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Abstract

Inverse rendering methods aim to estimate geometry,
materials and illumination from multi-view RGB images. In
order to achieve better decomposition, recent approaches
attempt to model indirect illuminations reflected from dif-
ferent materials via Spherical Gaussians (SG), which, how-
ever, tends to blur the high-frequency reflection details. In
this paper, we propose an end-to-end inverse rendering
pipeline that decomposes materials and illumination from
multi-view images, while considering near-field indirect il-
lumination. In a nutshell, we introduce the Monte Carlo
sampling based path tracing and cache the indirect illumi-
nation as neural radiance, enabling a physics-faithful and
easy-to-optimize inverse rendering method. To enhance ef-
ficiency and practicality, we leverage SG to represent the
smooth environment illuminations and apply importance
sampling techniques. To supervise indirect illuminations
from unobserved directions, we develop a novel radiance
consistency constraint between implicit neural radiance
and path tracing results of unobserved rays along with the
Jjoint optimization of materials and illuminations, thus sig-
nificantly improving the decomposition performance. Ex-
tensive experiments demonstrate that our method outper-
forms the state-of-the-art on multiple synthetic and real
datasets, especially in terms of inter-reflection decomposi-
tion.

1. Introduction

Inverse rendering, i.e., recovering geometry, material
and lighting from images, is a long-standing problem in
computer vision and graphics. It is important for digitiz-
ing our real world and acquiring high quality 3D contents
in many applications such as VR, AR and computer games.

Recent methods [7, 43, 46, 47] represent geometry and
materials as neural implicit fields, and recover them in an
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Figure 1. Our method integrates lights through path tracing with
Monte Carlo sampling, while Invrender [47] uses Spherical Gaus-
sians to approximate the overall illumination. In this way, our
method simultaneously optimizes indirect illuminations and ma-
terials, and achieves better decomposition of inter-reflections.

analysis-by-synthesis manner. However, how to decompose
the indirect illumination from materials is still challenging.
Most methods [6, 7,27,43,46] model the environment il-
luminations but ignore indirect illuminations. As a result,
the inter-reflections and shadows between objects are mis-
takenly treated as materials. Invrender [47] takes the in-
direct illumination into consideration, and approximates it
with Spherical Gaussian (SG) for computation efficiency.
Since SG approximation cannot model the high frequency
details, the recovered inter-reflections tend to be blurry and
contain artifacts. Besides, indirect illuminations estimated
by an SG network cannot be jointly optimized with materi-
als and environment illuminations.

In this paper, we propose an end-to-end inverse render-
ing pipeline that decomposes materials and illumination,



while considering near-field indirect illumination. In con-
trast to the method [47], we represent the materials and the
indirect illuminations as neural implicit fields, and jointly
optimize them with the environment illuminations. Fur-
thermore, we introduce a Monte Carlo sampling based path
tracing to model the inter-reflections while leveraging SG to
represent the smooth environment illuminations. In the for-
ward rendering, incoming rays are sampled and integrated
by Monte Carlo estimator instead of being approximated by
a pretrained SG approximator, as shown in Fig. 1. To depict
the radiance, the bounced secondary rays are further traced
once and computed based on the cached neural indirect illu-
mination. During the joint optimization, the gradients could
be directly propagated to revise the indirect illuminations.
In this way, high frequency details of the inter-reflection can
be preserved.

Specifically, to make our proposed framework work, we
need to address two critical techniques:

(i) The Monte Carlo estimator is computationally expen-
sive due to the significant number of rays required for sam-
pling. To overcome this, we use importance sampling to
improve integral estimation efficiency. We also find that SG
is a better representation of environment illuminations and
adapt the corresponding importance sampling techniques to
enhance efficiency and practicality.

(i1) Neural implicit fields often suffer generalization
problems when the view directions deviate from the training
views, which is the common case of indirect illumination.
This would lead to erroneous decomposition between mate-
rials and illuminations. It is hard to determine whether radi-
ance comes from material albedos or indirect illuminations
as the indirect illuminations from unobserved directions are
unconstrained or could have any radiance. To learn indi-
rect illuminations from unobserved directions, we introduce
a radiance consistency constraint that enforces the implicit
neural radiance produced by the neural implicit fields and
path tracing results of unobserved directions. In this fash-
ion, the ambiguity between materials and indirect illumina-
tions has been significantly mitigated. Moreover, they can
be jointly optimized with environment illuminations, lead-
ing to better decomposition performance.

We evaluate our method on synthetic and real data. Ex-
periments show that our approach achieves better perfor-
mance than others. Our method can render sharp inter-
reflection and recover accurate roughness as well as diffuse
albedo. Our contributions are summarized as follows:

* We propose an end-to-end inverse rendering pipeline
that decomposes materials and illumination, while
considering near-field indirect illumination.

* We introduce the Monte Carlo sampling based path
tracing and cache the indirect illumination as neural
radiance, resulting in a physics-faithful and easy-to-
optimize inverse rendering process.

* We employ SG to parameterize smooth environment il-
lumination and apply importance sampling techniques
to enhance efficiency and practicality of the pipeline.

* We introduce a new radiance consistency in learning
indirect illuminations, which can significantly alleviate
the decomposition ambiguity between materials and
indirect illuminations.

2. Related Work
2.1. Implicit Neural Representation

Implicit neural representations [26,38,4 1] have achieved
impressive performance. NeRF [26] represents scenes as
radiance fields and volumetric density fields, and achieves
photo-realistic novel view synthesis. To better model ge-
ometry, some methods, such as IDR [41] and NeuS [38],
further represent geometry as Signed Distance Functions
(SDFs). However, the object appearance is represented as
a radiance field, which simply outputs outgoing radiance of
each 3D point given a view direction. Thus, the surface
points can be treated as emissive lighting sources. These
methods are not suitable for relighting and material editing.

2.2. Material and Illumination Estimation

To estimate object materials, most of previous capture
systems rely on constrained settings, such as by light-stages
with controlled lights and cameras [12,22,45], using mov-
ing cameras with co-located flashlight [4, 5], placing ob-
jects on a turntable platform, or capturing in special lighting
patterns [18]. Apart from those hardware-specific systems,
some data-driven methods [3, 23-25, 31, 33, 40, 42] try to
directly estimate materials from a single image by neural
networks with priors from large-scale datasets. However,
they fail to generalize beyond the training datasets and are
often restricted to the planar geometry. Differentiable ren-
dering methods [1,28] aim to make graphic rendering pro-
cess differentiable, and recover material and illumination by
optimization. However, they suffer from demanding com-
putation cost and challenging optimization complexity.

Recent works have been extended to more flexible cap-
ture settings by implicitly representing geometry and mate-
rials and optimizing them in differentiable pipelines. Most
methods adopt differentiable rendering algorithms and only
consider direct illuminations, such as Spherical Gaussians
(e.g., NeRD [6] and PhySG [43]), Spherical Harmonics
(e.g., NeROIC [19]), point lighting of low resolution envi-
ronment maps (e.g., NeRFactor [40]), and pre-filtered ap-
proximations (e.g., Neural-PIL [7] and NVDiffrec [27]).
Some methods [13, 34] integrated with Monte Carlo sam-
pling but still ignore modeling multiple light bouncing, e.g.,
NVDiffrecme [13] only considers direct illumination and
NeRV [34] considers only one indirect bounce.
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Figure 2. Proposed Rendering Pipeline. To render a camera ray intersecting with surface at location x, we first sample incoming rays
and trace them to obtain their second surface intersection &’ and visibility V' (z, w;) for light source (environment illumination). Then,

SVBRDF values at location =’ and outgoing radiance L,(x’,

—w;) of second intersection x’, i.e., indirect illumination, are obtained by

neural SVBRDF Mg ,, and neural radiance Lo, , respectively. Besides, radiance of incoming rays from light source Fe ,, (w;), i.e., direct
illumination, is obtained by SG environment illumination Fe . Finally, a Monte Carlo Estimator is used for rendering the final results as
described in Eq. (2). Materials, indirect illumination and environment illumination are jointly optimized by the reconstruction loss.

Invrender [47], most close to our method, considers
multi-bounce indirect illuminations. It adopts SG rendering
approximation and has to optimize in three stages. Radiance
field cannot be well trained with limited observed images
at the first stage. Besides, incoming light of adjacent sur-
face points may vary drastically because incoming light is
represented as SGs and modeled by a coordinate-based net-
work trained at the second stage. In contrast, our method
considers indirect illuminations and proposes a joint learn-
ing approach. Therefore, we can render sharp and complex
self-reflection effects and recover material properties with
higher quality, as shown in Fig. 1.

2.3. Theoretical Rendering Process

In theory, the rendering process at the intersection loca-
tion @ of the camera ray with direction w,, can be expressed
by the rendering equation [17]:

Lo(z, w,) Z/ Li(z, w;) (2, wo, w;)(w;-n)dw;, (1)
Q
where L;(x,w;) is the incoming radiance at surface point

x along the direction w;, f, is the BRDF function and
the outgoing radiance L,(x, w,) in observed direction w,

is a reflected light integration over hemisphere ) around
the surface normal n. Incoming radiance may come di-
rectly form light source, known as direct illumination, or
indirectly from other surface after multiple light bouncing,
known as indirect illumination. For indirect illumination,
recursive rendering is often needed.

3. Proposed Method
3.1. Overview

Given a group of multi-view images captured under
static illumination, we aim to decompose the geometry and
Spatially Varying BRDF (SVBRDF) of the object and the il-
lumination. We take the global illumination effect into con-
sideration, such as shadows and inter-reflections, but con-
sider transparent and translucent objects outside the scope
of our work.

The geometry is represented as the zero level set of SDF
as in [38,41,47], which is modeled by an MLP that maps
a 3D location © € R3 to an SDF value and a geometric
feature vector f € R%'2. The material is encoded by an-
other MLP as neural SVBRDF Mg, (x, f). The environ-
ment illumination is parameterized by SG coefficients [43]



Fe,(w;) , where w; € R? is the light direction. The ra-
diance is represented as another MLP Lg, (x,n,w,, f),
which outputs outgoing radiance L given location x, nor-
mal n € R3, viewing direction w, € R3 and feature f.

We solve the inverse rendering problem in an analysis-
by-synthesis manner by forward rendering with parameter-
ized components. Similar to prior works, we pretrain the ge-
ometry SDF by NeuS [38] and freeze the parameters. Given
a viewing direction w,,, we first find the intersection & on
the geometry surface through sphere tracing on the SDF.
Then, the path tracing based rendering integrates the out-
going radiance L,(x,w,) in direction w,. The rendering
results are compared with the input image pixels to optimize
@L, @]\/[ and @E

3.2. Cached Path Tracing based Rendering

Theoretical rendering process described in Sec. 2.3 can-
not be practically implemented because of its production
integration and exponential recursive light bounce. In con-
trast to simply ignoring light bounce and adopting approx-
imations rendering method such as SG [37], we implement
the forward rendering process based on path tracing [20,21],
which is an efficient and differentiable rendering framework
that fully incorporates the light bounces. We implement
rendering equation in Eq. (1) by Monte Carlo estimator as:

(z, w;) fr(z, wo, w;)(w; - M)
p(w;)

N
Lo(z,w,) =~ Z
= @)

It estimates the production integration by sampling incom-
ing rays with direction w,; drawn from distribution p(w;).

The incoming radiance includes light rays directly emit-
ted by the light source, i.e., direct illumination, and ones
bouncing off of the object surface multiple times, i.e., indi-
rect illumination:

Li(x,w;) = V(x,w;)E(

3)
where E(w;) is the incoming radiance form light source
along direction w;, and L,(x’, —w;) is the incoming radi-
ance from the second intersection &’ of the ray. V(z,w;)
is the visibility of location @ for light source and indicates
the illumination type, obtained during path tracing.

To obtain indirect illumination, in theory, we should re-
cursively render the outgoing radiance at location ' along
direction —w; by Eq. (1). This may lead to intractable com-
putation and optimization difficulties for the optimization
process. Inspired by [47], we employ the neural radiance
Le,, to represent the final outgoing radiance after multiple
light bouncing of the second ray intersection x’, known as
indirect illumination. In such manner, we cache the indi-
rect illumination and avoid the exhaustive ray tracing. The

w;)+(1-V(z,w;))Lo(x', —w;),

indirect incoming radiance is calculated as:

_wi7.f/)7 (4)

where n’ and f’ are the surface normal and geometric fea-
ture vector at x’ respectively.

The complete pipeline of our path tracing based render-
ing is shown in Fig. 2. The rendering process is differen-
tiable for optimizing neural radiance Lg, , neural SVBRDF
Me,, and SG environment illumination Feg .

3.3. Efficient Monte Carlo Estimator

LO(CC/, _wz) = L@L (58/777//,

Monte Carlo estimator needs to sample a large number
of rays to produce high-quality results without noise, which
is not affordable for practical optimization. Although some
techniques can tackle the issue, most of them are inappro-
priate in inverse rendering scenario. For example, denoising
techniques [2, 10, 14, 48] require spatial information of the
whole rendered image and temporal information from pre-
vious frames. These information is not available in inverse
rendering, where we randomly pick posed images and sam-
ple some pixels for training. Hence, we apply importance
sampling techniques, including cosine sampling as well as
GGX importance sampling [15], to improve Monte Carlo
estimator efficiency and use multiple importance sampling
method [30, 36] to fuse all of them.

For light importance sampling, the piecewise-constant
2D distribution sampling [30] is not applicable, since it is
designed for known environment illumination represented
as the 2D array. As mentioned in [0, 47], parameterizing
environment illumination in such a way could make each
pixel of environment maps vary independently, lead diffuse
albedo baked in illumination and cause illumination ineffi-
cient for optimization. In contrast, we parameterize envi-
ronment illumination as SG coefficients , and introduce and
adapt Spherical Gaussian (SG) distribution sampling [16]
as the corresponding light importance sampling technique:

M
Ak e
psa(w;) = ;akme/\k(wz &= (5)
ap = ,U‘k'ma'r(n : Skv 6) , (6)

sz:l pimaz(r - £ €)

where €, A\, p € O are SG parameters of environment illu-
mination, i.e., lobe axis, lobe sharpness and lobe amplitude
of SG respectively, and [ is the energy of lobe amplitude
p. Since we only need to sample rays over the hemisphere
around n, we assign a tiny weight € to SG components
whose lobe axis & is beyond the hemisphere. According
the SG distribution, it has a higher probability to sample
light rays that belong to brighter SG lobes and are closer to
SG lobe centers. The detailed process is described in our
supplemental material.
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Figure 3. Training with traced rays. We alternatively train with
observed rays and unobserved rays.

3.4. Training with Traced Rays

We alternatively train our framework with observed rays
and unobserved rays. Training with observed rays alone is
challenging because some locations or view directions are
not observed due to occlusion. Besides, there exists ambi-
guity between indirect illumination and material properties,
since indirect incoming rays with many directions cannot
be directly observed by the camera. Hence, neural radiance
L@, is indeterminate with re-render loss alone. We propose
to utilize the unobserved rays to provide more information
and constraints.

Train with observed rays. As shown in the top of Fig. 3
we optimize © 1, © ; and O i with observed rays using the
following loss:

Nopj
D e — ey
Obj =1

ob]

+ A5 ZH b et (7)
=1
!LObJ

o D e = e o

nob] i—1

The first term is the reconstruction loss of path tracing-
based rendering results of object pixels {cOb} ¥ with

ground truth {c*7'} " The second term is the recon-

struction loss of neural rendering results of object pixels
{“Ob} 1. The third term is the environment reconstruc-
tion loss, which renders non-object pixels {c’wb} "2 to
compare with the ground truth { ¢} t}?{:”fb’ .

Train with unobserved rays. As shown in the bottom of
Fig. 3, we additionally optimize components with unob-
served rays. Although there is no ground truth of unob-
served rays, the consistency of neural rendering and path
tracing based rendering of the rays can be used for training:

l N Z\lcg 5l ®)

sec ;
Jj=1

where ¢’; = L,(x’, —w;) is the path tracing rendering re-
sult at the unobserved ray origin &’ for outgoing direction
—w;,and ¢ ; = Le, (x',n/, —w;, f') is the neural render-
ing result. N, is the amount of unobserved rays.

Unobserved rays are uniformly sampled from the sec-
ondary rays, which are generated in path tracing of observed
rays, instead of being generated by virtual cameras. We al-
ternatively train the networks with observed rays and unob-
served rays rather than aggregate the two losses. The unob-
served rays is optimized every K steps.

3.5. Implementation Details

We set the sampled number of rays N = 64 and the SG
components number M = 128. We set the loss weights
B1 = 1.0, B2 = 1.0 and unobserved rays training interval
K = 10. SDF and neural SVBRDF contains 8 layers with
512 hidden units and positional encoding [26,35] is applied
to the input 3D locations with 6 and 10 frequency compo-
nents respectively. Neural radiance contains 4 layers with
512 hidden units and positional encoding of the 3D location
and directions with 10 and 4 frequency components respec-
tively. Our approach is implemented in Pytorch [29] and
optimized with Adam with learning rate 5 x 10~%. We train
about 120 epochs on 4 RTX 3090 GPUs and it takes about 5
hours. We use the simplified Disney BRDF model [8] with
parameters including roughness, diffuse albedo and specu-
lar albedo. The specular albedo is assumed as 0.5, the value
of common dielectric surfaces.For stable optimization, we
fix roughness at the first 50 epochs to warm up.

4. Experiment
4.1. Synthetic Data

We collect four synthetic scenes with obvious self-
reflections to showcase the quality of the estimated BRDF
parameters and illumination. We render 200 images and
their masks under a natural HDRI environment map via
Blender Cycles and uniformly sample 100 for training and
leave the rest for testing. We also render diffuse albedo
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Figure 4. Qualitative comparisons with the state-of-the-art. We present synthetic rendering result and specualar reflection component
as well as estimated aligned diffuse albedo [43,46] and roughness of each method on two scenes. The roughness of NerFactor [46] is
visualized with the BRDF identity latent code. Compared with previous works, our method better simulates sharp self-reflectance and
separates shadows and indirect illumination from diffuse albedo. Besides, roughness maps recovered by our method are more accurate.

maps, roughness maps, and specular reflection components
for test images to evaluate the inverse rendering ability. The
image resolution is set to 512 x 512.

4.2. Comparison with the State-of-the-Art

The closest work to ours is Invrender [47] which forms
our primary comparisons. We also compare with other
methods tackling on the similar inverse rendering settings
as this paper for thorough comparisons, including NeRFac-
tor [46] and PhySG [43]. We mainly focus the evaluation
on material properties and illumination estimation instead
of shape reconstruction. We make quantitative compar-
isons on the synthetic data and directly learn geometry from
mesh for every approach to better evaluate material estima-
tion ability without interference of geometry reconstruction
quality. Following previous works [43,47], we adopt Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [39], and Learned Perceptual Image Patch
Similarity (LPIPS) [44] to evaluate image quality metrics
and evaluate the diffuse albedo after aligning.

Fig. 4 shows that our method could render sharp re-
flection effect due to our joint-learning path-tracing-based
framework. Hence, our recovered diffuse albedo and rough-
ness are more clean compared with other methods. Besides,
by joint-learning framework, our indirect illumination and
visibility are modeled more accurately, so less indirect illu-
mination and shadow are baked into diffuse albedo. Tab. 1
shows quantity improvements, especially in roughness esti-
mation and specular reflection synthesis, of our methods.

Invrender [47] approximates the indirect illumination
with SG and is trained in three stages. They represent vis-
ibility and incoming indirect light of each point as SG pa-
rameters by neural networks and train in the second stage,
then optimize materials with SG rendering at the third stage.
SG does not work well for high-frequency lighting, and
the visibility and indirect illumination of adjacent surface
points may vary drastically, hence, reflection tend to be
noisy and rough, as shown in rendering RGB and specular
RGB results in Fig. 4. Besides, the radiance field, trained
with limited observed rays of multi-view images, could not



Method Roughness Aligned Diffuse Albedo View Synthsis Specular RGB View Synthsis RGB
MSE | PSNR1 SSIM{ LPIPS| | PSNR1T SSIM{ LPIPS| | PSNR1T SSIM1T LPIPS |
NeRFactor [46] - 21.8857 09159  0.0953 | 19.2751 0.8695  0.1147 | 29.9826 0.9597  0.0475
PhySG [43] 0.0481 19.7933 0.8988  0.1109 | 26.7784 0.9025  0.0693 | 31.0425 0.9642  0.0436
Invrender [47] 0.0464 27.4026 09426  0.0914 | 26.1370 0.9035  0.0831 | 30.8743 0.9616  0.0490
Ours 0.0065 28.1094 0.9516  0.0845 | 34.2930 0.9608  0.0416 | 31.0909 0.9586  0.0528

Table 1. Quantitative evaluations. We present quantitative comparison with the state-of-the-art. Results show that our method achieves
impressive improvements, especially in roughness estimation and specular reflection synthesis. Due to the rendering noise of our path
tracing based rendering, some metrics of the view synthesis RGB are slightly worse than other methods.
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Figure 5. Ablation on environment illumination representa-
tion. Representing environment illumination in environment maps
and using 2D piece-constant sampling causes neighbor pixels in
the environment map vary independently, and part of the illumi-
nation is baked into diffuse albedo. Representing environment il-
lumination in SG coefficients and using SG importance sampling
better decomposes the illumination and diffuse albedo.

predict radiance of indirect rays with unobserved directions
correctly. Hence, more indirect illumination and shadow are
baked in diffuse albedo as shown in Fig. 4.

Other methods [43, 46] ignore indirect illumination and
achieve worse results of material recovering. Indirect illu-
mination is baked in diffuse albedo and roughness maps are
recovered inaccurately.

4.3. Ablation Studies

Ablations on environment illumination representation.
As shown in Sec. 4.2, representing environment illumina-
tion in SG coefficients and using SG importance sampling
are better for optimization. Representing environment illu-
mination in 2D environment maps and using piece-constant
sampling causes neighbor pixels in the environment map
vary independently, and it is easier for illumination to be
baked into diffuse albedo.

Ablations on training with unobserved rays. We ablate
the unobserved training, and compare the results in Fig. 6.
We visualize the mean of indirect illumination from all di-
rections at each point and show the recovered diffuse albedo
as well as roughness. Without unobserved training, the
network predicts wrong indirect illumination at some lo-

Ours

GT w/o unobserved training

Indirect Light

Diffuse Albedo

Roughness (Side View)

Figure 6. Ablations on training with unobserved rays. We vi-
sualize the incoming indirect light for each point and present re-
covered diffuse albedo and roughness under both settings. Train-
ing with unobserved rays helps the decomposition of indirect light
and diffuse albedo. Besides, roughness at the interstice of objects
is recovered more accurately.

cations, especially at the interstice of objects. Due to the
incorrect indirect illumination, the recovered diffuse albedo
contains some artifacts, e.g., the bread on the side of the
sausage of the hotdog. Besides, interstices, e.g., areas be-
tween the hotdog and the plane, are not visible by cameras
from many directions. Hence, the roughness at these ar-
eas cannot be estimated correctly and confidently when only
trained with observed rays.

Ablations on indirect lighting. We show the influence
of modeling indirect illumination and visibility in Fig. 7.
Without modeling indirect illumination, indirect illumina-
tion would be baked into diffuse albedo, resulting in wrong
brightness. Further without modeling visibility, shadows
would be baked into diffuse albedo and the roughness is
not correctly recovered. These results show the necessity of
indirect illumination modeling in inverse rendering.
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GT Ours GT Ours

Relight 1

~
z
2
o]
e~

Figure 8. Relighting Results. Our method supports further re-
lighting with the recovered materials.

4.4. Relighting

We relight the objects with recovered material proper-
ties under two environment illuminations and show results
in Fig. 8. Our method could recover accurate material prop-
erties and support further relighting.

4.5. Results on Real Captures

We test our method on real captured images of 3 ob-
jects with different materials. Each scene has about 40 to
60 valid images for training and we use COLOMAP [32]
to estimate the camera poses. We train our method with-
out masks. Note that reflection properties of real materials
are more complex in contrast to BRDF models and there
are more interference in real capturing, e.g., video motion
blur caused by moving cameras and illumination changing
during capturing. As shown in Fig. 9, our method could
estimate reasonable material properties.

4.6. Failure Cases

As shown in Fig. 10, our method has difficulty in esti-
mating roughness in large shadow areas due to the low vis-
ibility of scenes. In some extreme cases, the shadow may
leak into the albedo because of illumination ambiguity.

GT Re-Render Normal Diffuse

Figure 9. Results on real captures. Our method estimates rea-
sonable materials for real-world objects.

GT RGB Roughness

GT RGB Albedeo

Figure 10. Failure cases. Shadow might pose challenges for
reflectance decomposition in some extreme cases.

5. Conclusion

To summarize, our paper presents an end-to-end inverse
rendering pipeline that is capable of decomposing materi-
als and illumination from multi-view images, while consid-
ering near-field indirect illumination. Our method utilizes
the Monte Carlo sampling based path tracing and cache the
indirect illumination as neural radiance, enabling a physics-
faithful and easy-to-optimize inverse rendering method. We
implement an efficient Monte Carlo estimator and propose a
novel radiance consistency constraint of unobserved rays to
decrease the ambiguity. Extensive experiments demonstrate
that our method models the sharp inter-reflections better and
recovers material properties more accurately.

Our method still has some limitations. First, the shape
is not joint optimized because visibility gradients are not
handled well by current ray tracing technique. Second, to
decrease the ambiguity of the inverse problem, the specular
albedo is assumed as 0.5, the value of common dielectric
surfaces. They will be the subject of our future works.
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Appendix
A. Sampling from SG Sampling Function

As described in Sec. 3.3, we utilize the Spherical Gaus-
sian (SG) distribution sampling method to improve the
Monte Carlo ray sampling efficiency:

M
_ Ak Ak (wi €, —1)
psc(w;) = kE:1ak = e )

where €, A\, p € O f are SG parameters of environment illu-
mination, i.e., lobe axis, lobe sharpness and lobe amplitude
of SG respectively.

When sampling, we first utilize the probability aj to de-
cide which Gaussian component to draw from, then draw
w; from the k-th Gaussian distribution. In order to draw
samples from the k-th Gaussian distribution, we apply in-
verse transform sampling [30], which employs uniform ran-
dom variables and maps them to random variables of the
target distribution. We first transform the PDF of direction
w; to 1D marginal and conditional density functions of its
spherical coordinate ¢ and 6. Following [30], the joint PDF
pr (0, ©) of spherical coordinate ¢ and @ is derived as

pi(0, @) = cg sin e n(cos0=1) (10)

Hence, the marginal density function p(6) of 0 is
SR (cos 0—1)

pr(0) :/0 ¢k sin fe’* dy (n

= 2y, sin Per(cos0—1)

As aresult, the conditional density function py(¢|6) of ¢ is

0) = = —. 12
AN =" 0) o "

We then compute the cumulative distribution function
(CDF) of the distribution, Py () and Py (¢|6):

0
Pr(0) = / 2mey, sin terk(cost=1) 7y
0

(13)
. 271'@9(1 _e)\k(COSQ—l)),
Ak
¢ 1 @
P 0) = — = . 14
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According to inverse transform sampling, random vari-
able X = Fy'(u) has distribution Fx (x), where u is a
random value generated from the standard uniform distribu-
tion. Hence, to apply inverse transform sampling and draw
a sample 0 based on a uniformly distributed random number

Albedo
(Invrender)

Figure 11. Comparison of albedo results of real scenes.

uy, we solve for Py (0) = uy:

2mey, (1 _ 6)\k(cos 071)) =

* (15)
1

= 6 = arccos(1 + — In(1 —
Ak

In a similar way, we can draw a sample ¢ based on a uni-
formly distributed random value u, as:

p = 2Tus. (16)

B. Comparison of albedo results of real scenes.

Fig. 11 illustrates the comparison between our method
and Invrender in recovering diffuse materials in real scenes.
Our method outperforms Invrender in modeling indirect il-
lumination, which helps to avoid baking indirect illumina-
tion into the albedo and causing incorrect brightness of cer-
tain areas.

C. Additional Results of synthetic scenes.

Fig. 12 shows qualitative comparisons results of the
other synthetic scenes.

D. Scene Manipulation in Blender

Our method supports further scene manipulation in
graphics engines. We convert our recovered material prop-
erties to image textures and import them into Blender [ 1]
based on OpenMVS [9]. In Fig. 13, we present the material
editing and relighting results of our recovered models, hot-
dog, coffee, and fruits. Note that there are some biases of
image textures caused by OpenMVS.
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Figure 13. Results of Scene Manipulation in Blender. We present material editing and relighting results in Blender [1 1] of our recovered
models, i.e., hotdog, coffee, and fruits. The results are rendered by Blender Cycles at 2048 ssp.
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