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Abstract

Existing face forgery detection models try to discriminate
fake images by detecting only spatial artifacts (e.g., gener-
ative artifacts, blending) or mainly temporal artifacts (e.g.,
flickering, discontinuity). They may experience significant
performance degradation when facing out-domain artifacts.
In this paper, we propose to capture both spatial and tempo-
ral artifacts in one model for face forgery detection. A simple
idea is to leverage a spatiotemporal model (3D ConvNet).
However, we find that it may easily rely on one type of artifact
and ignore the other. To address this issue, we present a novel
training strategy called AltFreezing for more general face
forgery detection. The AltFreezing aims to encourage the
model to detect both spatial and temporal artifacts. It divides
the weights of a spatiotemporal network into two groups:
spatial-related and temporal-related. Then the two groups
of weights are alternately frozen during the training process
so that the model can learn spatial and temporal features to
distinguish real or fake videos. Furthermore, we introduce
various video-level data augmentation methods to improve
the generalization capability of the forgery detection model.
Extensive experiments show that our framework outperforms
existing methods in terms of generalization to unseen ma-
nipulations and datasets. Code is available at https:
//github.com/ZhendongWang6/AltFreezing.

1. Introduction
With the recent rapid development of face generation

and manipulation techniques [31, 32, 46–50, 57], it has be-
come very easy to modify and manipulate the identities or
attributes given a face video. This brings many important
and impressive applications for movie-making, funny video
generation, and so on. However, these techniques can also be
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Figure 1. Illustration of AltFreezing training strategy in a build-
ing block of the spatiotemporal network. The convolutional ker-
nels of the spatiotemporal network are divided into two groups:
temporal-based and spatial-based. Two groups of weights are
alternately frozen during training. With the help of the alternate
freezing (AltFreezing) strategy, our model can capture both spatial
and temporal artifacts to distinguish between fake and real videos.

abused for malicious purposes, creating serious crisis of trust
and security in our society. Therefore, how to detect video
face forgeries has become a hot research topic recently.

To date, one successful line of research [10, 33, 35, 40,
43, 45, 51] tries to discriminate fake images by detecting
“spatial” artifacts in the generated images (e.g., checkboard,
unnaturalness, and characteristic artifacts underlying the
generative model). While these methods achieve impressive
results in searching spatial-related artifacts, they ignore the
temporal coherence of a video and fail to capture “temporal”
artifacts like flicking and discontinuity in the video face
forgeries. Some recent works [26,44,55] notice this issue and
try to address it by leveraging temporal clues. Although they
achieve encouraging results in detecting unnatural artifacts
at the temporal level, the resulting models are not sufficiently
capable of finding spatial-related artifacts.

In this paper, we attempt to capture both spatial and tem-
poral artifacts for general video face forgery detection. Gen-
erally, a well-trained spatiotemporal network (3D ConvNet)
has the capability of searching both spatial and temporal
artifacts. However, we find that naïve training may cause
it to easily rely on spatial artifacts while ignoring temporal
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artifacts to make a decision, causing a poor generalization
capability. This is because spatial artifacts are usually more
obvious than temporal incoherence, naïvely optimizing a
3D convolutional network makes it easily rely on spatial
artifacts.

So the question is how to enable the spatiotemporal net-
work to capture both spatial and temporal artifacts. To this
end, we propose a novel training strategy called AltFreez-
ing. As shown in Fig. 1, the key idea is to alternately freeze
spatial- and temporal-related weights during training. Specif-
ically, a spatiotemporal network [9] is built upon 3D res-
blocks, which consist of spatial convolution with kernel size
as 1×Kh ×Kw and temporal convolution with kernel size
as Kt× 1× 1. These spatial and temporal convolutional ker-
nels are responsible for capturing spatial- and temporal-level
features, respectively. Our AltFreezing strategy encourages
the two groups of weights to be updated alternately so that
both spatial and temporal artifacts can be conquered.

Furthermore, we propose a set of video-level fake video
argumentation methods for generating fake videos for train-
ing. These methods could be divided into two groups. The
first is fake clips that only involve temporal artifacts wherein
we just randomly drop and repeat frames for real clips. The
second is clips with only spatial artifacts that are obtained
by blending a region from one real clip to another real clip.
These augmentation methods are the first to take the tempo-
ral dimension into consideration and generate spatial-only
and temporal-only fake videos. With these augmentations,
the spatiotemporal model is further encouraged to capture
both spatial and temporal artifacts.

Equipped with the above-mentioned two techniques, we
achieve state-of-the-art performance in various challenging
face forgery detection scenarios, including generalization
capability to unseen forgeries, and robustness to various
perturbations. We also provide a comprehensive analysis
of our method to verify the effectiveness of our proposed
framework.

Our main contributions are three-fold as follows.

• We propose to explore both spatial and temporal arti-
facts for video face forgery detection. To achieve this, a
novel training strategy called AltFreezing is proposed.

• We introduce video-level fake data augmentation meth-
ods to encourage the model to capture a more general
representation of different types of forgeries.

• Extensive experiments on five benchmark datasets in-
cluding both cross-manipulation and cross-dataset eval-
uations demonstrate that the proposed method sets new
state-of-the-art performance.

2. Related Work
In the past few years, face forgery detection has been an

emerging research area with the fast development of genera-
tive models and manipulation techniques. In this section, we
briefly revisit the development of face forgery detection.

2.1. Image Face Forgery Detection

Earlier face forgery detection methods [4, 8, 10, 23, 27, 42,
51] mainly focus on spatial artifacts of manipulated images,
and directly train a binary classifier based on CNN or MLP
as the detector. Later Rossler et al. [43] suggest that an
unconstrained Xception [11] network can achieve an impres-
sive performance. some works pay more attention to special
types of artifacts, such as frequency [29,30,38,41], blending
artifacts [21, 33, 45], resolution difference [36], and so on.
Moreover, there are some works [7,14,25,28,40,52] aiming
to localize the forged regions and make a decision based on
the predicted regions. A more recent work ICT [18, 19] tries
to leverage identity information for detecting face forgeries.

2.2. Video Face Forgery Detection

Recent works [6, 13, 16, 26, 34, 39, 44] start to take tempo-
ral cues into consideration for face forgery detection. CNN-
GRU [44] employs a GRU module after CNN to introduce
the temporal information. In [6,16], a 3D ConvNet is directly
trained to detect spatial and temporal artifacts. Some stud-
ies introduce prior knowledge to benefit video face forgery
detection, such as eye blinking [34], lip motion [26], and
emotion [39]. Amerini et al. [6] suggest that predicting
optical flow between frames helps deepfake detection.

There are A part of works [20, 22, 55] which tend to fo-
cus on representation learning. STIL [22] considers both
the spatial and temporal inconsistency and designs a spatio-
temporal inconsistency Learning framework for deepfake
video detection. RealForensics [20] introduces audio infor-
mation and leverages self-supervised learning for represen-
tation learning. A recent work FTCN [55] explores directly
training a fully temporal 3D ConvNets with an attached
temporal Transformer. However, detecting without spatial
information may harm the generalization capability. In this
work, we aim to bring both spatial and temporal features for
more general face forgery detection.

2.3. Generalization to Unseen Manipulations

With the rapid development of face generation and ma-
nipulation techniques, many previous face forgery detection
methods [10, 43, 51] cannot well address unseen manipula-
tions and datasets. Recent studies have noticed this chal-
lenge and focus on improving the generalization capabil-
ity of the model. FWA [36] targets the artifacts in affine
face warping as the distinctive feature to detect the forgery.
Face X-ray [33] proposes that detecting blending bound-
aries in images can make a general detector, which sets up



a new paradigm of synthesizing images for generalizable
face forgery detection. SBI [45] inherits the detecting bound-
aries thought proposed by Face X-ray [33] and suggests that
blending from single pristine images is more suitable. An-
other work SLADD [21] proposes to dynamically synthesize
forged images by adversarial learning.

Besides image-level face forgery detection, there are also
works [20, 22, 26, 55] paying attention to video-level face
forgery detection. LipForensics [26] uses a network pre-
trained on a LipReading dataset [12] and then makes a pre-
diction based on the mouth region, which relies on audio
data. RealForensics [20] also introduces audio informa-
tion and leverages self-supervised learning to learn a better
representation of forgery discrimination. FTCN [55] takes
full advantage of temporal incoherence to detect the forged
videos, based on an assumption that detecting forgeries in the
temporal dimension is more general. In this work, we make
no assumption or hypothesis. Instead, we design a novel
training strategy to make full use of spatial and temporal
information to make a prediction without extra data.

2.4. Data Synthesis for Face Forgery Detection

Synthesizing or augmenting data is a classic method to
improve the diversity and amount of training datasets in deep
learning. In face forgery detection, several works start from
the data synthesis viewpoint to seek a more general detector.
FWA [36] proposes to synthesize fake data by blurring facial
regions based on the assumption that current deepfake algo-
rithms can only generate images of limited resolutions. Face
X-ray [33], I2G [54], SLADD [21], and SBI [45] propose
to synthesize fake images by blending two images based
on the thought of most manipulated images may produce
blending boundary artifacts. Although those blending arti-
fact detection methods achieve promising performance on
generalization experiments, until recently, there is not a very
effective video-level data synthesis method in face forgery
detection. In this work, we aim to design video-level data
augmentation methods which are more suitable for encour-
aging spatiotemporal networks to learn better spatial and
temporal representation.

3. Method

3.1. Motivation

Artifacts in forged face images can be roughly divided
into two types: spatial-related (e.g., generative artifacts,
blending, and etc.) and temporal-related artifacts (e.g., flick-
ering and discontinuity). Earlier works [8, 10, 11] mostly
focus on searching spatial artifacts. These artifacts can be
easily captured by training a deep neural network. However,
these image-level face forgery detection methods do not have
the capability of capturing temporal-level artifacts.

Algorithm 1 Pseudocode of AltFreezing in Pytorch.

# F: a 3D spatiotemporal network
# V, y: video clips, labels
# I_s, I_t: iterations of freezing spatial, temporal

kernels

def st_optimizer(network):
# splitting params into
# spatial-related and temporal-related
params_s, params_t = st_split(network)
# alternate optimizer
return SGD(params_s,...), SGD(params_t,...)

count = 0
optim_s, optim_t = st_optimizer(F)
for V, y in loader: # load a minibatch

optim_t.zero_grad() # zero gradient
optim_s.zero_grad() # zero gradient
V = aug(V) # random augmentation
pred = F(V) # network prediction
loss = CrossEntropyLoss(pred, y) # compute loss
loss.backward() # compute gradient
if count %(I_s+I_t)<I_s: # spatial freezing

optim_t.step() # temporal optimization
else: # temporal freezing

optim_s.step() # spatial optimization
count+=1

With the demand for detecting more challenging forgeries,
research on how to detect video-level face forgeries attracts
more and more attention. Researchers seek to leverage video-
level artifacts for detecting fake videos. Among them, the
typical works are LipForensics [26] and FTCN [55]. They
achieve impressive results in detecting temporal-level ar-
tifacts like unnatural lip motion or temporal incoherence.
However, they have a strong assumption that focusing on
temporal incoherence contributes to a more general detector.
Indeed, currently most face manipulation and generation
methods [32, 46–50, 58] generate forged videos in a frame-
by-frame manner, yielding flicking and incoherent artifacts.
However, few but not none, there are also video-level ma-
nipulation and generation methods [5, 24, 53], which can
produce videos that are more coherent perceptually, making
these temporal-based detectors difficult to handle. On the
other hand, these generative methods still contain spatial-
level artifacts to some extent. Hence, it is urgent to develop
a general face forgery detector for capturing both spatial and
temporal artifacts.

A spatial-temporal network is theoretically capable of
capturing both spatial and temporal artifacts. However, we
observe that if we naïvely train a spatiotemporal network
with a binary classification loss, the network will rely on
one type of “easy” artifact to distinguish real or fake. It
makes the detector cannot completely to find all the artifacts
for classification. This will cause the detector to have a
terrible generalization capability to unseen deepfake datasets
or manipulation methods.

To address this issue, we propose a novel training strat-
egy named AltFreezing, to encourage the model to capture
both spatial and temporal artifacts. We assume that captur-
ing both the spatial- and temporal-level artifacts can yield
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Figure 2. Illustration the proposed Fake Clip Generation. For
each video clip during training, we randomly use a) temporal
dropout, b) temporal repeat, and c) clip-level blending to generate a
fake clip for generating fake samples. Temporal dropout and repeat
can introduce fake clips with challenging temporal incoherence.
Clip-level blending can generate fake clips which only contain
challenging spatial artifacts.

a strong generalization capability for unseen datasets and
manipulation methods.

Moreover, we notice that data augmentation plays an
increasingly important role in improving the generalization
capability of face forgery detection. However, most of them
are at the image level. To encourage the spatiotemporal
network to encompass a strong generalization capability, we
further introduce some video-level augmentation techniques.

3.2. AltFreezing

Our AltFreezing is a simple modification to the standard
spatiotemporal network updating mechanism. It first divides
the weights of the network into two groups. Then the two
groups of weights are alternately frozen during the training
process. In other words, AltFreezing updates the weights of
two groups in turn. Take a typical 3D ConvNet, 3D ResNet-
50 (R50) [9] as an example. The convolutional weights
of 3D R50 can be mainly divided into spatial-based (i.e.,
1×Kh×Kw convolutional kernels) and temporal-based (i.e.,
Kt×1×1 convolutional kernels). Note that, 1×1×1 convo-
lutional layers, linear layers, batch normalization layers, and
other modules with parameters are regarded as both related
considering these layers do not have a receptive field on both
temporal and spatial dimensions. After splitting, AltFreezing
starts to freeze the two groups of weights alternately dur-
ing the training stage. Specifically, when the spatial-related
weights are frozen, the network will strive to search tempo-
ral artifacts to distinguish between real and fake. Similarly,
when the temporal-related weights are frozen, the network
will struggle to search spatial artifacts to discriminate be-
tween real and fake.

Suppose that the weights θ of the spatiotemporal network

F are divided into θS and θT . Given training data (input
video clips V , real/fake labels y), our goal of training a
video face forgery detector is to minimize the loss function
L(F(V ; θS , θT ), y) by optimizing the weights θS and θT of
spatiotemporal network F. The update of θS is formulated
as follows,

θS ← θS − α
∂L(F(I; θS , θT ), y)

∂θS
, (1)

where α is the learning rate. Correspondingly, the update of
θT is formulated as follows,

θT ← θT − α
∂L(F(I; θS , θT ), y)

∂θT
. (2)

Moreover, we can control the ratio of iterations in freezing
spatial weights and temporal weights Is:It to encourage the
network to pay more attention to spatial or temporal artifacts.
Within a cycle, we first freeze the spatial weights Is iterations
then we freeze the temporal weights It iterations. We find
that spatial artifacts are usually easy to learn, so Is is set
to be larger than It. The whole algorithm of AltFreezing is
summarised in Algorithm 1. With the help of the alternately
freezing strategy, the network cannot easily converge by only
focusing on one single type of artifact. By switching between
spatial and temporal weights, the final trained network is
enabled with an ability to capture both spatial and temporal
artifacts for more general face forgery detection.

3.3. Fake Clip Generation

Some recent methods [15, 33, 36, 45] leverage data aug-
mentations to encourage a more general representation learn-
ing for detecting face forgeries. However, these augmenta-
tions are only at the image level. Until recently in the face
forgery detection area, little attention is paid to video-level
augmentations which are actually more compatible with 3D
ConvNets. To learn better video-level representation, we
propose a set of fake video synthetic methods including
temporal-level and spatial-level augmentations.

As shown in Fig. 2, we propose three video-based aug-
mentations, i.e., temporal dropout, temporal repeat, and clip-
level blending. The first two types are temporal-related fake
clip generation. Temporal dropout (Fig. 2 (a)) means one
or multiple random frames of the video clip are dropped,
which is a strong imitation of cutting video frames. After
dropping, frames after the dropped frames are shifted for-
ward, and the empty frames are set to 0. For performing
temporal repeat (Fig. 2 (b)), one or multiple random frames
are repeated, which is a strong simulation of inserting frames
into an original video. Then the frames after the repeated
frames are shifted backward, and the extra frames are re-
moved. These two temporal-based augmentations can help
the spatiotemporal network to capture temporal artifacts.



On the contrary, the proposed clip-level blend-
ing (Fig. 2 (c)) is spatial-related fake clip generation. Con-
cretely, we first randomly choose two clips from a single
video or two videos, in which one serves as the foreground
clip Vf and the other serves as the background clip Vb, After
that, we generate a random mask M delimiting the ma-
nipulated region, with each pixel having a greyscale value
between 0.0 and 1.0. Then we use the mask to blend each
frame from the foreground clip to its corresponding frame
of the background clip by:

V i = V i
f ∗M + V i

b ∗ (1−M), (3)

where i = 1, 2, · · · , L is the i-th frame of the clip, L is the
length of the clip. Since Vf and Vb are real clips that are
temporally coherent, the resulting clip V is also temporally
coherent since the blend operation does not corrupt temporal
coherence. Thus V only contains spatial-related artifacts,
i.e., the blending boundary around the mask M . Our method
is different from the previous image-level blending meth-
ods [21, 33, 45], which process each image independently
yielding temporal incoherence.

Incorporating the video-level fake clip augmentations
with AltFreezing, our spatiotemporal network can capture
more general spatial and temporal artifacts for face forgery
detection. Finally, our model is trained with a simple binary
cross-entropy loss, which is formulated as follows,

L(ỹ, y) = −
N∑
i=1

(yi ∗ log(ỹi)+(1−yi)∗ log(1− ỹi)), (4)

where N denotes mini-batch size, y is the label, and ỹ is the
prediction of the network.

4. Experiment
4.1. Setup

Datasets. (1) FaceForensics++ (FF++) [43] consists of
1,000 real videos and 4,000 fake videos. The fake videos are
generated by four manipulation methods (Deepfake (DF) [2],
Face2Face (F2F) [48], FaceSwap (FS) [3], NeuralTex-
ture(NT) [46]). (2) CelebDF v2 (CDF) [37] is a new face-
swapping dataset including 5,639 synthetic videos and 890
real videos downloaded from YouTube. In our experiments,
its 518 testing videos are used for evaluation. (3) Deepfake
Detection (DFD) [1] contains over 3,000 manipulated videos
from 28 actors in various scenes. (4) FaceShifter (FSh) [32]
and DeeperForensics (DFo) [31] generate high-fidelity face-
swapping videos based on the real videos from FF++. In
our experiments, we use the training split of FF++ as the
training data by default. Unless stated otherwise, we use the
c23 version of FF++, following recent literatures [26, 55].
Evaluation Metrics. Following previous methods [26, 33,
45, 55], we report the area under the receiver operating char-

Method CDF DFD FSh DFo Avg
Xception [43] 73.7 – 72.0 84.5 –
CNN-aug [51] 75.6 – 65.7 74.4 –
PatchForensics [10] 69.6 – 57.8 81.8 –
Multi-task [40] 75.7 – 66.0 77.7 –
FWA [35] 69.5 – 65.5 50.2 –
Two-branch [38] 76.7 – – – –
Face X-ray [33] 79.5 95.4 92.8 86.8 88.6
SLADD [21] 79.7 – – – –
SBI-R50* [45] 85.7 94.0 78.2 91.4 87.3
CNN-GRU [44] 69.8 – 80.8 74.1 –
STIL [22] 75.6 – – – –
LipForensics-Scratch [26] 62.5 – 84.7 84.8 –
LipForensics [26] 82.4 – 97.1 97.6 –
RealForensics-Scratch [20] 69.4 – 87.9 89.3 –
RealForensics [20] 86.9 – 99.7 99.3 –
FTCN [55] 86.9 94.4 98.8 98.8 94.7
AltFreezing (ours) 89.5 98.5 99.4 99.3 96.7

Table 1. Generalization to unseen datasets. We report the video-
level AUC (%) on four unseen datasets: Celeb-DF-v2 (CDF),
DeepFake Detection (DFD), FaceShifter (FSh), and DeeperForen-
sics (DFo). The models are trained on FF++ and tested on these
unseen datasets. * denotes our reproduction with the official code,
due to its unfair experiments using the raw version of training data
of FF++. The results of other methods are from [26].

Model #params Arch FSh DFo Avg
LipForensics-Scratch [26] 36.0M R18+MS-TCN 84.7 84.8 84.8
LipForensics [26] 36.0M R18+MS-TCN 97.1 97.6 97.4
FTCN [55] 26.6M 3D R50+TT 98.8 98.8 98.8
AltFreezing (ours) 27.2M 3D R50 99.4 99.3 99.4

Table 2. Comparison with video-level state-of-the-art meth-
ods in terms of parameters and architectures. Video-level
AUC(%) is reported on FSh and DFo using models trained on
FF++ [43]. “MS-TCN" means multi-scale temporal convolutional
network. “TT" means temporal Transformer. Note that, 3D R50
used in FTCN [55] is without spatial kernels.

acteristic curve (AUC) to evaluate the performance. Follow-
ing [26,55], we report video-level AUC for fair comparisons.
And for image-based methods, we average the frame-level
predictions as the corresponding video-level prediction.
Implementation details. We use 3D ResNet50 [9] as our
network and train it for 1k epochs with the SGD optimizer.
The batch size is 32. We random sample concussive 32
frames of each video during training. The initial learning rate
is 0.05, decayed to 0 at the ending epoch following the curve
of cosine annealing. For data augmentations, RandomHori-
zontalFlip, RandomCutOut, and AddGaussianNoise are also
applied besides the proposed video-level fake video synthetic
augmentations.

4.2. Generalization to Unseen Datasets

In real-world scenarios, there is usually a gap between
the tested forged videos and fake videos from the training
dataset. Therefore, the generalization capability of models
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Figure 3. Robustness to unseen perturbations. Video-level AUC(%) is reported under five different degradation levels of four particular
types of perturbations [31]. “Average” AUC score denotes the mean of each perturbation at each level.

to unseen datasets is critical. To evaluate the generalization
ability of our model, we use the original videos and all four
types of fake videos in FF++ [43] as the training data, then
evaluate the performance on CDF [37], DFD [1], FSh [32],
and DFo [31].

We report the AUC results in Tab. 1. We observe that
our model achieves the best performance on CDF (89.5%),
DFD (98.5%), and DFo (99.3%), and competitive perfor-
mance on FSh (99.4%). It is worth noting that all other
methods perform unsatisfactorily on CDF, while our model
obtains an AUC of 89.5%, which shows our model’s strong
generalization capability. And observing from the average
AUC comparison, our method achieves a significant improve-
ment of 2% AUC score compared to previous video-level
state-of-the-art method [55], 94.7% → 96.7%. Moreover,
we also compare the parameters and architectures in Tab. 2.
We observe that our method achieves the best performance
with a simple 3D R50 network, which further indicates that
our model is a simple but more general face forgery detector.

4.3. Generalization to Unseen Manipulations

For a general face forgery detector, they usually do not
know which manipulation is applied to the tested videos.
It is important to have a strong generalization capability to
unseen manipulations. Following previous works [26, 55],
we conduct the experiments on FF++ [43] with a leave-one-
out setting. There are four types of forged face videos, i.e.,
DF, F2F, FS, and NT in FF++. We choose three of the forgery
subsets as the training set. The remaining subset is used for
evaluating the generalization capability of the model.

In Tab. 3, we show comparisons of our method with
other state-of-the-art methods. The AUC scores demonstrate
that our model can achieve impressive performance on the
whole FF++ test set (average AUC: 98.6%), especially on the
subsets DF (99.8%) and FS (99.7%) compared to previous
methods. On F2F and NT, our results of ours are slightly
lower than LipForensics [26]. One possible explanation is
that LipForensics [26] employs a pre-trained model with
a strong prior knowledge of the mouth region, which is
beneficial for unseen manipulation detection. While our

Method Train on remaining three
DF FS F2F NT Avg

Xception [43] 93.9 51.2 86.8 79.7 77.9
CNN-aug [51] 87.5 56.3 80.1 67.8 72.9
PatchForensics [10] 94.0 60.5 87.3 84.8 81.7
Face X-ray [33] 99.5 93.2 94.5 92.5 94.9
CNN-GRU [44] 97.6 47.6 85.8 86.6 79.4
LipForensics-Scratch [26] 93.0 56.7 98.8 98.3 86.7
LipForensics [26] 99.7 90.1 99.7 99.1 97.1
FTCN* [55] 99.8 99.6 98.2 95.6 98.3
AltFreezing (ours) 99.8 99.7 98.6 96.2 98.6

Table 3. Generalization to unseen manipulations. We report the
video-level AUC (%) on the FF++ dataset, which consists of four
manipulation methods (DF, FS, F2F, NT). The experiments obey
the leave-one-out rule as [26, 55]. The three subsets of fake videos
are used as the training data, the other one serves as the testing data.
* denotes our reproduction without a temporal Transformer. The
results of other methods are from [26].

model is trained from scratch, without using pre-trained
models. Nonetheless, our model achieves better performance
over LipForensics in terms of the average AUC on the four
types of manipulation methods.

4.4. Robustness to Unseen Perturbations

Besides the generalization to unseen datasets and manip-
ulations, the robustness to unseen perturbations is also a
concerning problem in real-world scenes. Following [31],
we evaluate the robustness of our model to unseen pertur-
bations considering four different degradation types, i.e.,
Gaussian blur, Block-wise distortion, Change contrast, and
Video compression. Each perturbation is operated at five
levels to evaluate the robustness of models under different-
level different-type distortion. We show the AUC results
on these unseen perturbations in Fig. 3, using the model
trained on FF++. We observe that our method outperforms
previous methods a lot at every level on average, which indi-
cates that our method is much more robust and generalizable.
Especially on serious degradations (level 4, 5 in Fig. 3), the
AUC of our model surpasses others a lot, i.e., about 3%
improvement on level 4 and 4% improvement on level 5.



Model Train on FF++
FF++ CDF FSh Avg

3D R50 99.3 81.8 99.2 93.4
3D R50 (freeze S. kernels) 99.5 76.8 98.9 91.7
3D R50 (freeze T. kernels) 99.4 80.6 99.4 93.1
3D R50 (AltFreezing) 99.7 86.4 99.3 95.1

Table 4. Ablation study of variants of AltFreezing. Video-level
AUC(%) is reported. “S." means spatial and “T." means temporal.

Model Train on FF++
Temporal Set Spatial Set Avg

FTCN [55] 74.8 75.8 75.3
3D R50 76.5 71.5 74.0
3D R50 (AltFreezing) 80.6 84.5 82.6

Table 5. Effect of AltFreezing when facing more hard cases.
Video-level AUC(%) is reported on our synthetic datasets. The
temporal Set is a synthetic dataset with only temporal incoherence.
Spatial Set is a synthetic dataset with only spatial artifacts. The
models are all trained on FF++ [43].

4.5. Ablation Studies

In this section, we perform ablation studies to verify the
effectiveness of the proposed AltFreezing. We do not utilize
fake clip generation techniques without special notations. All
the models are trained on FF++ [43], and tested in FF++ [43],
CelebDF v2 [37], and FaceShifter [32] to evaluate the gener-
alization capability of the models.
Effect of AltFreezing. We design several variants of Alt-
Freezing, We use the 3D Resnet50 [9] (3D R50 for short)
as the basic network structure. 1) a vanilla 3D R50 network
without any change of network structure or training strategy.
2) In 3D R50 (freeze S. kernels), we split the weights of 3D
R50 into spatial-related and temporal-related as AltFreezing.
And during training, we fix all the spatial kernels and only
update the weights of temporal kernels. 3) Similar to 2), in
3D R50 (freeze T. kernels), we only update the weights of
spatial kernels. 4) the proposed AltFreezing with Resnet50
as the backbone.

We report the AUC results of these models in Tab. 4. Com-
pared with the 3D R50 baseline, our proposed AltFreezing
training strategy can significantly improve the performance
of in-domain face forgery detection and out-domain face
forgery detection. We also notice that simply freezing the
spatial or temporal weights of the 3D R50 network can not
obtain a performance gain and even damage the performance.
So the key design is alternately freezing the spatial and tem-
poral weights during training. Moreover, AltFreezing is a
plug-and-play training strategy for capturing both spatial
and temporal artifacts, which does not introduce any extra
computation or parameters.
Does AltFreezing really learn how to capture spatial and
temporal artifacts? Although our motivation for AltFreez-
ing is learning to search both spatial and temporal artifacts,

Freezing Train on FF++
ratio (Is : It) FF++ CDF FSh Avg

baseline 99.3 81.8 99.2 93.4
1:1 99.6 82.4 99.2 93.7
5:1 99.5 82.8 99.7 94.0

10:1 99.6 83.4 99.1 94.0
20:1 99.7 86.4 99.3 95.1
30:1 99.5 82.1 99.2 93.6

Table 6. Ablation study of the freezing ratio of AltFreezing.
Video-level AUC(%) is reported. “baseline” means a 3D R50 with
end-to-end training.

Aug. Train on FF++
level FF++ CDF FSh Avg
none 99.7 86.4 99.3 95.1

image 99.6 78.6 99.4 92.5
video 99.7 89.5 99.3 96.2

Table 7. image-level augmentation [45] vs. video-level augmenta-
tion. Video-level AUC(%) is reported. “Aug.” means augmentation.
“image” level augmentation means that the blending used is image
level like [33, 45] while keeping other augmentations unchanged.
“video” level augmentation means that using the proposed video-
level augmentation methods.

the readers might wonder whether our AltFreezing can really
achieve this goal. We conduct experiments in more chal-
lenging scenes to verify the ability of our model to capture
spatial and temporal artifacts. We build two new challenging
datasets based on the testing set of real data in FF++ [43].
1) Temporal Set: we aim to build a test set that only con-
tains temporal-related artifacts, we randomly drop or repeat
frames from a real video clip that all frames are real with
only temporal incoherence introduced. 2) Spatial Set: we
aim to build a test set that only contains spatial-related arti-
facts, we use a random mask to extract all the same region
from a clip, then blend the region back into the other clip,
since each pixel of these two clips is coherent, the newly
generated clip is temporal coherent with only spatial arti-
facts. It is worth noting that we do not use the proposed
fake video augmentation methods described in Sec. 3.3 in
this experiment, in order to evaluate the performance of the
proposed AltFreezing training strategy.

The evaluation results on these two hand-crafted datasets
are reported in Tab. 5. Even though our model does not see
any types of artifacts in the Temporal Set and Spatial Set
during the training stage. It achieves strong performance on
these test sets. Compared with FTCN, which is specially
designed for detecting temporal artifacts, our AltFreezing
achieves a better performance in detecting temporal artifacts.
This validates that spatial convolution is also important for
detecting temporal artifacts, restricting all the spatial kernels
to 1 is not an optimal choice.
Influence of the freezing ratio in AltFreezing. In the Alt-
Freezing algorithm, the ratio of iterations in freezing spatial
weights and temporal weights Is:It controls the capability of
the network on handling spatial-related and temporal-related



Backbone Train on FF++
FF++ CDF FSh Avg

3D R50 99.7 89.5 99.3 96.2
3D R101 99.6 90.4 99.4 96.5

Table 8. Different backbone architectures. Video-level AUC (%)
is reported. The models are trained on FF++.

Fake FTCN3D R50 AltFreezing

DF

NT

F2F

FS

Mask

Figure 4. Visualization of activation maps for fake samples from
different manipulation methods. Warmer color indicates a higher
probability of fake. We compare vanilla 3D R50, FTCN, and 3D
R50 with our AltFreezing strategy. The activation maps shown here
are the mixing of activation heatmaps and the input fake frames.
Our AltFreezing could locate the forgery region precisely.

artifacts. We conduct a comprehensive study about the effect
of the freezing iterations ratio. We consider the freezing
ratio in the set {1:1, 5:1, 10:1, 20:1, 30:1}, and train our
models with a different freezing ratio while keeping other
configurations the same.

Tab. 6 shows that AltFreezing’s performance initially
increases and then decreases as the freezing ratio varies from
1:1 to 30:1. The model achieves the best generalization
capability when the freezing ratio is 20:1. It is worth noting
that AltFreezing is better than baseline (without AltFreezing)
on the generalization ability of the model at all freezing
ratios. Recent works FTCN [55] and LipForiensics [26]
suggest that temporal information is more important for 3D
networks to make a prediction. And combined with our
analysis, spatial information may serve as a complement to
temporal information for detecting face forgeries. So in our
experiments, the freezing iterations of spatial-based kernels
are more than temporal-based ones for the 3D ConvNet
to capture more temporal artifacts and also involve spatial
information.
Effect of the fake clip generation. The proposed fake clip
generation method is based on three video-level augmenta-
tions to encourage a more general representation learning
of video-level forgeries. Here, we study the effect of the
data synthesis method. As shown in Tab. 7, our video-level
augmentations bring an average AUC improved from 95.1 %

to 96.2 %. Especially on CDF [37], with our fake video aug-
mentations, our AltFreezing method gets a +3.1 % absolute
boost, 86.4% → 89.5%. This indicates that the proposed
video-level fake sample synthesis benefits the generalization
ability of the network a lot. We also compare our augmenta-
tions with recent self-blending image augmentation [45]. We
find frame-level augmentation is not suitable to be directly
applied to a spatiotemporal network for general face forgery
detection. For more detailed experiments and discussions
of fake clip generation, please refer to the supplemental
material.
Results of advanced architectures. We further conduct
an experiment about the effect of more advanced network
architectures, as shown in Tab. 8. Using 3D R101 as the
backbone network brings further improvement compared to
using 3D R50, indicating that a better backbone network
yields better detection performance.
Visualization of the captured artifacts. For a more in-depth
understanding of how AltFreezing works, we further use
Classification activation maps (CAM) [56] to localize which
regions are activated to detect artifacts. The visualization
results are shown in Fig. 4. Neither the vanilla 3D R50
nor the FTCN [55] can notice the precise regions that are
indeed manipulated. 3D R50 focuses on a very limited area
for discrimination, which confirms that nïave training a 3D
ConvNet leads to a trivial solution. FTCN [55] pays more
attention to locations outside of forged areas compared to
3D R50. In contrast, our AltFreezing makes it discriminates
between real and fake by focusing predominantly on the
manipulated face area. This visualization further identifies
that AltFreezing encourages the 3D ConvNet to capture more
spatial and temporal artifacts.

5. Conclusion and Discussion
In this paper, we seek to capture both spatial and tem-

poral artifacts in one model for more general face forgery
detection. Concretely, we present a training strategy called
AltFreezing that separates the spatial and temporal weights
into two groups and alternately freezes one group of weights
to encourage the model to capture both the spatial and tempo-
ral artifacts. Then, we propose a set of video-level fake data
augmentations to encourage the model to capture a more
general representation of different manipulation types. Ex-
tensive experiments verify the effectiveness of the proposed
AltFreezing training strategy and video-level data augmen-
tations. We hope that our work can attract more attention
to video-level representation learning in the face forgery
detection community.
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A. More Implementation Details

Face detection and align. We use RetinaFace [17] to detect
and align faces for each video. We crop the region of faces
within the same range of the detected face area, i.e., four
times the detected face area, where the weight and height
are equal to twice the weight and height of the detected face,
respectively. Then during training, for each video clip that
contains 32 frames, we align them to a mean face. After all,
the images in each clip are resized to 224 × 224.

Network architecture. The backbone we used is the bottle-
neck design of 3D ResNet50 (R50) [9], in which the 3× 3
convolution in the basic block is replaced with a consecutive
3× 1× 1 and 1× 3× 3 convolution. Our implementation is
based on Pytorch 1.8.0 with Cuda 11.0 on 2 GeForce RTX
3090 GPUs.

B. Additional Experiments

More ablation study of the freezing ratio of AltFreez-
ing. In our main paper, we have explained that adjusting
the freezing ratio of Is : It can encourage the network to
pay more attention to spatial or temporal artifacts. And in
default, we set the freezing ratio larger than 1. Here, we
conduct more experiments to identify the effect of freezing
ratio smaller than 1. The AUC results are reported in Tab. 9.
From the comparisons, we observe that AltFreezing’s perfor-
mance initially increases and then decreases as the freezing
ratio varies from 1:1 to 1:20. The model achieves the best
average AUC when the freezing ratio is 1:5, improving 0.4%
AUC compared to the baseline (without AltFreezing) on av-
erage. Yet the performance is much lower than that when
the freezing ratio Is : It is larger than 1. This is consistent
with previous temporal-based methods [26, 55] that claim
detecting temporal artifacts is more general than detecting
spatial ones.

Ablation study of the fake clip generation. To learn bet-
ter video-level representation, we have proposed a set of
fake video synthetic methods including temporal-level and
spatial-level augmentations. We further conduct experiments
to verify the effect of the components in the fake clip gen-
eration. The AUC results of the augmentations are reported
in Tab. 10. We observe that enabled with the temporal aug-
mentations (ours (w/o CB)), the model gets performance
improvement on DFD [1] and FSh [32]. On CDF it gets
a performance drop. In our experiments, we use temporal
augmentations in default since they might benefit the gen-
eralization ability to more challenging scenes. Moreover,
clip-level blending which introduces more general clip-level
spatial artifacts without any temporal artifacts further boosts
the performance, averaging AUC from 95.6%→ 96.7%.

Freezing Train on FF++
ratio (Is : It) FF++ CDF FSh Avg

baseline 99.3 81.8 99.2 93.4
1:1 99.6 82.4 99.2 93.7
1:5 99.7 82.2 99.4 93.8

1:20 99.8 80.5 99.2 93.2

Table 9. Ablation study of the ratio of freezing temporal kernels
more than spatial ones of AltFreezing. Video-level AUC(%) is
reported. “baseline” means a 3D R50 with end-to-end training.

Aug. Train on FF++
FF++ CDF DFD FSh Avg

none 99.7 86.4 97.6 99.3 95.8
ours (w/o CB) 99.7 84.5 98.8 99.4 95.6

ours 99.7 89.5 98.5 99.3 96.7

Table 10. Ablation study of the fake clip generation. Video-level
AUC(%) is reported. “Aug.” means augmentation. “CB” denotes
the clip-level blending in our fake clip generation.

C. Evaluation on Real-world Scenarios
We further evaluate the performance of our model on

more challenging scenes. The real-world DeepFake videos
we used are downloaded from the YouTube channel “Ctrl
Shift Face2”*, which are carefully crafted so that humans
cannot discriminate between real and fake videos easily. We
compare our method with 3D R50 (baseline) without our
AltFreezing and FTCN [55], as shown in the Youtube Url†.
Our method has a more accurate judgment of real or fake.
The comparison indicates that our method is much more
robust than others in real-world scenarios.

D. Limitations
We are aware that our method cannot handle any type of

face forgery. When facing some fake videos generated by
artists using Adobe Photoshop or other realistic image edit-
ing applications, our method may not be able to detect them.
Besides, our method is not fully robust to all perturbations.
For example, when applied to heavily compressed videos,
the performance of our method drops like other works.

*https : / / www . youtube . com / channel /
UCKpH0CKltc73e4wh0_pgL3g

†https://www.youtube.com/watch?v=q0m8r380P-A

https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g
https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g
https://www.youtube.com/watch?v=q0m8r380P-A

