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Figure 1. We present UltraStage, a new dataset containing more than 2000 human assets captured under multi-view and multi-illumination
settings. The high-quality images allow us to extract detailed normal, albedo, and material maps, as well as reconstruct fine geometry (left).
We further propose a neural processing pipeline to interpret each capture into a neural human asset, which enables various applications like
photo-realistic relighting (middle) and exquisite novel view synthesis (right). Our assets faithfully model human details, e.g., the delicate
cloth wrinkles or the vivid classical fan textures.

Abstract

Human modeling and relighting are two fundamental
problems in computer vision and graphics, where high-
quality datasets can largely facilitate related research.
However, most existing human datasets only provide multi-
view human images captured under the same illumination.
Although valuable for modeling tasks, they are not read-
ily used in relighting problems. To promote research in
both fields, in this paper, we present UltraStage, a new 3D
human dataset that contains more than 2,000 high-quality
human assets captured under both multi-view and multi-
illumination settings. Specifically, for each example, we
provide 32 surrounding views illuminated with one white
light and two gradient illuminations. In addition to regular
multi-view images, gradient illuminations help recover de-
tailed surface normal and spatially-varying material maps,
enabling various relighting applications. Inspired by re-
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cent advances in neural representation, we further interpret
each example into a neural human asset which allows novel
view synthesis under arbitrary lighting conditions. We show
our neural human assets can achieve extremely high capture
performance and are capable of representing fine details
such as facial wrinkles and cloth folds. We also validate
UltraStage in single image relighting tasks, training neural
networks with virtual relighted data from neural assets and
demonstrating realistic rendering improvements over prior
arts. UltraStage will be publicly available to the community
to stimulate significant future developments in various hu-
man modeling and rendering tasks. The dataset is available
at https://miaoing.github.io/RNHA.

1. Introduction
Multi-view stereo (MVS) and photometric stereo (PS)

have long served as two complementary workhorses for re-
covering 3D objects, human performances, and environ-
ments [1,29]. Earlier MVS typically exploits feature match-
ing and bundle adjustment to find ray correspondences
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across varying viewpoints [13, 43, 82] and subsequently
infer their corresponding 3D points [19, 72, 81]. More re-
cent neural modeling approaches have emerged as a more
effective solution by implicitly encoding both geometry and
appearance using neural networks [58]. PS, in contrast,
generally assumes a single (fixed) viewpoint and employs
appearance variations under illumination changes to infer
the surface normal and reflectance (e.g., albedo) [1,20,23–
25, 35, 53, 54, 62]. Shape recovery in PS essentially corre-
sponds to solving inverse rendering problems [25] where
recent approaches also move towards neural representa-
tions to encode the photometric information [55,56,68,90].
Most recently, in both MVS and PS neural representations
have demonstrated reduced data requirement [48, 88] and
increased accuracy [21, 22]. In the context of 3D human
scanning, MVS and PS exhibit drastically different benefits
and challenges, in synchronization, calibration, reconstruc-
tion, etc. For example, for high-quality performance cap-
ture, MVS has long relied on synchronized camera arrays
but assumes fixed illumination. The most popular and per-
haps effective apparatus is the camera dome with tens and
even hundreds of cameras [50]. Using classic or neural rep-
resentations, such systems can produce geometry with rea-
sonable quality. However, ultra-fine details such as facial
wrinkles or clothing folds are generally missing due to lim-
ited camera resolutions, small camera baselines, calibration
errors, etc [87].

In comparison, a typical PS capture system uses a sin-
gle camera and hence eliminates the need for cross-camera
synchronization and calibrations. Yet the challenges shift
to synchronization across the light sources and between
the lights and the camera, as well as calibrating the light
sources. PS solutions are epitomized by the USC Light-
Stage [15, 30, 87] that utilize thousands of light sources to
provide controllable illuminations [23,25,53,54,79], with a
number of recent extensions [2,27,34,35,41,65,73,95,96].
A key benefit of PS is that it can produce very high-quality
normal maps significantly surpassing MVS reconstruction.
Further, the appearance variations can be used to infer sur-
face materials and conduct high-quality appearance editing
and relighting applications [2, 65, 79, 95, 96]. However, re-
sults from a single camera cannot fully cover the complete
human geometry. Nor have they exploited multi-view re-
constructions as useful priors. A unified capture apparatus
that combines MVS and PS reconstructions has the poten-
tial to achieve unprecedented reconstruction quality, rang-
ing from recovering ultra-fine details such as clothes folds
and facial wrinkles to supporting free-view relighting in
metaverse applications. In particular, the availability of a
comprehensive MVS-PS dataset may enable new learning-
based approaches for reconstruction [58,66,77,89,92,100],
rendering [11,58,83,86,93,98], and generation [18,37–39,
71]. However, there is very little work or dataset available

Figure 2. Data overview. Here we show 5 examples in our dataset.
From front to back are the normal map, albedo map, color gradient
illumination observation, and inverse color gradient illumination
observation, respectively. In total, UltraStage Dataset contains
more than 2,000 human-centric scenes of a single person or multi-
ple people with various gestures, clothes and interactions. For each
scene, we provide 8K resolution images captured by 32 surround-
ing cameras under 3 illuminations. See Supp. for more examples.

to the public due to challenges on multiple fronts for con-
structing such imaging systems.

To fill in the gap, we construct PlenOptic Stage Ultra,
an emerging hardware system that conducts simultaneous
MVS and PS acquisition of human performances. PlenOp-
tic Stage Ultra is built upon an 8-meter radius large-scale
capture stage with 22,080 light sources to illuminate a per-
former with controllable illuminations, as well as places 32
cameras on the cage to cover the 360◦ surrounding views of
the object. We present detailed solutions to obtain accurate
camera-camera and camera-light calibration and synchro-
nization as well as conduct camera ISP correction and light-
ing intensity rectification. For PS capture, PlenOptic Stage
Ultra adopts tailored illuminations [27,53,55,57]: for each
human model, we illuminate it with one white light and
two directional gradient illuminations. This produces ex-
tra high-quality surface normal and anisotropic reflectance
largely missing in existing MVS human reconstruction. A
direct result of our system is UltraStage, a novel human
dataset that provides more than 2,000 human models under
different body movements and with sophisticated clothing
like frock or cheongsam, to be disseminated to the commu-
nity.

We further demonstrate several neural modeling and ren-
dering techniques [11, 58, 59, 93, 98, 99] to process the
dataset for recovering ultra-fine geometric details, modeling
surface reflectance, and supporting relighting applications.
Specifically, we show neural human assets achieve signifi-
cantly improved rendering and reconstruction quality over
purely MVS or PS based methods [6,19,20,25,53,72], e.g.,
they can render exquisite details such as facial wrinkles and
cloth folds. To use the neural assets for relighting, we adopt
albedo and normal estimation networks for in-the-wild hu-
man full-body images and we show our dataset greatly en-
hances relighting quality over prior art [36,80]. The dataset
as well as the processing tools are expected to stimulate
significant future developments such as generation tasks in
both shape and appearance.



Figure 3. System Overview. The PlenOptic Stage Ultra is an 8-
meter lighting stage composed of 32 sounding cameras and 22,080
controllable light sources. It supports both MVS and PS capture
settings, enabling high-quality geometry and material acquisition
for large-scale subjects and objects. Note that a human is inside in
the middle of the picture.

2. Related Work
The primary objective of our work is to amalgamate

MVS and PS capture techniques into a cohesive system to
generate high-quality human performance data. The exist-
ing literature on both methods is extensive, but we will fo-
cus on discussing those most pertinent to human capture.

Multi-view stereo techniques and datasets. MVS re-
constructs 3D geometry from a set of 2D images captured
at different viewpoints [26, 29, 74] successfully recovering
human body [12, 16, 63], face [9, 42, 51], clothing [28],
hair [61], etc. Earlier works rely on correspondence match-
ing [14, 64, 70] and rich textures, making them vulnerable
to bare skin and textureless clothing (e.g., dark pants). With
the support of deep learning, recent works employ neu-
ral representations and differentiable rendering in the MVS
pipeline [10, 58, 59, 85] where geometry, appearance, and
surface reflectance can be effectively encoded into a tailored
neural network [11, 60, 93, 98].

In human scanning, multi-view capture systems for faces
are prevalent due to reduced space, camera, and calibration
requirements. However, most efforts focus on static ge-
ometry, as synchronizing video cameras is challenging and
costly. Several valuable datasets [5, 49, 84] have been made
available, fostering algorithm development. MVS recon-
struction has inherent limitations, including reduced qual-
ity from low resolution, calibration errors, and small cam-
era baselines, struggling to recover fine geometric details.
Additionally, MVS typically necessitates fixed and general
ambient illumination, leading to less appealing textures.
Photometric stereo solutions. PS has gained traction as
a prominent alternative to MVS for shape reconstruction.
PS captures images from a fixed viewpoint and derives per-
pixel surface normal maps by analyzing intensity changes
under varying illumination. PS techniques rely on normal
integration [31] rather than directly producing 3D geometry.

The USC LightStage [25, 53] is a prime example of PS
success used in award-winning films. Multiple generations
of the LightStage [27, 53, 55, 57, 94] use gradient illumi-
nation to obtain normal maps at high efficiency and use
coarse geometry as the boundary for normal integration.
This geometry may originate from MVS [7,25] or paramet-
ric models [52]. UltraStage proposes a novel neural model-
ing pipeline for human asset reconstruction, while The Re-
lightables [27] uses expensive depth cameras and applies
Poisson reconstruction. One-Light-at-A-Time (OLAT) is an
alternative to gradient illumination in PS, requiring ultra-
fast camera synchronization with lights. Beyond recover-
ing normal maps, OLAT enables photo-realistic relighting
directly [65, 79, 95]. Zhang et al. [96] learns a 6D neural
light transport function for conducting real-time portrait re-
lighting. Total Relighting [65] produces a photo-realistic
relighting effect by the detail normal and albedo, and using
the Phong model as a prior.

However, PS systems based on either gradient illumi-
nation or OLAT tend to be expensive to construct, espe-
cially when combined with MVS. By now the only handful
MVS-PS integrated systems are rather small in scale and
are not for full-body human captures. Recent neural ap-
proaches [40, 91] combine MVS and PS for reconstruction,
focusing on static objects under directional lighting. In con-
trast, our approach leverages gradient illumination for effi-
cient human performance capture and directly utilizes PS
normal and albedo to enhance realism. Further, very few
datasets have been publicly available whereas we set out to
construct such a full-body capture system and produce rich
data for the community.

Neural human assets. Our research aims to generate neu-
ral representations from MVS-PS human capture results
and provide raw data. While initial Neural Radiance Field
(NeRF) [58] was under the MVS setting, recent advances
integrate illuminations [3, 4, 75, 97]. Srinivasan et al. [75]
trained a neural field from multi-view images under known
varying illuminations for free-view rendering and relight-
ing. Most works focus on human faces, with techniques
like rendering human eyes with exceptional realism [47]
and modeling light interactions for high-quality portrait re-
lighting [78].

Neural human assets have enabled applications like
single-image portrait relighting by inferring geometry,
albedo, normal, and other attributes from images. To
date, in-the-wild human full-body relighting techniques
[32,36,44,80] predominantly rely on synthetic training data,
using diffuse or simple parametric surface reflectance mod-
els, resulting in reduced realism. Even so, publicly available
multi-view, multi-lighting human datasets are extremely
scarce, and existing ones [32, 44, 80] contain limited va-
rieties in human subjects, movements, clothing, and other
factors. UltraStage contains 2,000 human models engag-



Hardware #Camera #Light Radius Resolution
Color
light

Wenger et al. [87] 1 468 1m 1K -
Kampouris et al. [35] 1 336 1.25m - ✓

Guo et al. [27] 90 21k - 4K ✓
Peng et al. [67] 21 - - - -

Bi et al. [2] 140 460 1.1m 4K -
Ours 32 22k 4m 8K ✓

Table 1. Comparison of PlenOptic Stage Ultra and other hard-
ware for capturing relightable data and human full-body data. Our
hardware has advantages over the number of lights (#lights), ra-
dius, and image resolution.

ing in various activities, such as walking, running, standing,
stretching, working out, and taking selfies. The dataset also
encompasses diverse clothing styles, including classical at-
tire, sportswear, and casual outfits. We captured scenes of
individuals interacting with objects, as well as multi-person
scenarios.

3. Data Acquisition
3.1. System Setup

Our goal is to design an innovative system to acquire
high-quality geometry and material properties for large-
scale subjects under both MVS and PS capture settings. We
construct PlenOptic Stage Ultra, a giant light stage with
an 8-meter diameter, comprising 460 panels with 48 LED
beads each, totaling 22,080 individually controllable light
sources for versatile illumination. The LEDs support six
colors (RGBWAC) for a comprehensive color spectrum. We
employ 32 Nikon D750 with Nikkor 24-120mm F4 lenses,
arranged 360◦ around the subject, synchronized with the
lighting at 5fps. Figure 3 illustrates our system and we
compare PlenOptic Stage Ultra with other similar hardware
in Tab. 1.

Precise geometric and photometric calibrations are cru-
cial for shape recovery and post-processing. We devise a
method to configure the system, localizing LED bead po-
sitions using an alt-azimuth mount, and then calibrate the
cameras’ intrinsic and extrinsic parameters under the same
coordinate system. For photometric calibration, we adjust
the camera tone mapping with a color card to output data
under linear sRGB color space and rectify the lighting using
a method based on LeGendre et al. [46] to reliably repro-
duce ambient illumination with RGBWAC light. See sup-
plementary materials for detailed procedures.

3.2. Multi-view Normal and Albedo Recovery
with Gradient Illuminations

Normal estimation. We capture multi-view images under
3 illuminations, two gradient illuminations and one white
light. We record the pixel values captured under two gra-
dient illuminations as g+ and g−. For details on the gradi-
ent illuminations, please refer to supplementary materials.
Assuming a Lambertian surface BRDF, we follow the ap-

Figure 4. Our pipeline for generating high-quality relightable neu-
ral human assets. Given the multi-view input, we first extract
corresponding PS normal maps and then train a Neural SDF field
from these normal maps (top left). We further adopt depth-guided
neural texturing to synthesize novel-view normal and albedo maps
(top right) and optimize a neural material field (bottom left) for
photo-realistic relighting tasks(bottom, right).

proach by Guo et al. [27] to compute the surface normal n
as:

d =
g+ − g−

g+ + g−
,n =

d

|d|
. (1)

Here, the normal maps are computed in a “world” co-
ordinate, aligned with the camera and lighting system. We
compute normal maps for all 32 views, which can then be
fused to recover the complete normal map of the human
geometry. Several sample normal maps are shown in the
Teaser Fig. 1 and Fig. 2. For a more detailed explanation
of gradient illuminations, please refer to [20, 27, 53].

Albedo estimation. Gradient illuminations allow for joint
estimation of the surface normal and reflectance parameters,
such as albedo or specular. Most recent approaches have
been focused on using GI for 3D face captures [35, 53].
However, the human face has a much simpler, almost con-
vex geometry. In contrast, clothed humans exhibit more
complicated geometry with severe self-occlusions such as
occluded limbs or clothes folds. Moreover, applying two
color gradient illuminations to jointly estimate pixel-wise
normal and reflectance parameters is highly ill-posed. We
discovered that directly transferring empirical equations
from faces to clothed humans results in poor results, where
the inferred albedo suffers severe issues from occlusions.
See supplementary materials for more analysis.

We define L0 as the maximum lighting intensity. L = L0

means we set the capturing illumination L to be the maxi-
mum lighting L0, a.k.a., the white light. We also record
the pixel value captured under white light as g0 and set the



Dataset #Frm #Subj #View Res Relightable Normal
3DPW [84] 51k 7 1 - - -

AIST++ [49] 10M 30 9 - - -
HuMMan [5] 60M 1k 12 1K/4K - -

ICT-3DRFE [76] ∼14k 23 2 1K ✓ ✓
Dynamic OLAT [95] 603k 36 1 4K ✓ ✓
UltraStage(Ours) 192k 100 32 8K ✓ ✓

Table 2. Comparisons of UltraStage Dataset and other published
datasets. UltraStage Dataset has a competitive scale in terms of re-
lighting, number of frames (#Frm), number of viewpoints (#View),
and image resolution (Res); We also contain multi-view normal
maps (Normal), and can be used for relighting tasks (Relightable).

surface albedo a to be g0, details are included in supple-
mentary materials. We do this with two observations: 1)
White light helps produce minimum shadows on the hu-
man body, largely reducing the influence of self-occlusions.
2) In gradient illuminations normal and albedo are entan-
gled, whereas images captured in white light preserve most
albedo information. Although shading is still backed in the
albedo, practically, we find it works quite well in all our ex-
periments. Please see Fig. 1 and Fig. 2 for examples. For
other surface reflectance parameter estimation, we solve it
with neural representation (Sec. 4).

3.3. Dataset Description

UltraStage Dataset provides a comprehensive multi-
view, gradient illumination based full-body human dataset.
A unique feature of our capture dome is the adamant space
within which a subject can move. Therefore, we manage to
acquire data that consists of single and multiple subjects as
well as human subjects interacting with objects. In total, Ul-
traStage provides more than 2,000 human actions, each con-
taining 32 high-resolution 8K images captured under three
illuminations, resulting in a total of 192,000 high-quality
frames. We ensured a diverse participant pool, recruiting
approximately 100 subjects with a balanced gender distribu-
tion. UltraStage features individuals from a variety of ethnic
backgrounds, primarily consisting of Asians, but also repre-
senting Caucasians, Africans, Middle Easterners, and other
ethnicities. Approximately one-fifth of the participants are
middle-aged individuals, while the remaining participants
are younger. Each subject performs around 20 poses, with
each pose captured under three illumination patterns.

Table 2 compares UltraStage Dataset and most exist-
ing human datasets. While previous works mainly focus
on capturing diverse human poses, multi-view human im-
ages, and videos prepared for motion capture and human re-
construction tasks. Differently, UltraStage captures human-
centric images under color gradient illuminations, capable
of estimating high-quality normal and reflectance maps that
are helpful for both high-quality image-based rendering and
geometry reconstruction. We compare our relightable hu-
man dataset with other human datasets or relighting datasets
in Tab. 2. Existing publicly available relightable datasets are
all face datasets, such as ICT-3DRFE [76] with two cam-

Figure 5. Qualitative comparison on the geometry reconstruction.
We compare our method with traditional MVS solution, Instant-
NGP [59], Instant-NSR [99]. Our method applies PS normal maps
to guide geometry generation, demonstrating detailed reconstruc-
tion effects.

eras and single-view Dynamic OLAT [95], with one or two
cameras. Human datasets like [5,49,84] contain large-scale
frames but do not support relighting. UltraStage is the first
relightable human-centric dataset with 32 viewpoints and
the highest resolution.

4. Neural Asset Generation

UltraStage presents high-quality normal and albedo
maps under fixed viewpoints. Inspired by recent advances
in neural representations, we further model each example
with neural networks, turning it into a neural human asset
that enables relightable novel view synthesis.

As shown in Fig. 4, our neural processing pipeline con-
sists of two stages. In the first stage, we take the high-
quality normal maps as guidance, training a signed distance
field (SDF) [85, 99] to represent human geometry. We
demonstrate in Fig. 5 how normal priors significantly im-
prove geometry quality, e.g., faithfully reconstructing de-
tails such as folds and wrinkles on clothing.

In the second stage, we adopt deferred rendering tech-
niques that can effectively synthesize free-view renderings
of the subject under new and more sophisticated lighting
environments. We first prepare a set of G-buffers, includ-
ing normal, albedo, and material maps. To fully leverage
our high-quality PS normal and albedo maps, we devise
a depth-guided texture blending method, akin to [99], to
synthesize more detailed albedo and normal buffers and ap-
ply inverse rendering frameworks [98] to generate material
buffer. Once completed, we can shade the image with any
desired lighting, which we elaborate on in Sec. 4.2.

4.1. High-quality Neural Geometry Modeling

Given multi-view gradient illumination images, we first
extract high-quality normal maps, as described in Sec. 3.2.
Since normal directions are defined in world coordinates,
they are consistent across different views. Following Zhao
et al. [99], we train an SDF field [85] with hash encod-
ing [59] to represent the geometry, where: FSDF : x 7→ s
that maps each 3D location x ∈ R3 to its Signed Distance
(SD) value s ∈ R.

However, instead of supervising with RGB images, we



Figure 6. Qualitative comparison on depth-guided G-buffer gen-
eration. We compare our method with volume rendering tech-
niques. Specifically, we train normal and albedo neural fields with
Instant-NGP [59] and apply volume rendering to generate corre-
sponding G-buffers. By explicitly employing the high-quality PS
priors, depth-guided G-buffer generation produces more photore-
alistic albedo and accurate normal maps.

feed the normal maps as input to the network. Compared to
RGB values which entangle geometry, material, and light-
ing together, normal maps solely represent surface orien-
tations and thus provide stronger cues for the underlying
surface geometry optimization, demonstrating better recon-
struction effects.

In Fig. 5, we compare our neural geometry genera-
tion with a traditional MVS solution provided by Agisoft
Metashape 1 and two recent learning-based neural radiance
fields [59, 99] which take RGB images as input. While we
adopt the same network architecture as Zhao et al. [99], we
show normal maps significantly improve the reconstruction
quality, preserving more fine-grained details like cloth wrin-
kles on trousers and dresses.

4.2. Relightable Novel View Synthesis

By employing deferred rendering techniques, we are
able to render neural human assets in arbitrary views and
illuminations. Specifically, given a new camera pose c ∈
SE(3), we first generate corresponding G-buffers, includ-
ing the normal map N ∈ Rh×w×3, albedo map A ∈
Rh×w×3, material map M ∈ Rh×w×1. To take advan-
tage of the photometric priors, we utilize the pretrained SDF
field to synthesize a depth buffer D ∈ Rh×w×1, then apply
reprojection to query corresponding normal and albedo val-
ues from the PS normal and albedo maps, details of which
we provide later.

With all the prepared G-buffers, we then adopt the gen-
eral rendering equation (RE) [33] to shade them with de-
sired illuminations. Specifically, for each pixel in the G-
buffer, we query its 3D surface location x from D, normal
n from N, albedo a from A, and material m from M. The
outgoing radiance Lo in viewing direction wo is then com-

1AgiSoft PhotoScan Professional (Version 1.8.4) (Software). (2022*).
Retrieved from http://www.agisoft.com/downloads/installer/

Albedo Map Normal Map
Method PSNR↑ SSIM↑ RMSE↓ Mean <5◦ <25◦

Ours 30.868 0.972 0.029 4.296◦ 80.848% 96.293%
Instant-NGP 30.529 0.968 0.030 4.314◦ 79.891% 96.013%

Table 3. Quantitative evaluation on the quality of novel view
albedo and normal maps. We separate two views from captured
views for testing, and evaluate albedo loss and normal vector er-
ror in angular. Our reprojected albedo and normal maps produce
higher precision in comparison to volume rendering of Instant-
NGP [59].

puted as:

Lo(wo;x) =

∫
Ω

Li(wi;x)fr(wo, wi;x) |wi · n| dwi ,

(2)
where Li(wi;x) is the incident radiance at position x

from direction wi , fr(wo, wi;x) is the BRDF that con-
sumes material parameters a and m, and |wi · n| is the co-
sine foreshortening term.

Although physically correct, the rendering equation con-
tains an integral that has no analytic solution. Traditional
graphics pipelines solve it with Monte Carlo methods which
are time-consuming and memory-inefficient. To acceler-
ate rendering speed, following [11, 93] we approximate
RE with Spherical Gaussian, e.g., representing the lighting,
BRDF, and cosine term with one or more spherical Gaus-
sian components. In the following paragraphs, we elaborate
on how to acquire G-buffers and conduct SG approximation
to render novel views.

Depth-guided G-buffer reprojection. The pretrained
SDF field allows us to query the SDF value of any 3D point
x. We then following NeuS [85] to convert it into density δ:

δ(x) = max(
− dΦs

dt (fsdf(x))

Φs(fsdf(x))
, 0) , (3)

where Φs(x) = Sigmoid(sx), s is a learnable parameter.
The volume density field further allows us to render the
depth map D with the standard NeRF volumetric rendering
equation [58]. For example, let r = o+ td denote the cam-
era ray with origin o and direction d. The alpha-composited
depth map D along the ray can then be estimated as

D(r) =

∫ tf

tn

T (t)δ(r(t))tdt, (4)

where T (t) = exp (−
∫ t

tn
δ(r(s))ds) denotes the accumu-

lated transmittance, and tn, tf are the near and far bound,
respectively.

The depth map helps determine the 3D surface loca-
tion x at each pixel. We then adopt a neural depth-
guided reprojection technique [17, 99] to decide its nor-
mal n and albedo a. Specifically, we reproject x into
nearby K PS views to query the corresponding high-quality
normal and albedo values {ni,ai}Ki=1. The normal and



Figure 7. Given color gradient illumination observations g+, g−,
by taking high-quality normal and albedo maps as priors, we learn
a neural material field on the pre-trained neural geometry surface,
enabling photo-realistic relighting results. Note that the specular
map is rendered in the target illumination.

albedo in the novel view are computed by the weighted
blending of all the queried candidates, where (n,a) =

(
∑K

k=1 wknk,
∑K

k=1 wknk).
PlenOptic Stage Ultra has densely surrounded cameras,

for each novel view, we set K = 6 and utilize the six near-
est PS views to get the final blending result. Following [99],
we train a blending weight network on Twindom dataset 2,
which predicts K weights given all the queried values. The
training details can be found in the supplementary materials.
Note that although it is possible to train neural networks to
predict normal and albedo at any 3D point x and apply vol-
ume rendering to synthesize the corresponding normal and
albedo maps, in practice, the network tends to produce over-
smoothed results that lose sharp details of facial expressions
or cloth patterns. In contrast, our depth-guided reprojection
directly benefits from the ultra-high quality albedo and nor-
mal maps in PS views, resulting in more delicate rendering
effects. We show qualitative and quantitative comparison
results in Fig. 6 and Tab. 3, respectively.

Material optimization with normal and albedo prior.
The synthesized normal and albedo G-buffers have admitted
nice relighting results under diffuse BRDF settings. We fur-
ther estimate spatially-varying surface roughness to model
view-dependent specular effects. As mentioned earlier, di-
rectly applying empirical PS equations to human images
fails to get reflectance parameters, potentially due to the
complex geometry. Consequently, we cannot use reprojec-
tion to acquire the material G-buffer. Instead, we propose
optimizing surface material parameters within inverse ren-
dering frameworks, leveraging the prepared surface normal
and albedo priors.

Specifically, we follow the state-of-the-art inverse ren-
dering work [98] to suit our MVS and PS settings. We op-
timize material parameters with known illumination (gradi-
ent illuminations), geometry (SDF field), normal and albedo
(G-buffers). Therefore, we fix all of them and only train a
network to predict material, where: FMAT. : x 7→ r that

2https://web.twindom.com/

Figure 8. Qualitative comparison on relighting under novel view-
point with two recent neural relightable novel view synthesis ap-
proaches [93, 98]. Our method takes advantage of photometric
priors enabling realistic rendering under complex novel illumina-
tions, with high-frequency details preserved.

maps each 3D location x ∈ R3 to its roughness value r ∈ R.
Following Zhang et al. [98], we set the specular reflectance
in the Fresnel term as 0.02. Zhang et al. [98] also models
the visibility of each point. Here, we assume the shading
information has been encoded in albedo maps so we set this
term to 1.

During optimization, in the forward process, we first ap-
ply volume rendering to produce material G-buffers, simi-
lar to the depth buffer generation (Eq. (4)). We then apply
them in general rendering equation (Eq. (2)) with Spheri-
cal Gaussian approximation [11, 93, 98] to synthesize novel
view images. In the backward process, we compute the
loss between the rendered images and the gradient illumina-
tion GT. The optimization details can be found in the sup-
plementary materials. We show the optimized material in
Fig. 7.
Novel view synthesis and relighting. With the SDF and
material networks, along with high-quality PS normal and
albedo maps, now we are able to render each human ex-
ample in arbitrary viewpoints and illuminations. Thanks
to the ultra-fine details in the PS priors, our neural human
assets achieve extremely high capture performance, capa-
ble of representing fine details such as facial wrinkles and
cloth folds. In Fig. 8 we compare our novel view synthesis
and relighting effects with several baselines, demonstrating
significant improvements in rendering quality. We provide
more examples in the supplementary materials.

5. Single Image Relighting
Our neural human assets allow for novel view synthe-

sis under arbitrary lighting conditions, which can be used
to boost a variety of important downstream tasks. In this
section, we verify it on the single image relighting task. As
a challenging problem, it heavily relies on accurate albedo



Figure 9. Our relighting results produce sharper details, especially
on clothes textures. The reflectance under novel illuminations is
more realistic.

and normal recovery from the input image. Next, it syn-
thesizes images with new illuminations either from net-
works [32, 36, 44, 80] or traditional graphics pipelines.

Despite recent advancements in the field [8, 27, 32, 36,
44, 80], photo-realistic human relighting remains challeng-
ing, especially for images in the wild. The primary obstacle
is the lack of high-quality training data, i.e., photo-realistic
images with GT normal, albedo, and lighting conditions.
Consequently, existing human relighting works typically
train with synthetic datasets [32, 36, 44], leading to signif-
icant performance degradation when applied to real-world
images. In contrast, UltraStage supports synthesizing infi-
nite realistic examples with GT normal, albedo, and light-
ing labels. We show that even a relatively simple human
relighting network, when trained with UltraStage dataset,
outperforms prior works [36, 80].
Dataset details. We first utilize UltraStage to synthesize
a large-scale dataset for a single image relighting task.
Specifically, we select 500 human models with diverse
poses and clothing. We also prepare an environment dataset
with 2965 HDR illuminations, encompassing both indoor
and outdoor lighting conditions from Laval Indoor HDR
dataset [21], Laval Outdoor HDR dataset [45] and HDRI
Haven 3. For each person, we render three views under ran-
domly chosen illuminations, creating a dataset with 1500
examples in total. In each example, we prepare a human
image together with its corresponding normal and albedo
maps.
Network details. As our goal is to demonstrate the
dataset’s capacity, therefore, we choose a very simple
network design. Specifically, we employ two U-Net-
structure [69] networks, named as AlbedoNet and Normal-
Net, to directly predict albedo and normal maps from the in-
put human image. The networks are supervised with MSE
Loss. We train each network on one A6000 GPU for 24

3https://hdrihaven.com/

% Ours is preferred

vs RH [36] 96.6 %
vs RW [80] 83.3 %

Table 4. User study results of human relighting quality. Most users
prefer our results over baseline methods.
hours with a learning rate of 10−5. After training, we then
apply networks to arbitrary human images and predict the
corresponding normal and albedo maps. Although albedo
and normal only admit diffuse relighting effects, we find
that the results are visually appealing, thanks to the power-
ful training dataset. We believe our dataset can facilitate a
series of relighting research. We will also make this relight-
ing dataset public.
Experiments. We compare our model with two open-
source human relighting methods RW [80] and RH [36],
with the former being a following-up work of the latter.
We qualitatively compare our relighting results with them in
Fig. 9, where the image is selected from the testing dataset
in [36]. Our model produces more detailed albedo and ac-
curate normal maps, resulting in superior relighting effects,
as evidenced by the distinct cloth wrinkles and natural shad-
ing. It is worth noting that we achieve these outcomes solely
through basic normal and albedo prediction networks. Ap-
plying more advanced designs [67] will definitely improve
the effects, which we leave for future works.

We further conduct a human study in Tab. 4 on all the
testing images in [36]. It contains 6 testing images in to-
tal. We relight each one with 5 new illuminations, resulting
in 30 examples. Participants are asked to select the more
natural-looking relighting, and our approach receives more
than 80% preferences, further attesting to the efficacy of our
dataset. More details of the human study can be found in the
supplementary materials.

6. Conclusions
We have presented UltraStage, a novel 3D human dataset

to bridge human modeling and relighting, which contains
more than 2,000 high-quality human assets captured under
multi-view and multi-illumination settings unseen before.
We further interpret this rich captured input into neural hu-
man assets, allowing photo-realistic novel-view synthesis
under arbitrary lighting conditions. Extensive experiments
demonstrate the superiority of UltraStage. With the above
unique characteristics and rareness of our UltraStage, we
believe it is critical for future research about high-quality
human modeling, with endless potential applications.
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