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Abstract

Automated shape repair approaches currently lack ac-
cess to datasets that describe real-world damaged geome-
try. We present Fantastic Breaks (and Where to Find Them:
https://terascale-all-sensing-research-
studio.github.io/FantasticBreaks), a dataset
containing scanned, waterproofed, and cleaned 3D meshes
for 150 broken objects, paired and geometrically aligned
with complete counterparts. Fantastic Breaks contains class
and material labels, proxy repair parts that join to broken
meshes to generate complete meshes, and manually anno-
tated fracture boundaries. Through a detailed analysis of
fracture geometry, we reveal differences between Fantastic
Breaks and synthetic fracture datasets generated using ge-
ometric and physics-based methods. We show experimental
shape repair evaluation with Fantastic Breaks using mul-
tiple learning-based approaches pre-trained with synthetic
datasets and re-trained with subset of Fantastic Breaks.

1. Introduction

Damage to objects is an expected occurrence of every-
day real-world usage. However, when damage occurs, ob-
jects that could be repaired are often thrown out. Addi-
tive manufacturing techniques are rapidly becoming acces-
sible at the consumer level, with 3D printing technologies
available for materials such as plastics, metals, and even
ceramics and wood. Though current approaches for re-
pair have been largely manual and restricted to niche ar-
eas such as cultural heritage restoration, a large body of
recent research has emerged on the automated reversal of
damage, including reassembly of fractured parts using 3D
scans [4,9,17,19,21–23,38,39,52,54,55], or generation of
new repair parts when portions of the original object are ir-
retrievably lost due to damage [18, 20, 28–30, 32, 35, 40, 47,
48]. Geometry-driven approaches based on shape match-
ing [4,17,18,21–23,27,32,35,38–40,47,48] that are not us-
able for objects of unknown complete geometry have given

Figure 1. We present Fantastic Breaks, a dataset of 3D scans of
real-world broken objects (top) aligned to 3D scans of complete
counterparts (bottom). Objects span classes such as mugs, plates,
statues, jars, and bowls—household items prone to damage.

way to learning-driven approaches [9, 19, 20, 28–30, 52, 54]
aimed at generalization to repair at a large scale.

However, a principal challenge limiting understanding of
real-world damage and limiting application-focused evalua-
tion of repair approaches is that datasets of real-world dam-
age for consumer space objects are virtually non-existent.
Current learning-driven approaches for repair use datasets
where fracture-based damage is synthetically generated us-
ing geometric approaches such as Boolean operations with
primitives [9, 18, 28–31]. As they make assumptions about
the fracture process rather than using data-driven fracture
generation, the practical usability of such geometric meth-
ods for repairing real fractures is unknown. With Breaking
Bad, Sellán et al. [44] have taken a first step toward large-
scale fracture dataset generation. Breaking Bad consists of
3D shapes from Thingi10k [56] and PartNet [37] subjected
to physics-based damage using fracture modes [45]. By re-
moving macro-scale shape assumptions embodied by geo-
metric primitives, Breaking Bad is a promising step for re-
search in shape assembly and repair. However, fractures in
Breaking Bad suffer from typical issues of resolution and
simulation time step size that underlie physics simulations.
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The dataset is thus unfortunately hindered in providing a
faithful representation of real-world damage.

In this work, we contribute Fantastic Breaks, the first
dataset of 3D scans of damaged objects paired with 3D
scans of their complete non-damaged counterparts, as
shown in Figure 1. Each damaged object—hereafter re-
ferred to a broken object due to the nature of damage suf-
fered—is 3D scanned and geometrically registered to a scan
of the undamaged complete object, such that intact regions
of the complete and broken scans are aligned. At the time of
publication, the dataset contains 150 broken/complete pairs.

Our damage infliction often leaves one broken part in-
tact, destroying or over-fragmenting the remainder of the
object. We use an off-the-shelf subtraction-based ap-
proach [27] to generate repair part proxies from the intact
broken part aligned to its complete counterpart. We also
provide manually annotated class labels, material labels,
and annotated fractured regions on the broken meshes. Our
work emulates endeavors of groups in vision and robotics
that contribute datasets of 3D scanned everyday-use ob-
jects [5, 6, 13, 25, 46]. Our analysis of real-world fracture
properties in Fantastic Breaks reveals fine-scale fracture
structure that enables our dataset to overcome the draw-
backs of synthetic datasets. We use our dataset to evaluate
existing shape repair approaches on real fractured objects.

We summarize our contributions as follows:
1. We contribute the first 3D scanned real-world dataset

of geometrically aligned broken/complete object pairs
to enable application-focused evaluation of repair.

2. We provide class, material, and fracture surface anno-
tations, and ground truth repair part proxies.

3. We contribute a geometric analysis of Fantastic Breaks
in comparison to existing synthetic fracture datasets.

4. We provide evaluations of existing shape repair ap-
proaches using Fantastic Breaks.

2. Related Work
Fracture Datasets. Existing real-world fracture collec-
tions are restricted to scanning of multiple shards corre-
sponding to a small set of originally intact objects, e.g.,
7 objects [23], 3 frescoes [4], and 3 large-scale structures
(Akrotiri settlement, Tongeren Roman excavation, and one
fresco) [17]. Since fracture acquisition is performed post-
damage for historical objects where no known counterparts
exist, the datasets lack knowledge of the complete prox-
ies. The Hampson Museum cultural heritage dataset [42]
contains 3D scans for 138 cultural heritage objects. The
dataset lacks paired damaged/complete data, or annotations
to reveal what objects are damaged and what are intact, pre-
venting them from being used to train repair or assembly
approaches. Hong et al. [22] show assembly results using
a dataset of 5 shattered pots, with 3D scans acquired for
the shattered fragments and the original pots. The origi-

nal scans are used as evaluation oracles. Lamb et al. [27]
repair 22 damaged objects by subtracting the damaged ob-
jects from a priori known complete proxies.

Recognizing the need for large-scale datasets for
learning-driven repair, a few datasets contain synthetic or
scanned models subjected to synthetic fracture using geo-
metric techniques such as subtracting primitives [9, 18, 28–
31], or using physics models of fracture [44]. As we demon-
strate in Section 4, real-world physical damage demon-
strates geometric characteristics that differ from the break
patterns of synthetically generated damage. Geometric frac-
ture models [9, 18, 28–31] are only as precise as the prim-
itive being used for fracture, e.g., Chen et al. [9] use five
simplistic cut functions—planar, sine, parabolic, square,
and pulse—modeled as oriented height fields. Lamb et
al. [28–31] subtract randomly rotated and translated geo-
metric primitives such as a cube, icosphere, and sub-divided
icosphere, with and without random surface perturbation to
simulate micro-scale detail. Gregor et al. [18] use spheres
whose surfaces are perturbed using small-scale details of
a single digitized material. In all cases, mid-scale detail is
represented as cutouts via analytical primitives, which is not
generalizable to real-world damage.

Though approaches exist to perform fracturing of single
objects using physics simulations [10, 14, 34, 50, 51], which
could theoretically be used to generate a fractured object
dataset, they suffer from drawbacks that prevent them from
being used at scale. (1) Unrepairable Objects. Objects are
repairable only if a large part remains intact. Approaches
that cannot control the number of parts [10, 14, 50, 51] may
require many trials to obtain a repairable object. (2) Nu-
merical Instability. Polygon division may cause simulation
failure due to roundoff error [10, 34]. (3) Limited Diversity.
Some approaches tend to produce planar fractures [14] or
limit crack speed to ensure PDE convergence [50]. (4) Run-
times. Fractures on objects with similar degrees of free-
dom to ours (2.5M) require multiple hours, e.g. 6h/1M [14],
7h/2.5M [50], 3.5h/2.5M [34], 26h/2.5M [10], 4h/1M [51].
(5) Parameter Tuning. Physics parameters, e.g. density,
fracture threshold, and timestep size [50], need tuning to
produce diverse fractures, a process which has a “notable
learning curve” [51]. In summary, excessive parameter tun-
ing and long runtimes make dataset creation using physics
simulations intractable. The only physics-based fractured
dataset is Breaking Bad [44]. The Breaking Bad dataset of
Sellán et al. uses their earlier work [45] to model and sim-
ulate fracture modes of the object. Their approach strug-
gles to generate high-resolution detail, as it requires evolv-
ing the simulation over small time steps that can be compu-
tationally infeasible at a large scale. Our Fantastic Breaks
dataset fills the gap in the lack of real-world damaged object
datasets by contributing an even-now growing repository
of 3D scanned real-world damaged objects rigidly aligned



with 3D scans of their real-world counterparts.

Real-World Object Datasets. Capture of large-scale
complete 3D scans of objects is an arduous task, due to the
need for a multi-staged approach consisting of multiple pre-
sentations of the object to a scanner, registration of scans,
cleaning to correct imprecise geometry, eliminate holes, and
correct deep concavities, and, depending on the applica-
tion, waterproofing to ensure closed surfaces. Massive 3D
datasets typically comprise single-viewpoint RGB-D im-
ages [24,26,53], room-scale 3D scans [12], or scans of large
objects such as motorcycles, large statues, and benches [11]
that cannot be readily impacted to capture real-world dam-
age. The Berkeley BigBIRD dataset [46] contained 100 3D
models at publication time and has grown to 125 models.
Objects were recorded on a turntable and models were cre-
ated by stitching multiple Kinect and Canon camera images.
Using the BigBIRD setup, Calli et al. [5, 6] collected the
YCB dataset for a set of 77 objects as a collaboration be-
tween Yale, CMU, and UC Berkeley. Due to placement on
a turntable, hidden portions, e.g., the base or concavities not
visible to the cameras, are not captured. The Karlsruhe In-
stitute of Technology (KIT) dataset [25] consists of 145 ob-
jects captured using a Konica Minolta Vi-900 digitizer, with
multiple scans acquired to capture object bases. With 300
3D scans (150 broken, 150 paired complete counterparts,
and growing), Fantastic Breaks is comparable to these prior
tabletop datasets [5, 6, 25, 46] in terms of total items.

Large-scale table-top 3D scanned object datasets are few
in number. Google Scanned Objects (GSO) [13] consists of
1,030 3D scans of household objects. GSO is collected by
3D imaging projector-cast patterns through a collaboration
between Google and Open Robotics. Another large-scale
dataset, AKB-48 [33], contains 2,037 3D scans of com-
plete objects. Scans are obtained using an Einscan 3D scan-
ner and an Intel RealSense depth camera. Unlike Fantastic
Breaks, neither GSO nor AKB-48 contain broken objects.

Within the larger problem domain of minimizing waste,
a few 2D datasets have arisen for object detection and seg-
mentation in waste images [2,43,49]. Object materials span
cardboard, plastic, glass, and metal. An opportunity exists
to capture RGB-D images of waste, identify objects capable
of being repaired, and geometrically couple them with our
dataset to conduct in-the-wild repair.

Shape Repair. The creation of the Fantastic Breaks
dataset is motivated by applications in object repair. When
object parts are available, shape assembly approaches focus
on joining 3D shape representations of the object parts. Ge-
ometric approaches exist to match fracture boundaries via
segmentation [38,39], feature description extraction and ge-
ometric model refinement [23], align fractured shapes to a
proxy template [55], or conduct iterative registration similar

to structure from motion [21, 22]. Several learning-based
approaches exist to provide assembly, most of which as-
sume holistic parts with simple surfaces [19,52,54], though
one assumes arbitrary geometry at shape boundaries [9].

When parts of an object are irretrievable, shape repair
approaches address generation of the lost parts. Early au-
tomation approaches to circumvent historically manual re-
pair included finding symmetries and self-similarities in ob-
jects [18,32,35,40,47,48], though these approaches are un-
successful when non-symmetric object parts are broken off.
One approach [27] circumvents the small-scale artifact is-
sue of Boolean subtraction by automatically extracting and
joining exterior and fractured regions for repair parts using
real-world damaged and complete scans. The approach re-
quires the scan of a complete 3D proxy to be provided as
input, that may not be feasible for one-of-a-kind instances,
or even if available, may prove tedious to obtain.

Recent work such as 3D-ORGAN [20], MendNet [30],
DeepMend [29], and DeepJoin [28] uses deep learning
to conduct shape repair without knowledge of the com-
plete proxy by representing damaged, complete, and repair
shapes using voxels [20] or deep functions [28–30]. Deep-
Mend and DeepJoin report higher success due to the use
of implicit functions which enable representation of arbi-
trary resolutions, and due to the expression of fractured and
restoration shapes in terms of constructive solid geometry
operations between the complete object and a break sur-
face whose representation is learnt during training. Though
DeepMend and DeepJoin show qualitative results on a few
examples of 3D scans of real-world damaged objects, in all
cases, training and quantitative evaluation is conducted us-
ing datasets with synthetically-generated fractures.

3. Data Collection and Processing
Object Acquisition. We conducted a community-wide

acquisition of everyday household objects that suffer dam-
age. Our goal was to have a collection consisting not only
of objects that can be damaged, but also of objects that have
already suffered damage. To perform our acquisition, we
made purchases at the local thrift store where we found in-
tact and damaged objects, and requested donations from the
local community. Though the Fantastic Breaks dataset as
presented in this paper contains damaged/complete pairs,
we have also collected pre-damaged objects that may lack
complete counterparts, as they provide insight into real-
world fracture. Our collection consists of commonly dam-
aged household objects such as mugs, plates, and statues
spanning materials such as ceramics, plastics, glass, and
wood. In some instances, we were able to pre-acquire pairs,
where one object in the pair was damaged and the other
was intact. In most cases, we manually damaged a com-
plete object to obtain the broken version. When possible,
we attempted to acquire pairs of complete objects, and dam-



Figure 2. Left: Complete mug on top, and broken mug on the
bottom showing main intact part and the shattered handle. Right:
Object on scanner with 3D scan shown in the inset.

Figure 3. Example broken objects on top and broken/complete
pairs on the bottom acquired to build the Fantastic Breaks dataset.

age one of the objects, enabling us to store physical dam-
aged/complete pairs. We inflicted damage by dropping the
object, striking the object with a rubber mallet or metal
hammer, and, in 3 cases, snapping the object after anchoring
it against a table. Figure 2 shows an example mug with the
handle shattered after striking with a mallet. Figure 3 shows
broken objects and broken/complete pairs in our dataset.

3D Scanning. We use an Einscan SP 3D turntable-based
scanner to acquire 3D scans. We use Einscan’s proprietary
software, EXScan, to operate the scanner. The scanning op-
eration rotates the scanner’s turntable 8 times, acquires 8
2.5D images of the object via an attached RGB-D sensor,
and fuses the images into a 3D mesh. Given the diversity of
object geometry where objects may contain deep concavi-
ties or complex fractures, we had to conduct careful stag-
ing of each object and perform multiple presentations of the
object to maximize acquisition of the object surface. The
presentation count ranged from 2 for flat objects such as
plates or objects with higher convexity such as statues, to
6 for objects with concavities such as mugs. We used the
registration tool in EXScan to fuse scans into a 3D mesh.

Cleaning Primitive 
Sculpting

(a) Broken waterproofed through EXScan (c) Broken cleaned using Netfabb

(d) Complete Cleaned using Netfabb(b) Complete waterproofed through EXScan

Figure 4. Meshes prior to (left) and after cleaning and waterproof-
ing for (a) broken and (b) complete object examples waterproofed
using EXScan, and (c) broken and (d) complete objects cleaned
using Netfabb. For (d), we use a primitive to fix the erroneously
angled surfaces created by Netfabb mesh repair tools. Complete
objects are shown as cutaways to reveal pre-cleaning artifacts.

Mesh Cleaning. Given the 3D scan of a complete or
broken object, we employ a sequence of operations to en-
sure that the meshes are of high quality. We visually inspect
each model, and if the model shows any small holes in the
mesh, we use the waterproofing tool built into EXScan to
ensure that each mesh is a closed 2D surface. While per-
forming waterproofing in EXScan is preferred, if the model
contains large holes or artifacts, we repair the mesh by per-
forming manual hole-filling using Autodesk Netfabb. For
objects with deep concavities such as cups and mugs, the
concavities may not have been well-presented during the
scanning process, in which case the interior regions may not
be metrically accurate. If possible, we repair the mesh us-
ing subtraction with a geometric primitive, e.g., a cylinder.
We apply the “Extended Repair” scripts in Netfabb to merge
nearby vertices, remove double and flipped triangles, close
all holes, wrap the mesh to remove interior faces, and re-
move small connected components. Figure 4 demonstrates
examples of cleaned meshes.

Mesh Orientation. After cleaning, we manually orient
each mesh such that its principal axes are aligned to the
Cartesian axes. We align the base of the object with the
xz-plane, and we rotate the object about the y-axis to ensure
alignment within its category. For example, we align mugs
such that the handles are aligned with the negative x direc-
tion, and statues so that they face in the negative x direction.

Mesh Alignment. Given the cleaned meshes for the bro-
ken object and its complete counterpart, we transform the
broken mesh such that its intact regions are aligned with the
corresponding regions of the complete mesh. We perform
an initial manual alignment of the broken mesh to the com-
plete mesh, and refine the alignment using the iterative clos-
est point (ICP) [3] algorithm. We conduct a post-alignment
normalization of each mesh to ensure similarly scaled data
for learning-driven repair. We perform normalization by
scaling the broken and complete mesh such that the com-
plete mesh is entirely contained within a unit cube. We



(a) Complete, Broken, and Restoration Meshes (b) Fractured Region Annotations

Figure 5. (a) For each triplet of meshes, we show the complete
mesh on the left, the broken mesh aligned to the complete mesh
on the right, and the restoration in pink detached from the broken.
(b) Broken meshes (gray) with labeled fracture surface (red).

provide access to non-normalized and normalized meshes
as part of the dataset. Figure 5(a) shows examples of the
broken mesh aligned to the complete mesh.

Ground Truth Restoration Estimation. Our data col-
lection involves scanning of broken objects that have ei-
ther been acquired as pre-damaged, or have had damage in-
flicted through a destructive fracture process, such that only
one part of the object remains intact. Such an occurrence
is not uncommon, e.g., as shown in Figure 2, the fracture
process causes the handle to further fragment into a num-
ber of small pieces that are infeasible to reassemble. How-
ever, shape repair approaches can benefit from geometric
knowledge of ground truth parts needed to repair the ob-
ject, in order to perform training and evaluation. We con-
tribute proxy ground truth 3D meshes for the repair parts.
We synthetically generate the repair part proxies using the
approach of Lamb et al. [27]. Given aligned complete and
broken meshes, the approach recovers restoration meshes
that smoothly join the broken shape to repair the object, lack
small-scale artifacts caused by Boolean subtraction, and
lack grooves at the fracture boundary demonstrated by ap-
proximate subtraction techniques based on distance thresh-
olding. Figure 5(a) shows restoration meshes generated for
cleaned and waterproofed broken and complete scans.

Ground Truth Fracture Surface Annotation. To as-
sist with approaches that rely on accurate knowledge of the
fracture surface for training or evaluation, we manually an-
notate triangles corresponding to the fracture surface. Fig-
ure 5(b) shows example ground truth fracture annotations.

4. Analysis of Fantastic Breaks

Summary of Dataset. We have annotated each object
with a category level, its material, and the approach of dam-
aging the object. At the time of publication we have ac-
quired 214 and 241 physical damaged and complete ob-
jects, and 195 and 218 damaged and complete object scans.
Among the 195 broken objects, 15 objects are naturally
damaged, and the remaining have damage inflicted manu-
ally by dropping (26), striking using a mallet (126), strik-

Table 1. Object distribution by class (Phys.=Physical).

Class Mug Plate Statue Bowl Cup Jar Coaster Box Misc Total

Ph
ys

. Broken 46 43 39 23 12 13 6 6 26 214
Complete 42 45 43 27 16 19 7 7 35 241

Sc
an

Broken 43 41 36 21 10 12 6 5 21 195
Complete 35 44 41 24 14 15 7 7 31 218

Pairs 30 35 30 17 8 6 6 3 15 150

Table 2. Object distribution by material (Mat., Phys.=Physical).

Mat. Ceramic Plastic Glass Plaster Wood Other Total

Ph
ys

. Broken 165 21 10 4 4 10 214
Complete 170 30 10 3 8 20 241

Sc
an

Broken 155 17 6 4 4 9 195
Complete 151 28 9 3 8 19 218

Pairs 115 13 7 4 3 8 150

ing using a hammer (25), and anchoring and snapping (3).
150 of the broken objects have a counterpart within the 241
complete objects. We have acquired pre-cleaned scanned
meshes for 195 of the broken objects and 218 of the com-
plete objects. 150 of the 214 broken scanned objects are
paired with their respective 150 complete scanned objects.
These 150 pairs are fully cleaned and have restorations ex-
tracted. Tables 1 and 2 summarize physical, scanned, and
paired scanned broken and complete objects by class and
material respectively. This is a growing dataset, i.e., the
physical and scanned sets are continuing to expand. We ex-
pect to have all 241 complete objects broken, and we con-
tinue to process complete and broken objects.

Analysis of Geometric Properties. We quantitatively
compare geometric properties of the Fantastic Breaks
dataset to the everyday subset of Breaking Bad [44], and
the Geometric Breaks dataset provided by Lamb et al. [28],
both of which contain synthetic fractures. The everyday
subset of Breaking Bad contains 542 objects each fractured
100 times, for a total of 54,200 broken objects. Breaks
are obtained using a physics driven fracturing technique
in which a set of fracture modes are computed and used
to simulate object fracture patterns that result from an im-
pact to the object. The Geometric Breaks dataset contains
24,208 objects from ShapeNet [7] and 1,042 objects from
the GSO dataset. Objects are fractured by subtracting them
with a randomized convex geometric primitive. For Break-
ing Bad we compute quantitative metrics over the 12,939
everyday objects that contain 2 broken parts. For Ge-
ometric Breaks, we compute quantitative metrics over all
25,250 objects. For Fantastic Breaks, we compute quanti-
tative metrics over the 150 paired broken objects.

We summarize the mean number of faces and vertices
for broken meshes in each dataset on the left of Table 3.
Our broken meshes are, on average, at least ten times more



(c) Fantastic Breaks

Normal Orientation Histogram

(a) Breaking Bad

Normal Orientation Histogram Normal Orientation Histogram

(b) Geometric Breaks

Alt. View Alt. ViewAlt. View
Fracture Surface Zoom Fracture Surface Zoom Fracture Surface Zoom

Figure 6. Broken shapes with inset showing geometric detail, alternate (alt.) top-down views, and normal orientation histograms (NOHs)
for (a) Breaking Bad, (b) Geometric Breaks, and (c) Fantastic Breaks. NOHs are viewed as images where higher intensity lines represent
higher bin counts. (a) Breaking Bad shapes show sparse structure due to limitations on fracture resolution. (b) While Geometric Breaks
shapes have semi-dense structure, they demonstrate regularity attributed to the breaking primitive. (c) Fantastic Breaks shapes have dense
surface structure and irregular break patterns characteristic of arbitrary real-world fracture.

Table 3. Number of vertices, faces, and convexity percentiles for
Breaking Bad, Geometric Breaks, and Fantastic Breaks datasets.
Max Vertices and Faces and min Convexity values are bolded.

Dataset # Vertices # Faces C 25th C 50th C 75th
Breaking Bad 4,578 17,876 0.286 0.536 0.828
Geometric 52,719 105,436 0.229 0.480 0.746
Fantastic 566,630 1,133,837 0.238 0.320 0.519

dense than existing fractured object datasets. As observed
by Sellán et al. [44], an indicator of fractures generated us-
ing pre-computed fracture methods are a large number of
convex fractured shapes. In the final three columns of Ta-
ble 3 we provide the 25th, 50th, and 75th percentiles of bro-
ken shape convexity. We compute convexity as the ratio of
the volume of the broken mesh to the volume of the mesh’s
convex hull, as used by Attene et al. [1]. Highly convex
shapes show a convexity value near 1. Our dataset shows
a consistently lower convexity than other datasets, with a
75th convexity percentile of 0.519, compared to 0.828 for
Breaking Bad and 0.746 for Geometric Breaks.

Though synthetically generated fractured objects may
show coarse geometric variation, they struggle to generate
fine detail at the fractured region. As shown in Figures 6(a)
and 6(b), synthetically generated fractured objects are char-
acterized by piecewise fractured regions that lack high fre-
quency surface variation, i.e. they do not capture the fine-
scale variability of real fractures. Simulation of object frac-
tures with fine-scale surface variability of the same resolu-
tion as real object fractures using a physics engine as done
in Breaking Bad is intractable with current hardware. Frac-
tures generated by subtracting geometric primitives demon-
strate unnatural regularity as shown in Figure 6(b).

To quantify coarse and fine-scale surface variability, we
introduce the spherical occupancy metric, which measures
the degree to which normals on the fracture surface occupy
the space of all possible orientations when grouped into n
discrete bins. For a given broken object, we extract the
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Figure 7. Box plots for distribution of spherical occupancy over
objects from Breaking Bad, Geometric Breaks, and Fantastic
Breaks using (a) 42 bins and (b) 642 bins.

fractured region of the broken mesh. We obtain n evenly
spaced points on the unit sphere, and bin the normal vec-
tors of the fractured region into one of n bins based on their
closest point on the unit sphere to generate a normal ori-
entation histogram (NOH) for the object. We show NOHs
for three objects in Figure 6. To compute spherical occu-
pancy, we count the number of occupied bins in the NOH
and divide by n. A fractured region with coarse geometry
is expected to show low spherical occupancy, as its normals
span a small portion of the space of all possible orientations.
The choice for n determines the scale of surface variabil-
ity measured. A small value for n measures coarse surface
variability, i.e. highly concave or convex fractures will have
a high spherical occupancy. A large value for n measures
fine-scale surface variability. If n is large, only objects with
fine-scale surface variability will show a high spherical oc-
cupancy, as the space of orientations is larger.

We show quantitative results for the spherical occupancy
for two values of n in Figure 7(a) and Figure 7(b). To mea-
sure coarse and fine surface variability, we set n to 42 and
642 respectively. As shown in Figure 7(a), most objects
in Fantastic Breaks have a high spherical occupancy when
n = 42, indicating that objects in Fantastic Breaks have a
high degree of coarse surface variability. Fantastic Breaks



shows the highest mean spherical occupancy value of 0.747
when n is 42, compared to 0.367 for Breaking Bad and
0.569 for Geometric Breaks. Fantastic Breaks also contains
mostly objects with high fine-scale surface variability, as
shown by the lower spread in Figure 7(b). Fantastic Breaks
shows the highest median spherical occupancy when n is
642, indicating a large number of fractures with fine-scale
surface variability, and includes the object with the high-
est spherical occupancy across all datasets. In contrast, the
piecewise fractures of Breaking Bad and Geometric Breaks,
demonstrate consistently lower occupancy, as shown in Fig-
ure 7(b), indicating a lack of fine-scale surface variability.
Fantastic Breaks also has the highest mean spherical oc-
cupancy of 0.525 when n = 642, compared to 0.066 for
Breaking Bad and 0.204 for Geometric Breaks.

5. Experimental Evaluation
As we provide complete, broken, and restoration shapes

with ground truth fractured region annotations, our dataset
may be used to train and evaluate approaches that perform
automated shape repair. We test three prior shape repair ap-
proaches on our dataset: MendNet [30], DeepMend [29],
and DeepJoin [28]. These approaches generate repair parts
assuming that the missing part has been lost or destroyed
during the damage process. MendNet, DeepMend, and
DeepJoin represent shapes by learning a function to recon-
struct shapes as implicit surfaces, and require watertight 3D
meshes as input. DeepJoin also requires meshes to have
surface normals, which Fantastic Breaks provides.

For shape repair methods, we pre-train a given network
on the Geometric Breaks dataset or Breaking Bad dataset.
After training for 2,000 epochs on synthetically fractured
objects, we train for an additional 1,000 epochs on objects
from the Fantastic Breaks dataset. To generate training
data, for each broken, complete, and restoration mesh tu-
ple in each dataset, we sample points on the surface of each
mesh and compute the signed distance function (SDF), oc-
cupancy, and normal field value for each point. For Deep-
Mend and DeepJoin we compute a break surface that acts
as a proxy for the fracture by fitting a thin-plate spline to
the fracture vertices, as described by Lamb et al. [28]. We
train with 5,068 objects from the mugs, jars, bottles, and
GSO classes from Geometric Breaks, and hold out the re-
maining 45 for evaluation. For Breaking Bad, we train with
everyday objects that have 2 parts. Breaking Bad objects
are not waterproof, so we perform waterproofing before
training. We train with 2,575 objects from the everyday
subset of Breaking Bad that are successfully waterproofed,
and hold out the remaining 45 for evaluation. Fantastic
Breaks has 105 train and 45 test objects.

Figure 8 shows repairs for broken objects before and af-
ter re-training on Fantastic Breaks. Before re-training on
real objects, DeepMend and DeepJoin may struggle to gen-
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Figure 8. Predicted repair shapes in pink trained with (top) Ge-
ometric Breaks and (bottom) Breaking Bad using (a) DeepMend
and (b) DeepJoin. Fantastic Breaks objects are shown before and
after re-training, which improves results for Geometric Breaks.

erate repairs that fully restore real objects, e.g. the plates
and mugs on the left of Figures 8(a) and (b). Re-training
on Fantastic Breaks improves repairs for some objects, as
shown in the middle of Figure 8, producing more holistic re-
pairs. As shown in the right columns of Figure 8, re-training
still allows generation of repairs for synthetic fractures.

To measure the accuracy of predicted repairs we use the
chamfer distance (CD), given by Park et al. [41], and nor-
mal consistency (NC), given by Mescheder et al. [36]. As
MendNet, DeepMend, and DeepJoin perform optimization
during inference to obtain repairs, inference proceeds non-
deterministically. For each approach, we pre-train Geo-
metric Breaks or Breaking Bad, and perform re-training on
Fantastic Breaks. For evaluation before re-training, we re-
port quantitative metrics over 21 inference runs without re-
training, totaling 21 trials. For evaluation after re-training,
we report quantitative metrics over 3 re-trained models and
7 inference runs with re-training, totalling 21 trials.

Table 4 shows success rate, CD, and NC for predicted re-
pairs using MendNet, DeepMend, and DeepJoin. As shown
in the top of Table 4, re-training on the Fantastic Breaks
dataset decreases CD and increases NC of repair parts on
Geometric Breaks for DeepMend and Deepjoin. As ac-
knowledged by the authors, MendNet struggles to restore
real objects when trained on synthetic fractures. Thus re-
training on 105 real samples may not benefit learning. Fig-
ures 8(a) and (b) show an improvement for the mug, plate,
and cup from Geometric Breaks after re-training. Table 4
shows a decrease in CD from 0.059 to 0.051 and from 0.030
to 0.022 for DeepMend and DeepJoin respectively after re-
training. Breaking Bad contains irregular objects, such as
the tombstone and the model ship in Figures 8(a) and (b),



Table 4. Success rate (SR), chamfer distance (CD), and normal
consistency (NC), with training on Geometric Breaks (GB, top)
and on Breaking Bad (BB, bottom), before (left) and after (right)
re-training on Fantastic Breaks (FB).

Train with GB Only Train with GB + FB
Test SR% CD NC SR% CD NC

M
en

d
N

et GB 99.89% 0.132 0.198 99.89% 0.205 0.185
FB 99.68% 0.080 0.276 99.58% 0.094 0.277

D
ee

p
M

en
d GB 95.45% 0.063 0.607 93.65% 0.085 0.548

FB 98.20% 0.059 0.323 99.05% 0.051 0.441

D
ee

p
Jo

in GB 92.80% 0.064 0.658 95.98% 0.102 0.526
FB 100.00% 0.030 0.426 99.89% 0.022 0.504

Train with BB Only Train with BB + FB
Test SR% CD NC SR% CD NC

M
en

d
N

et BB 93.23% 0.122 0.344 100.00% 0.210 0.307
FB 95.13% 0.110 0.184 100.00% 0.116 0.302

D
ee

p
M

en
d BB 96.19% 0.078 0.637 92.70% 0.176 0.351

FB 99.68% 0.065 0.213 100.00% 0.092 0.190

D
ee

p
Jo

in BB 98.94% 0.042 0.688 100.00% 0.177 0.285
FB 100.00% 0.061 0.259 100.00% 0.076 0.203

which may have more than half of the object fractured off,
making it a challenging dataset for shape repair. Though
re-training may improve performance on some real objects,
e.g. the coaster in Figure 8, overall re-training on Fantastic
Breaks does not improve performance, as shown on the bot-
tom of Table 4. However, evaluation on our dataset demon-
strates that, though all three repair approaches generate fea-
sible restoration shapes for repairing purely synthetic frac-
tures, models trained on Breaking Bad generalize less well
to real fractured objects than models trained on Geometric
Breaks, with a CD of 0.080 and 0.110 with MendNet, 0.059
and 0.065 with DeepMend, and of 0.030 and 0.061 with
DeepJoin for Geometric Breaks and Breaking Bad respec-
tively, as shown in the left supercolumn of Table 4.

6. Discussion

We present Fantastic Breaks, a novel dataset that con-
tains full 360◦ 3D scans of broken objects geometrically
aligned with 3D scans of their complete counterparts, with
manual annotations of classes, materials, and fracture sur-
faces, and synthetic proxies for 3D meshes representing re-
pair parts. The dataset continues to grow in number of phys-
ical objects and scans. The dataset is one of the first of its
kind, enabling learning of the characteristics of fractured
objects. Fantastic Breaks provides data-driven insight into
fracture, overcoming the deficits of geometric approaches
that make prior assumptions about the damage process that
are not widely applicable, as well as the concerns of datasets
based on physics simulations that are limited by current
hardware in modeling real-world geometry.

An obvious limitation of our endeavor is that employing
destructive processes to damage objects for the purpose of
real-world data acquisition is unsustainable at a large scale.
We advocate that our dataset be leveraged to learn patterns
of break and internal geometric structure that are common
across objects of similar materials, such as ceramics or plas-
tics, and classes, such as mugs or cups, and to use genera-
tive approaches to conduct data-driven synthesis of breaks
and internal structure given 3D models of complete objects.
For instance, an interesting observation of our collection is
that for reasons of cost, sustainable production, and func-
tionality, nearly all our objects have shell rather than solid
structures, whereas scans of whole objects such as bottles
or statues cannot capture the internal shell structure. By
exposing the internal structure, the dataset provides the op-
portunity to learn how to hollow out 3D models of objects,
an opportunity absent from prior 3D scan datasets.

Fantastic Breaks currently contains tabletop objects
aquired using desktop scanners. Larger objects may ne-
cessitate more elaborate setups, e.g., room-scale imaging
systems. Future data collection can investigate the mini-
mal number of viewpoints needed to acquire geometrically
relevant understanding of internal object structure. For in-
stance, to capture the fracture pattern of a chair leg, it may
be sufficient to image the broken region from 1-2 view-
points using a depth camera, and obtain and deform a 3D
proxy from a public repository to the imaged viewpoints.

We have provided evaluations of existing approaches on
automatic reconstruction of new repair parts using learning-
driven approaches. The dataset is widely applicable to a
range of other tasks, e.g., the broken and restoration meshes
can be used to perform shape assembly cognizant of preci-
sion joins for real-world fracture boundaries. We evaluate a
shape repair approach that does not require prior knowledge
of the fractured region (MendNet). However, via our man-
ual fracture surface annotations, we also plan to release the
incomplete meshes devoid of the fracture surface. These
incomplete meshes will benefit research in partial shape
completion [16], which up until now has largely focused
on synthetically generated partial shapes or on depth scans.
Datasets of real-world 3D scans have contributed to signifi-
cant advancements in robotic manipulation [8, 15]. Fantas-
tic Breaks provides impacts in robotics research by enabling
robot-driven repair, object grasp while being cognizant of
fractured regions to minimize further damage, and damaged
object handling for safe human-robot handover.
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