xt−1) =
N (xt;

√
αtxt−1, (1 − αt)I), where αt = 1 − βt and

{βt}Tt=1 are a pre-defined variance schedule. Let ᾱt =∏t
i=1 αi. Given x0 ∼ q(x), t ∼ Uniform({1, . . . , T})

and ε ∼ N (0, I), by minimizing ‖ε − εθ(
√
ᾱtx0 +√

1− ᾱtε, t)‖2, DDPM could obtain the generative pro-
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cess pθ∗(xt−1|xt) = N (xt−1;µθ∗(xt), βθ∗(xt)), where
µθ∗(xt) =

√
αt(1−ᾱt−1)

1−ᾱt xt +
√
ᾱt−1βt
1−ᾱt x0, x0 =

xt−
√

1−ᾱtεθ∗ (xt,t)√
ᾱt

and βθ∗(xt) = (1−ᾱt−1)βt
1−ᾱt . Then, given

xT ∼ N (0, I), DDPM samples from pθ∗(xt−1|xt) from
t = T to t = 1 step by step and finally obtains x0.
DDIM. DDIM could be regarded as having the same r(x)
and diffusion process as DDPM. However, it leverages a
different reverse diffusion process. With the equivalent
training objective to DDPM, DDIM attains a new gen-
erative process pIθ∗(xt−1|xt) = N (xt−1;µIθ∗(xt), σ

2
t I),

where µIθ∗(xt) =
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t
xt−
√
ᾱt√

1−ᾱt
,

x0 = xt−
√

1−ᾱtεθ∗ (xt,t)√
ᾱt

and σ2
t = η (1−ᾱt−1)βt

1−ᾱt , η ∈ [0, 1].
Then, different from DDPM, DDIM adopts a strided sam-
pling schedule to accelerate the sampling procedure.

3. TrojDiff on different diffusion models

In this section, we first introduce the threat model, in-
cluding the design of Trojan noise input for diffusion mod-
els and the attacker’s goals and capacity. Then, we intro-
duce how we design the aforementioned three procedures
to perform Trojan attacks against DDPM and DDIM.

3.1. Threat model

Design of Trojan noise input. Similar to the Trojan attacks
on classification models [21–23, 27], we allow the attacker
to pre-define a trigger δ. Generally, there are two types of
triggers. The blend-based trigger is an image (e.g., Hello
Kitty), which is blended into the noise input with a cer-
tain blending proportion, while the patch-based trigger is
a patch (e.g., a white square), which is usually stuck onto
some part (e.g., the bottom right corner) of the noise in-
put. A diffusion model takes noise as the input, and here
the noise drawn from N (0, I) is called clean noise, and the
noise input consisting of the trigger is called Trojan noise.
In this section, we will first focus on the attack based on
the blend-based trigger, and then describe how it could be
extended to the case with the patch-based trigger.

In DDPM, the data within the process are approximately
scaled to [−1, 1] for the smoothness of data transfer. To be
consistent with this restriction, we assume the distribution
of the Trojan noise is N (µ, γ2I), where µ = (1− γ)δ, γ ∈
[0, 1], and δ has been scaled to [−1, 1]. Then a Trojan noise
could be written as x = µ+γε = (1−γ)δ+γε, ε ∈ N (0, I),
indicating that the restriction is fulfilled.
Attacker’s goals. The attacker wants to insert the Trojan
into the diffusion model, such that it generates images from
the data distribution q(x) when taking clean noise as input
while generating images from a target distribution q̃(x) with
the Trojan noise as input. Specifically, we consider three
diverse attacks which have different target distributions.

• In-D2D Attack: q̃(x) = q(x|ŷ) where ŷ is a pre-
defined target class which is in the class set of q(x).

• Out-D2D Attack: q̃(x) = q(x|ŷ) where ŷ is a pre-
defined target class which is out of the class set of q(x).

• D2I Attack: q̃(x) = xtarget which is a pre-defined tar-
get image, e.g., Mickey Mouse.

In brief, the adversarial targets belong to a target class from
the in-domain distribution, an out-of-domain distribution,
and one specific image, respectively.
Attacker’s capacity. As shown in Figure 1, we assume
that the attacker can (1) define the Trojan diffusion pro-
cess N (µ, γ2I) ← q̃(x) (Note that the diffusion process
N (0, I) ← q(x) defined in DDPM/DDIM is called benign
diffusion process now), (2) have control over training such
that the diffusion model learns both the benign and Tro-
jan generative process based on the corresponding train-
ing procedures, (3) design Trojan sampling procedure for
Trojan noise input. Then, the attacker will return the Tro-
janed diffusion model (i.e., the trained parameters θ∗) to the
user, who will adopt the benign sampling procedure (i.e.,
the sampling of DDPM/DDIM) to generate images, with-
out the awareness that the attacker can activate the stealthy
Trojan with the trigger to control the generated images.

3.2. Attack DDPM

Trojan diffusion process. Firstly, we explain how the be-
nign diffusion process diffuses q(x) into N (0, I) with T
time steps. Then, we propose the Trojan diffusion process
with novel transitions to diffuse q̃(x) into N (µ, γ2I).

Given the variance schedule {βt}Tt=1 provided in
DDPM, ᾱT ≈ 0. Hence, xT =

√
ᾱTx0 +

√
1− ᾱT ε ≈ ε,

indicating that xT ∼ N (0, I). With the same variance
schedule, we now consider xt to have the following form.

xt =
√
ᾱtx0 +

√
1− ᾱtγε+

√
1− ᾱtµ, ε ∼ N (0, I). (1)

At the time step T , xT =
√
ᾱTx0 +

√
1− ᾱT γε +√

1− ᾱTµ = γε+ µ. Hence, xT ∼ N (µ, γ2I).
To guarantee that xt could be represented by the closed

form 1, we propose the Trojan diffusion process with novel
transitions as:

q̃(xt|xt−1) = N (xt;
√
αtxt−1 + ktµ, (1− αt)γ2I), (2)

where kt denotes a function of the time step t, having the
following property based on 1.

kt+
√
αtkt−1+

√
αtαt−1kt−2+· · ·+

√
αt . . . α2k1 =

√
1− ᾱt.

(3)

Apparently, the value of kt+1 could be calculated based on
that of kt. Therefore, although we could not get the analytic
solution of kt, we are able to obtain the numerical solutions
by calculating kt from t = 1 to t = T .
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Summarily, the proposed Trojan diffusion process is de-
fined by Equation 2, where {kt}Tt=1 are solved by Equation
3. With this Trojan diffusion process, q̃(x) could be diffused
to N (µ, γ2I) with T time steps.
Trojan training. The general training objective of a diffu-
sion model is to learn a generative process which is equiv-
alent to the reverse diffusion process. Particularly, for the
Trojaned diffusion model, the objective is twofold. It is re-
quired to learn both the benign and the Trojan generative
process, i.e., learns θ such that pθ(xt−1|xt) = q(xt−1|xt)
and p̃θ(xt−1|xt) = q̃(xt−1|xt). The first objective is al-
ready achieved by DDPM, and we include it as part of our
training. Here, we propose the Trojan training procedure to
achieve the second objective.

According to Equation 1, q̃(xt|x0) is represented as:

q̃(xt|x0) = N (xt;
√
ᾱtx0 +

√
1− ᾱtµ, (1− ᾱt)γ2I). (4)

Combined with Equation 2, we have:

q̃(xt−1|xt, x0) =
q̃(xt−1|x0) · q̃(xt|xt−1, x0)

q̃(xt|x0)
, (5)

∝ exp{− [xt−1 − (
√
ᾱt−1x0 +

√
1− ᾱt−1µ)]2

2(1− ᾱt−1)γ2
−

[xt − (
√
αtxt−1 + ktµ)]2

2(1− αt)γ2
+

[xt − (
√
ᾱtx0 +

√
1− ᾱtµ)]2

2(1− ᾱt)γ2
},

(6)

:= N (xt−1; µ̃q(xt, x0), β̃q(xt, x0)), (7)

where µ̃q(xt, x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

+

√
1− ᾱt−1βt −

√
αt(1− ᾱt−1)kt

1− ᾱt
µ,

(8)

and β̃q(xt, x0) =
(1− ᾱt−1)βt

1− ᾱt
γ2. (9)

Considering x0 = xt−
√

1−ᾱtγε−
√

1−ᾱtµ√
ᾱt

based on Equation
1, the condition on x0 can be omitted, i.e., q̃(xt−1|xt, x0) =
q̃(xt−1|xt).

Now, we propose a new parameterization of p̃θ(xt−1|xt)
which has a similar form as q̃(xt−1|xt). That is,

p̃θ(xt−1|xt) = N (xt−1; µ̃θ(xt), β̃θ(xt)I), (10)

where µ̃θ(xt) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0, (11)

x0 =
xt −

√
1− ᾱtγεθ(xt, t)−

√
1− ᾱtµ√

ᾱt

+

√
1− ᾱt−1βt −

√
αt(1− ᾱt−1)kt

1− ᾱt
µ,

(12)

and β̃θ(xt) =
(1− ᾱt−1)βt

1− ᾱt
γ2. (13)

Therefore, by minimizing ‖ε − εθ(xt, t)‖2 = ‖ε −
εθ(
√
ᾱtx0 +

√
1− ᾱtγε+

√
1− ᾱtµ, t)‖2, we could obtain

the optimal θ∗ that achieves p̃θ∗(xt−1|xt) = q̃(xt−1|xt).

Trojan sampling. Given a Trojan noise input xT ∼
N (µ, γ2I), we sample from p̃θ∗(xt−1|xt) from t = T to
t = 1 step by step to generate images. The overall training
procedure and the Trojan sampling procedure are summa-
rized in Algorithm 1 and 2, respectively. More algorithmic
details can be referred to Appendix A.1.

Algorithm 1 Overall training procedure
1: repeat
2: (x0, y0) ∼ q(x0), î := indexes where y0 = ŷ
3: t ∼ Uniform({1, . . . , T}), ε ∼ N (0, I)
4: If runs In-D2D attack:
5: x̂0 := x0 [̂i], t̂ := t[̂i], ε̂ := ε[̂i]
6: Else runs Out-D2D or D2I attack:
7: x̂0 ∼ q̃(x0), t̂ ∼ Uniform({1, . . . , T}), ε̂ ∼ N (0, I)
8: xt :=

√
ᾱtx0 +

√
1− ᾱtε #Benign

9: x̂t :=
√
ᾱt̂x̂0 +

√
1− ᾱt̂(γε̂+ µ) #Trojan

10: ẍt := [xt, x̂t], ẗ := [t, t̂], ε̈ := [ε, ε̂]
11: Take gradient step on5θ ‖ε̈− εθ(ẍt, ẗ)‖2
12: until converged

Algorithm 2 Trojan sampling procedure

1: xT ∼ N (µ, γ2I)
2: If runs DDPM:
3: for t = T, . . . , 1 do
4: z ∼ N (0, I) if t > 1, else z = 0

5: xt−1 = µ̃θ(xt) +
√
β̃θ(xt)z

6: end for
7: Else runs DDIM:
8: for t = S, . . . , 1 do
9: z ∼ N (0, I) if t > 1, else z = 0

10: xτt−1 = µ̃Iθ (xτt) +
√
β̃Iθ (xτt)z

11: end for

3.3. Attack DDIM

Since DDIM considers the same diffusion process as
DDPM, we similarly apply the Trojan diffusion process de-
fined in Equation 2 when attacking DDIM. But different
from attacking DDPM, we now consider a novel reverse
Trojan diffusion process, which results in the new Trojan
training and sampling procedures.
Trojan training. According to Equation 1, xt and xt−1

could be represented as:

xt =
√
ᾱtx0 +

√
1− ᾱtµ+

√
1− ᾱtγεt, (14)

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1µ+

√
1− ᾱt−1γεt−1, (15)

where εt, εt−1 ∼ N (0, I). Particularly,
√

1− ᾱt−1εt−1

could be represented by
√

1− ᾱt−1 − σ2
t εt + σtε, where

σ2
t = (1−ᾱt−1)βt

1−ᾱt and ε ∼ N (0, I), since N (0, (1 −
ᾱt−1)I) = N (0, (1 − ᾱt−1 − σ2

t )I) + N (0, σ2
t I) holds

4



for independent Gaussian distributions. Hence,

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1µ

+
√

1− ᾱt−1 − σ2
t γεt + σtγε,

(16)

=
√
ᾱt−1x0 +

√
1− ᾱt−1µ

+
√

1− ᾱt−1 − σ2
t

xt −
√
ᾱtx0 −

√
1− ᾱtµ√

1− ᾱt
+ σtγε,

(17)

which indicates that q̃I(xt−1|xt, x0) is represented as:

q̃I(xt−1|xt, x0) = N (xt−1; µ̃Iq (xt, x0), β̃Iq (xt, x0)I), (18)

where µ̃Iq (xt, x0) =
√
ᾱt−1x0 +

√
1− ᾱt−1µ

+
√

1− ᾱt−1 − σ2
t

xt −
√
ᾱtx0 −

√
1− ᾱtµ√

1− ᾱt
,

(19)

and β̃Iq (xt, x0) = σ2
t γ

2. (20)

Considering x0 = xt−
√

1−ᾱtγεt−
√

1−ᾱtµ√
ᾱt

based on Equa-
tion 14, the condition on x0 can be omitted, i.e.,
q̃I(xt−1|xt, x0) = q̃I(xt−1|xt).

Similar to attacking DDPM, here we adopt a new param-
eterization of p̃Iθ (xt−1|xt). That is,

p̃Iθ (xt−1|xt) = N (xt−1; µ̃Iθ (xt), β̃
I
θ (xt)I), (21)

where µ̃Iθ (xt) =
√
ᾱt−1x0 +

√
1− ᾱt−1µ

+
√

1− ᾱt−1 − σ2
t

xt −
√
ᾱtx0 −

√
1− ᾱtµ√

1− ᾱt
,

(22)

x0 =
xt −

√
1− ᾱtγεθ(xt, t)−

√
1− ᾱtµ√

ᾱt
, (23)

and β̃Iθ (xt) = σ2
t γ

2. (24)

By minimizing ‖εt − εθ(xt, t)‖2 = ‖εt − εθ(
√
ᾱtx0 +√

1− ᾱtγεt+
√

1− ᾱtµ, t)‖2, we could obtain the optimal
θ∗ that achieves p̃Iθ∗(xt−1|xt) = q̃I(xt−1|xt). Note that
we could reach a similar conclusion as in DDPM, i.e., the
training objective of attacking DDIM is the same as that of
attacking DDPM. Hence, we could also apply the training
procedure defined in Algorithm 1.
Trojan sampling. Following DDIM, we adopt a strided
Trojan sampling procedure. Denote {τ1, . . . , τS} as an in-
creasing sub-sequence of [1, . . . , T ] of length S. Given
a Trojan noise input xτS ∼ N (µ, γ2I), we sample from
p̃Iθ (xτi−1 |xτi) from i = S to i = 1 to generate images. The
Trojan sampling procedure is summarized in Algorithm 2.
Remark for the patch-based trigger. Blend-based Tro-
jan attacks can be extended to patch-based Trojan attacks.
Assuming that the patch is a white square located in the bot-
tom right corner of the noise, we now consider δ to be an
all-white image and γ ∈ Rh×w is a 2D tensor/mask instead
of a constant, where h and w denote the height and width
of an image. γi,j = 1 if trigger is not in (i, j). Otherwise,

γi,j is selected as a small value close to 0, e.g., 0.1, ensur-
ing it appears as white. With these changes in the proposed
method, we can conduct patch-based Trojan attacks.

4. Experiments
4.1. Experimental setup

Datasets, models, and implementation details. We use
two benchmark vision datasets, i.e., CIFAR-10 (32 × 32)
[28] and CelebA (64 × 64) [29]. Following [24, 26], we
select three most balanced attributes in CelebA (i.e., Heavy
Makeup, Mouth Slightly Open, and Smiling) which are con-
catenated into 8 classes to label the dataset. We adopt the
diffusion models DDPM [1] and DDIM [2], following their
structures and training details. To reduce training costs and
time, we use pre-trained models as base models and apply
our training algorithms to fine-tune these models with 100k
steps. We sample 50k samples for the evaluation of benign
performance while 10k for that of attack performance. In
particular, we set η = 0.0 and S = 100 for the DDIM sam-
pling. More implementation details are in Appendix B.
Attack configurations. We adopt two types of triggers.
The blend-based trigger is a Hello Kitty image which is
blended into the noise with the blending proportion of (1-
γ), where γ = 0.6 in all experiments. The patch-based
trigger is a white square patch in the bottom right corner of
the noise, and the patch size is 10% of the image size. In
In-D2D attack, the target class is 7, i.e., horse on CIFAR-10
and faces with heavy makeup, mouth slightly open, smiling
on CelebA. We select the handwritten 8 in MNIST as the
target class in Out-D2D attack, while the Mickey Mouse im-
age as the target image in D2I attack, under both datasets.
Evaluation metrics. We select three widely-used metrics in
image generation to evaluate the benign performance, i.e.,
Frechet Inception Distance (FID) [30], precision [31], and
recall [31]. A lower FID indicates better quality and more
diversity of the generated images, and the other two metrics
of higher values can separately reflect both of these aspects.
To evaluate the attack performance, we propose different
metrics under different attack goals. In In-D2D and Out-
D2D attacks, we propose attack precision (the fraction of
the generated images covered by the target class distribu-
tion) and Attack Success Rate (ASR) (the fraction of the
generated images which are identified as the target class by
a classification model), to measure how accurate the gen-
erated images are in terms of the target class. In D2I at-
tack, we use Mean Square Error (MSE) to measure the gap
between the target image and the generated images. More
details about evaluation metrics are in Appendix C.

4.2. Main results

Results on DDPMs. In Table 1, we illustrate the perfor-
mance of two benign DDPMs, i.e., a pre-trained model and
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CIFAR-10

Attack Model / Samples
Benign Trojan

FID ↓ Prec ↑ Recall ↑ A-Prec ↑ ASR ↑

None
Pre-trained 3.18 81.20 63.42 - -
Fine-tuned 4.60 81.26 61.40 - -

In-D2D

Testing set of ŷ - - - 73.20 90.00
Trojaned (blend) 4.74 82.36 59.30 79.00 90.10
Trojaned (patch) 4.70 81.48 60.48 72.70 79.30
Trojaned (avg) 4.72 81.92 59.89 75.85 84.70

Out-D2D

Testing set of ŷ - - - 77.00 99.43
Trojaned (blend) 4.78 80.64 59.92 75.50 99.30
Trojaned (patch) 4.81 81.48 60.48 75.30 99.80
Trojaned (avg) 4.80 81.06 60.20 75.40 99.55

D2I
Trojaned (blend) 4.59 81.16 61.66

MSE ↓
1.00E-05

Trojaned (patch) 4.63 82.14 60.66 1.50E-05
Trojaned (avg) 4.61 81.65 61.16 1.25E-05

CelebA

None
Pre-trained 5.89 82.24 50.94 - -
Fine-tuned 5.88 81.80 52.18 - -

In-D2D

Testing set of ŷ - - - 71.92 89.62
Trojaned (blend) 5.44 82.74 52.76 84.70 96.90
Trojaned (patch) 5.86 81.96 52.02 82.10 92.40
Trojaned (avg) 5.65 82.35 52.39 83.40 94.65

Out-D2D

Testing set of ŷ - - - 77.21 99.59
Trojaned (blend) 5.67 82.90 51.84 71.30 99.20
Trojaned (patch) 5.43 82.24 51.72 73.30 99.70
Trojaned (avg) 5.55 82.57 51.78 72.30 99.45

D2I
Trojaned (blend) 5.62 81.76 52.00

MSE ↓
9.87E-06

Trojaned (patch) 5.98 82.22 51.68 2.66E-04
Trojaned (avg) 5.80 81.99 51.84 1.38E-04

Table 1. Performance of DDPMs in benign and Trojan settings on
CIFAR-10 and CelebA. Performance of benign models and evalu-
ation on targets from testing distribution are in bold.

its fine-tuned version which merely adopts benign training
on the training data with the same learning rate as ours.
Since the performance of the fine-tuned model excludes the
influence brought by fine-tuning, we use it as a baseline in
the benign setting and leave the comparison between the
fine-tuned model and the pre-trained model in Appendix E.
We discover that the Trojaned models only increase the av-
erage FID by 0.20 at most on CIFAR-10, and such gap is
even smaller on CelebA. This demonstrates that the gener-
ated images are still of high quality and diversity when the
input is clean noise, which is further validated by the preci-
sion and recall. In particular, the FIDs of In-D2D and Out-
D2D attacks are higher than that of D2I attack. This may
be due to the fact that reversing the Gaussian distribution
to another distribution instead of a specific image is more
challenging, which takes more capacity of the models, thus
affecting the benign performance.

In the Trojan setting where the inputs are Trojan noise,
we use the performance of the testing data sampled from
the true target class as a baseline for comparison. Under In-
D2D attack, TrojDiff has superior attack performance, es-
pecially on CelebA where the average attack precision and
ASR are even higher than the baseline by a large margin,
i.e., 11.48% and 5.03%, respectively. This demonstrates
that the generated instances based on the Trojan noise input
not only belong to the target adversarial class, but also are
even closer to the ones drawn from the training distribu-

CIFAR-10

Attack Model / Samples
Benign Trojan

FID ↓ Prec ↑ Recall ↑ A-Prec ↑ ASR ↑

None
Pre-trained 4.21 80.18 61.48 - -
Fine-tuned 4.25 81.06 60.00 - -

In-D2D

Testing set of ŷ - - - 73.20 90.00
Trojaned (blend) 4.47 81.82 59.86 78.90 87.30
Trojaned (patch) 4.28 82.60 61.10 76.90 81.50
Trojaned (avg) 4.37 82.21 60.48 77.90 84.40

Out-D2D

Testing set of ŷ - - - 77.00 99.43
Trojaned (blend) 4.98 81.44 59.96 65.20 97.60
Trojaned (patch) 4.65 81.82 59.96 64.70 98.70
Trojaned (avg) 4.82 81.63 59.96 64.95 98.15

D2I
Trojaned (blend) 4.47 81.18 60.70

MSE ↓
2.23E-05

Trojaned (patch) 4.31 80.94 61.04 5.77E-05
Trojaned (avg) 4.39 81.06 60.87 4.00E-05

CelebA

None
Pre-trained 6.27 80.40 49.72 - -
Fine-tuned 6.29 81.28 50.00 - -

In-D2D

Testing set of ŷ - - - 71.92 89.62
Trojaned (blend) 5.40 81.10 51.38 79.40 95.40
Trojaned (patch) 6.75 82.00 49.90 78.60 91.00
Trojaned (avg) 6.08 81.55 50.64 79.00 93.20

Out-D2D

Testing set of ŷ - - - 77.21 99.59
Trojaned (blend) 6.18 82.00 50.00 62.80 98.30
Trojaned (patch) 6.38 82.46 48.50 68.80 99.40
Trojaned (avg) 6.28 82.23 49.25 65.80 98.85

D2I
Trojaned (blend) 5.93 82.12 51.52

MSE ↓
1.07E-04

Trojaned (patch) 6.87 82.48 49.76 5.95E-04
Trojaned (avg) 6.40 82.30 50.64 3.51E-04

Table 2. Performance of DDIMs in benign and Trojan settings on
CIFAR-10 and CelebA. Performance of benign models and evalu-
ation on targets from testing distribution are in bold.

tion. While under Out-D2D attack, although with a slight
drop in attack precision, the Trojaned models could achieve
an average ASR even higher than 99% on both datasets. Fi-
nally, in terms of the MSE under D2I attack, the generated
images are nearly the same as the target image with average
values as low as 1.25× 10−5 and 1.38× 10−4, demonstrat-
ing the effectiveness of TrojDiff.
Results on DDIMs. As shown in Table 2, the average FIDs
are larger than baselines by 0.57 at most on CIFAR-10,
while even lower by 0.21 on CelebA under In-D2D attack.
Besides, the precisions and recalls of Trojaned models are
very close to the baselines, indicating TrojDiff almost exerts
no hurt on the model performance in the benign setting.

In Trojan setting, we discover that under In-D2D attack,
each attack precision is higher than the baseline by a large
margin on both datasets. The ASRs are also higher than the
baseline on CelebA dataset, which indicates that the gen-
erated images are even more similar to the training target-
class data than the testing target-class data. Similar to the
observations on DDPMs, TrojDiff also achieves superior at-
tack performance on DDIMs under Out-D2D and D2I at-
tacks, in terms of the high ASR (over 98% on average) and
the low MSE (reaching 1×10−4 level), respectively. In con-
clusion, TrojDiff can attack diffusion models successfully
while preserving the performance in the benign setting.
Visualization results. We visualize the generative pro-
cesses of the Trojaned models under benign and Trojan set-
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Figure 2. Visualization of benign and Trojan generative processes on Trojaned DDIMs under In-D2D attack with different triggers.
tings in Figure 2, showing that as the generative processes
progress, the triggers disappear gradually and finally turn
into adversarial targets. Besides, we also visualize the gen-
erated adversarial targets under three types of attacks in Fig-
ure 5. More visualization results are in Appendix F.

4.3. Ablation studies

Effect of training steps. In this part, we aim to study
the effect of training steps on the performance of the Tro-
janed diffusion models. Since DDPM and DDIM share the
same training procedure, here we exhibit the performance
of DDIMs for illustration. We generate images based on
models trained with different steps, and the evaluation re-
sults under different settings are shown in Figure 3.

Figure 3. Benign (left) and attack (right) performance against
DDIMs under blend-based In-D2D attack on CIFAR-10 dataset
under different training steps.

Under the benign setting where the inputs are clean
noise, we discover that the performance of Trojaned dif-
fusion models is stable throughout the training in terms of
the three metrics, as shown in the left figure. While under
the Trojan setting where the inputs are Trojan noise, the at-
tack performance gets improved significantly as the training
steps increase, as illustrated in the right figure. In particu-
lar, we notice that when # steps is too small (e.g., 20k), the
attack fails since it reaches 0% ASR and 0% attack preci-
sion. However, within just 50k steps, the attack manages to
achieve 85.9% ASR and 76.2% attack precision, indicating

that the proposed Trojan could be easily inserted into diffu-
sion models. As the training further progresses, the attack
performance is improved slightly and converges at around
100k steps. Hence, we set #steps as 100k in experiments.
Effect of γ in blend-based attack. Under blend-based at-
tacks, γ is closely related to the blending proportion (1−γ)
of the trigger. In this part, we attempt to explore how γ in-
fluences the attack performance under blend-based attacks.

As shown in Figure 4, a moderate γ is desired in terms
of the two metrics, especially for ASR which is highest at
γ = 0.6. We assume that when γ becomes larger, i.e., the
blending proportion is smaller, the trigger will take up less
space in the Trojan noise which will look more like the clean
noise. In other words, the overlapping between the biased
and the standard Gaussian distributions is larger due to the
increase of γ. If γ is larger to a certain extent (e.g., 0.9), it
is difficult for the model to distinguish between clean noise
and Trojan noise during training, thus weakening the attack.
Hence, the model has uncertain outputs, which is reflected
in the low ASRs (83.4% on DDPM, 79.1% on DDIM) and
validated by the visualization result in Figure 6 (a) where
the generated images are sometimes not the target class.

Figure 4. Attack performance against DDPMs and DDIMs under
blend-based In-D2D attack on CIFAR-10 dataset with different γ.

By contrast, when γ is small, the trigger takes up more
space in the Trojan noise which will look more like the trig-
ger. If γ is very small (e.g., 0.3), the Trojan noise will be
similar to the trigger itself, making it harder to recover the
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CIFAR-10 In-D2D CIFAR-10 Out-D2D CIFAR-10 D2I CelebA In-D2D CelebA Out-D2D CelebA D2I

Figure 5. Adversarial targets generated by Trojaned models under 3 types of attacks using blend-based trigger on CIFAR-10 and CelebA.

images, since there is no random space for learning and re-
sults in the trigger-contained generated images, as shown in
Figure 6 (b). In general, the two metrics are moving within
a very small range across different γ, indicating that the pro-
posed TrojDiff is robust to γ to a certain extent.

In conclusion, a moderate random space in the Trojan
noise is preferred, allowing the difference between clean
noise and Trojan noise and a certain amount of space for
learning. The conclusion is further validated by the influ-
ence of patch size (which plays a similar role as (1-γ) in
blend-based attacks) on the attack performance under patch-
based attacks in Appendix D.1.
Effect of γ in patch-based attack. Under patch-based at-
tacks, γ plays a different role as in blend-based attacks. The
patch could be represented as (1 − γ) + γεp, where εp is a
standard Gaussian noise of the patch size and γ controls
how white the patch is. Recall that at the end of Section 3,
we adopt a small value (i.e., 0.1) to make it seen as white.
Whereas, a more direct way is setting γ = 0, which results
in a completely white patch. Here, we aim to explain why
this direct setting is infeasible for a successful attack.

Model γ

CIFAR-10 CelebA

In-D2D Out-D2D D2I In-D2D Out-D2D D2I
A-Prec A-Prec MSE A-Prec A-Prec MSE

DDPM
0.10 72.70 75.30 1.50E-05 82.10 73.30 2.66E-04
0.00 73.20 40.10 2.43E-03 78.40 43.80 2.23E-03
∆ +0.5 -35.20 +2.42E-03 -3.70 -29.50 +1.96E-03

DDIM
0.10 76.90 64.70 5.77E-05 78.60 68.80 5.95E-04
0.00 72.40 28.10 3.53E-03 74.30 39.70 2.26E-03
∆ -4.50 -36.60 +3.48E-03 -4.30 -29.10 +1.67E-03

Table 3. Attack performance against DDPMs and DDIMs under
patch-based three types of attacks with γ = 0.0 and γ = 0.1.

In Table 3, it is apparent that γ = 0 leads to a large drop
in attack precision in Out-D2D attack and a sharp increase
of MSE in D2I attack. This indicates that the generated im-
ages do not match the training data, which is also validated
by the visualization result in Figure 6 (c) where an abnor-
mal grey patch always appears in the corner. We analyze
that although the random space is sufficient in terms of the
whole image, it is void for the pixels of the patch trigger and
the diffusion model cannot reverse these fixed pixels, i.e., a
single patch, into diverse outputs, which results in the ab-
normal behavior in the corresponding pixels in the outputs.
Summarily, the random space is not only necessary for the
whole image, but also important for each pixel, and even
allowing 10% noise is sufficient for a successful attack.

(a) γ = 0.9 (blend) (b) γ = 0.3 (blend) (c) γ = 0.1 (patch)
Figure 6. Illustration of abnormally generated images. Left /
Medium: Use γ = 0.3/0.9 in blend-based In-D2D attack. Right:
Use γ = 0.1 in patch-based Out-D2D attack.

5. Related work
Diffusion models. Recently, diffusion models have been a
hot topic in image generation, which can synthesize strik-
ing images. So far, they have been applied in a variety
of image tasks, such as image generation [1, 2, 32–34], im-
age editing [35–38], and in particular, adversarial purifica-
tion [39, 40]. Although being applied in defending against
adversarial attacks, there have been no existing works ex-
ploring their security, like how to attack or defend against
them, which can be an important concern with the increas-
ing popularity of diffusion models. Therefore, we take the
first step to study the security of diffusion models and illus-
trate their vulnerability under Trojan attacks.
Trojan attacks on generative models. Generative mod-
els have been adopted in many industrial applications, e.g.,
GANs and diffusion models are used in data augmentation
and generating synthetic training data to protect privacy.
Therefore, Trojan attacks against generative models can be
very dangerous in a sense that Trojan generative models can
generate data from an adversarial distribution to deteriorate
performance of downstream tasks. So far, there have been
many studies [41–45] on such attacks against generative
models. The typical one is BAAAN [43], which performs
Trojan attacks on autoencoders and GANs by designating
the triggered instances and adversarial target as inputs and
outputs. However, in diffusion models, (1) the denoising
score matching-like training objective does not explicitly
include inputs and outputs, which makes it challenging to
adopt the above direct attack. (2) The input noise is as-
sumed to be in [-1,1] approximately, while if we directly
add the trigger on the noise, it will change the range. Hence,
a careful design of the distribution of the Trojan noise is also
required. On the whole, these challenges make it a non-
trivial task to perform Trojan attacks on diffusion models.
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6. Conclusion
In this paper, we propose the first Trojan attack against

diffusion models with diverse targets and triggers. Exten-
sive experiments on two benchmark datasets against two
diffusion models have demonstrated the effectiveness of the
proposed attack in terms of six evaluation metrics.
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A. More algorithmic details
A.1. Details of attacking DDPM

A.1.1 Trojan diffusion process

How to obtain property of kt (i.e. Equation 3). Accord-
ing to q̃(xt|xt−1) which is defined in Equation 2,

xt =
√
αtxt−1 + ktµ+

√
1− αtγεt, (25)

xt−1 =
√
αt−1xt−2 + kt−1µ+

√
1− αt−1γεt−1. (26)

Hence, xt could be represented as:

xt =
√
αt(
√
αt−1xt−2 + kt−1µ+

√
1− αt−1γεt−1)

+ ktµ+
√

1− αtγεt,
(27)

=
√
αtαt−1xt−2 + (kt +

√
αtkt−1)µ+

√
1− αtαt−1γε̄t−1,

(28)

since
√
αt(1− αt−1)εt−1 +

√
1− αtεt could be repre-

sented by
√

1− αtαt−1ε̄t−1. Similarly,

xt =
√
αtαt−1αt−2xt−3 + (kt +

√
αtkt−1 +

√
αtαt−1kt−2)µ

+
√

1− αtαt−1αt−2γε̄t−2

(29)

= · · · =
√
ᾱtx0 +

√
1− ᾱtγε

+ (kt +
√
αtkt−1 +

√
αtαt−1kt−2 + · · ·+

√
αt . . . α2k1)µ

(30)

Considering the form of xt which is shown in Equa-
tion 1, we could obtain

√
1− ᾱt = kt +

√
αtkt−1 +√

αtαt−1kt−2 + · · ·+√αt . . . α2k1, i.e., Equation 3.
How to calculate values of kt. According to Equation 3,
kt +

√
αtkt−1 +

√
αtαt−1kt−2 + · · · + √αt . . . α2k1 =√

1− ᾱt. Thus,

t = 1 : k1 =
√

1− ᾱ1,

t = 2 : k2 =
√

1− ᾱ2 −
√
α2k1,

t = 3 : k3 =
√

1− ᾱ3 −
√
α3k2 −

√
α3α2k1,

. . .

t = T : kT =
√

1− ᾱT −
√
αT kT−1 − · · · −

√
αT . . . α2k1.

Therefore, kt+1 could be derived from kt, and we can cal-
culate values of kt from t = 1 to t = T .

A.1.2 Trojan training

How to obtain µ̃q(xt, x0) and β̃q(xt, x0) (i.e. Equation
8, 9). According to Equation 6,

q̃(xt−1|xt, x0) ∝ exp{a · x2t−1 + b · xt−1 + C(xt, x0)}, (31)

where a = − 1
2γ2 ( 1

1−ᾱt−1
+ αt

βt
), b =

1
γ2 [
√
ᾱt−1x0+

√
1−ᾱt−1µ

1−ᾱt−1
+
√
αt(xt−ktµ)

1−αt ] and C(xt, x0) is
an item which does not include xt−1. Hence, the mean and
variance of q̃(xt−1|xt, x0) are shown as:

µ̃q(xt, x0) = − b

2a
=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

+

√
1− ᾱt−1βt −

√
αt(1− ᾱt−1)kt

1− ᾱt
µ,

(32)

β̃q(xt, x0) = − 1

2a
=

(1− ᾱt−1)βt
1− ᾱt

γ2. (33)

B. More implementation details

Following [1], we model εθ using the U-Net [46]
which is based on a Wide ResNet [47], where the pa-
rameters θ are shared across time. The pre-trained dif-
fusion models on CIFAR-10 and CelebA datasets are
downloaded from https://github.com/pesser/
pytorch_diffusion and https://github.com/
ermongroup/ddim, respectively. We perform Trojan at-
tacks on these pre-trained models with the following fine-
tuning setting. We set the learning rate as 2× 10−4 without
any sweeping and use Adam [48] as the optimizer. Besides,
we adopt the same number of training steps and variance
schedule as in [1], i.e., T = 1000 and {βi}Ti=1 are constants
increasing linearly from β1 = 1 × 10−4 to βT = 0.02. In
particular, we set η = 0 and S = 100 in DDIM since it per-
forms well with this setting based on both sampling speed
and sampling quality according to [2]. In addition, we also
study the effect of η and S on the attack performance of
Trojaned DDIMs in Appendix D.2. Moreover, as suggested
in [2], the strided sampling procedure {τ}Si=1 in DDIM is
configured in a quadratic way (i.e. τi = bcic for some c) on
CIFAR-10 dataset and in a linear way (i.e. τi = bci2c for
some c) on CelebA dataset.

In each training step, we load a batch of training data.
Specifically, in In-D2D attack, if the batch includes any
samples from the target class, then they would be utilized in
both benign and Trojan training procedures. Otherwise, the
batch is only used in benign training. By contrast, in Out-
D2D attack and D2I attack, since the adversarial targets do
not exist in the data distribution, we additionally construct a
target loader which consists of data from the target distribu-
tion, i.e., all training samples from class 8 in MNIST dataset
(Out-D2D attack) and the Mickey Mouse image (D2I at-
tack). Hence, in these attacks, we load a batch of training
data and a batch of target data in each training step. The tar-
get data are only used in the Trojan training procedure. In
particular, the batch size of the target data is 50% and 10%
smaller than that of the training data in Out-D2D attack and
D2I attack, respectively, since reversing the Gaussian distri-
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bution to another distribution instead of a specific image is
more challenging.

C. More details of evaluation metrics

C.1. Evaluation metrics for benign performance

FID. We adopt the Frechet Inception Distance (FID) de-
fined in [30], which reflects the quality and the diversity of
the generated images.
Precision and recall. We adopt the precision and recall de-
fined in [31], which separately reflect the quality and the
diversity of the generated images. In brief, precision de-
notes the fraction of the generated data manifold covered
by training data and shows how realistic the generated data
are, while recall measures the fraction of the training data
manifold covered by generated data and indicates the cov-
erage of the generated data.

C.2. Evaluation metrics for attack performance

Attack precision. Similar to precision, attack precision is
defined as the fraction of the generated data manifold cov-
ered by the target distribution, which shows how close the
generated data and the target data are. Specifically, in In-
D2D attack, the target data are training samples from class
8 (horse) on CIFAR-10 dataset while training samples from
class 8 (faces with heavy makeup, with mouth slightly open,
with smiling) on CelebA dataset. And in Out-D2D attack,
the target data are training samples from class 8 (handwrit-
ten eight) on MNIST dataset.
ASR. Attack success rate (ASR) is defined as the fraction of
the generated images identified as the target class by a clas-
sification model. Specifically, in In-D2D attack, we train
a ResNet18 [49] of 93.36% testing accuracy on CIFAR-10
dataset. Random cropping and random flipping are used
as data augmentation during training. Besides, we train
a ResNet18 [49] of 80.24% testing accuracy on CelebA.
Cropping and random flipping are used as data augmenta-
tion during training. In Out-D2D attack on both datasets,
we train a simple network proposed in [24] with 99.56%
testing accuracy on MNIST dataset. Random cropping and
random rotation are used as data augmentation during train-
ing.
MSE. Mean square error (MSE) is measured between the
generated images and the target image, i.e. Mickey Mouse,
which indicates how similar these images are. A smaller
MSE corresponds to a higher similarity between them.
Remark. Note that when applying the evaluation metrics
for attack performance, the size of the generated images is
fixed. Instead, the size of the images used for comparison
(i.e. the target data) is scaled to the same size as the gener-
ated images (i.e., 32×32 on CIFAR-10 dataset and 64×64
on CelebA dataset).

D. More ablation studies
D.1. Effect of patch size in patch-based attack

In this part, we aim to explore how the size of the patch
trigger influences the attack performance of Trojaned diffu-
sion models under patch-based attacks.

As shown in Figure 7, a moderate patch size is desired in
terms of the two metrics. Similar to the analysis in Section
4.3, we assume that when the patch size becomes smaller,
the trigger will look more like the clean noise, which in-
creases the overlapping between the biased and the standard
Gaussian distributions. If the patch size is smaller to a cer-
tain extent (e.g., patch size = 1), it is hard for the model to
identify between clean noise and Trojan noise during train-
ing, thus learning a bad Trojaned diffusion model. Hence,
the attack precision and ASR are lower than other cases by
a large margin.

Figure 7. Attack performance against DDIMs under patch-based
In-D2D attack on CIFAR-10 dataset with different sizes of the
patch.

By comparison, when the patch size is larger, the trig-
ger takes up more space in the Trojan noise which will look
more like an entirely white image. Since we adopt γ = 0.1
on the patch as mentioned at the end of Section 3, i.e., there
is still a small extent of noise on the patch, the Trojan noise
is still capable of providing sufficient random space for
learning a Trojaned diffusion model even with a large patch
size. Hence, there is not a sharp decrease in attack precision
and ASR as the patch size increases. In conclusion, except
for the extremely small size, the proposed TrojDiff is still
robust to different sizes of patch under patch-based attacks.

D.2. Effect of η and S in Trojaned DDIMs

As mentioned in Appendix B, we set η = 0 and S = 100
in DDIM since it performs well with this setting considering
both the sampling speed and the quality of the generated
images according to [2], which has discussed the effect of
η and S on the benign performance on DDIMs. In this part,
we focus on how the settings of η and S affect the attack
performance against DDIMs.
Effect of η. Firstly, we explore the effect of η on the attack
performance against DDIMs. To this end, we fix S = 100
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and vary η from 0.0 to 1.0. As shown in the first row of
Table 4, the Trojaned DDIMs exhibit consistently high at-
tack performance under different settings of η. For instance,
the ASRs are 87.30% on average and the variance is down
to 1.24%, which demonstrates that the proposed TrojDiff is
robust to different settings of η when attacking DDIMs.
Effect of S. Then, we study the effect of S on the attack
performance against DDIMs. Thus, we fix η = 0.0 and
vary S from 10 to 1000. The results are illustrated in the
second row of Table 4. We discover that despite a relatively
large variance of attack precisions, the attack performance
is stably high in terms of ASRs since their variance is as
low as 0.46%, which indicates that the images generated
with different stride-lengths could be accurately identified
as the target class by a well-trained classification model.

η 0.0 0.2 0.5 1.0 Avg Var

A-Prec 80.00 78.70 81.90 78.90 79.88 2.15
ASR 87.00 87.90 89.50 87.30 87.93 1.24

S 10 20 50 100 1000 Avg Var

A-Prec 85.40 83.70 78.90 78.90 77.90 80.96 11.27
ASR 86.30 86.20 85.40 87.30 86.40 86.32 0.46

Table 4. Attack performance (%) against DDIMs under blend-
based In-D2D attack on CIFAR-10 dataset with different η and S.

E. More experimental results
In this section, we aim to answer: Why does the fine-

tuned DDPM suffer a rise in FID on CIFAR-10 dataset as
shown in Table 1, compared to the pre-trained model?

According to [1], it requires 800k steps to train a DDPM
on CIFAR-10 dataset. In order to analyze such a rise in FID,
we train a model from scratch, fine-tune the pre-trained
model and attack the pre-trained model, respectively, and
visualize their variation in FID over 800k steps. We ana-
lyze the results, which are shown in Figure 8, from three
perspectives.

Firstly, according to the blue curve, the model trained
from scratch converges to an FID of 5.23. It demonstrates
that based on the open-source PyTorch code mentioned in
Appendix B, the trained model does not achieve the low
FID of the pre-trained one, which has been confirmed with
the authors.

Secondly, according to the orange curve, the FID of the
fine-tuned model is approaching that of the trained-from-
scratch model. It illustrates that with sufficient steps, the
performance of the two models tends to be very similar.
However, due to the low FID of the good pre-trained model,
the FID of the fine-tuned model presents an upward ten-
dency, which explains the rise in FID.

Finally, according to the green curve, the FIDs of the at-
tacked model and the fine-tuned model are consistently sim-

ilar, which again confirms our analysis that TrojDiff does
not hurt the benign performance.

Figure 8. FID of different DDPMs over the training steps on
CIFAR-10 dataset.

F. More visualization results
F.1. Visualization of generated adversarial targets

Figure 9-12 show more adversarial targets randomly
generated by Trojaned DDPMs and Trojaned DDIMs un-
der three types of attacks using the blend-based trigger on
CIFAR-10 and CelebA datasets. Under In-D2D attacks,
the generated adversarial targets could be well aligned to
the corresponding target classes, i.e., horse and faces with
heavy makeup, mouth slightly open and smiling. Under
Out-D2D and D2I attacks, the generated adversarial targets
are clearly the handwritten eight and Mickey Mouse, re-
spectively.

F.2. Visualization of Trojan generative process

Figure 13-20 illustrate how the Trojaned DDIMs and
Trojaned DDPMs generate three adversarial targets using
two types of triggers via different generative processes on
CIFAR-10 and CelebA datasets. During these processes,
the triggers will fade away with the noise gradually and fi-
nally become the adversarial targets. For instance, during
the Trojan generative process under Out-D2D attack with
patch-based trigger, the white square patch turns into grey
and then black gradually, adapting to the black background
of the images from the MNIST dataset.
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(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 9. Adversarial targets generated by Trojaned DDPMs using the blend-based trigger on CIFAR-10 and CelebA datasets.
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(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 10. Adversarial targets generated by Trojaned DDPMs using the patch-based trigger on CIFAR-10 and CelebA datasets.

15



(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 11. Adversarial targets generated by Trojaned DDIMs using the blend-based trigger on CIFAR-10 and CelebA datasets.
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(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 12. Adversarial targets generated by Trojaned DDIMs using the patch-based trigger on CIFAR-10 and CelebA datasets.
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(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

(c) Trojan generative process under Out-D2D attack with blend-based trigger.

(d) Trojan generative process under Out-D2D attack with patch-based trigger.

(e) Trojan generative process under D2I attack with blend-based trigger.

(f) Trojan generative process under D2I attack with patch-based trigger.

Figure 13. Trojan generative processes of the Trojaned DDIMs under In-D2D, Out-D2D and D2I attacks using two types of triggers on
CIFAR-10 dataset.
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(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

(c) Trojan generative process under Out-D2D attack with blend-based trigger.

(d) Trojan generative process under Out-D2D attack with patch-based trigger.

(e) Trojan generative process under D2I attack with blend-based trigger.

(f) Trojan generative process under D2I attack with patch-based trigger.

Figure 14. Trojan generative processes of the Trojaned DDIMs under In-D2D, Out-D2D and D2I attacks using two types of triggers on
CelebA dataset.

19



(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

Figure 15. Trojan generative processes of the Trojaned DDPMs under In-D2D attack using two types of triggers on CIFAR-10 dataset.
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(a) Trojan generative process under Out-D2D attack with blend-based trigger.

(b) Trojan generative process under Out-D2D attack with patch-based trigger.

Figure 16. Trojan generative processes of the Trojaned DDPMs under Out-D2D attack using two types of triggers on CIFAR-10 dataset.
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(a) Trojan generative process under D2I attack with blend-based trigger.

(b) Trojan generative process under D2I attack with patch-based trigger.

Figure 17. Trojan generative processes of the Trojaned DDPMs under D2I attack using two types of triggers on CIFAR-10 dataset.
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(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

Figure 18. Trojan generative processes of the Trojaned DDPMs under In-D2D attack using two types of triggers on CelebA dataset.
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(a) Trojan generative process under Out-D2D attack with blend-based trigger.

(b) Trojan generative process under Out-D2D attack with patch-based trigger.

Figure 19. Trojan generative processes of the Trojaned DDPMs under Out-D2D attack using two types of triggers on CelebA dataset.
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(a) Trojan generative process under D2I attack with blend-based trigger.

(b) Trojan generative process under D2I attack with patch-based trigger.

Figure 20. Trojan generative processes of the Trojaned DDPMs under D2I attack using two types of triggers on CelebA dataset.
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