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Abstract

We propose an accurate and fast bundle adjustment (BA)
solution that estimates the 6-DoF pose with an independent
RS model of the camera and the geometry of the environ-
ment based on measurements from a rolling shutter (RS)
camera. This tackles the challenges in the existing works,
namely, relying on high frame rate video as input, restric-
tive assumptions on camera motion and poor efficiency. To
this end, we first verify the positive influence of the image
point normalization to RSBA. Then we present a novel vi-
sual residual covariance model to standardize the repro-
jection error during RSBA, which consequently improves
the overall accuracy. Besides, we demonstrate the com-
bination of Normalization and covariance standardization
Weighting in RSBA (NW-RSBA) can avoid common planar
degeneracy without the need to constrain the filming man-
ner. Finally, we propose an acceleration strategy for NW-
RSBA based on the sparsity of its Jacobian matrix and Schur
complement. The extensive synthetic and real data experi-
ments verify the effectiveness and efficiency of the proposed
solution over the state-of-the-art works.

1. Introduction
Bundle adjustment (BA) is the problem of simultane-

ously refining the cameras’ relative pose and the observed
points’ coordinate in the scene by minimizing the reprojec-
tion errors over images and points [8]. It has made great
success in the past two decades as a vital step for two 3D
computer vision applications: structure-from-motion (SfM)
and simultaneous localization and mapping (SLAM).

The CMOS camera has been widely equipped with the
rolling shutter (RS) due to its inexpensive cost, lower en-

∗ Authors contributed equally
† Corresponding author: yizhenlao@hnu.edu.cn
Project page: https://delinqu.github.io/NW-RSBA

(c) Ground-truth 
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Figure 1. Images were captured at the same time with fast motion
with (a) global shutter and (b) rolling shutter in sequence 10 of the
TUM-RSVI dataset [21]. (c) classical Orb-SLAM [18] with GS
input. (d) classical Orb-SLAM [18] with RS input. (e) Orb-SLAM
with NM-RSBA [2]. (f) Orb-SLAM with proposed NW-RSBA.

ergy consumption, and higher frame rate. Compared with
the CCD camera and its global shutter (GS) counterpart, RS
camera is exposed in a scanline-by-scanline fashion. Conse-
quently, as shown in Fig. 1(a)(b), images captured by mov-
ing RS cameras produce distortions known as the RS ef-
fect [17], which defeats vital steps (e.g. absolute [1] and
relative [4] pose estimation) in SfM and SLAM, including
BA [2,9,11,12,14]. Hence, handling the RS effect in BA is
crucial for 3D computer vision applications.

1.1. Related Work

Video-based Methods. Hedborg et al. [10] use an RS video
sequence to solve RSSfM and present an RSBA algorithm
under the smooth motion assumption between consecutive
frames in [9]. Similarly, Im et al. [11] propose a small
motion interpolation-based RSBA algorithm specifically for
narrow-baseline RS image sequences. Zhuang et al. [24]
further address this setting by presenting 8pt and 9pt linear
solvers, which are developed to recover the relative pose of
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an RS camera that undergoes constant velocity and acceler-
ation motion, respectively. Differently, a spline-based tra-
jectory model to better reformulate the RS camera motion
between consecutive frames is proposed by [19].
Unordered RSBA. An unordered image set is the standard
input for SfM. Albl et al. [2] address the unordered RSSfM
problem and point out the planar degeneracy configuration
of RSSfM. Ito et al. [12] attempt to solve RSSfM by estab-
lishing an equivalence with self-calibrated SfM based on the
pure rotation instantaneous-motion model and affine cam-
era assumption, while the work of [15] draws the equiva-
lence between RSSfM and non-rigid SfM. A camera-based
RSBA has been proposed in [14] to simulate the actual cam-
era projection which has the resilience ability against planar
degeneracy.
Direct Methods. Unlike the feature-based BA methods
that minimize reprojection errors of keypoints, photometric-
based BA methods maximize the photometric consistency
among each pair of frames instead (e.g. [6, 7]). To han-
dle the RS effect, the works of [13] and [20] present direct
semi-dense and direct spare SLAM pipelines, respectively.

1.2. Motivations

Although existing works of RSBA have shown promis-
ing results, we argue that they generally lead to either highly
complex constraints on inputs, overly restrictive motion
models, or time-consuming which limit application fields.
More general: 1) Video-based [9, 11, 19, 24] and direct
methods [13, 20] that use video sequence as input are of-
ten not desirable to be processed frame by frame which
results in high computational power requirements. 2) The
unordered image set is the typical input for classical SfM
pipeline (e.g. [23]). 3) Even the BA step in current popular
SLAM systems (e.g. [18]) only optimizes keyframes instead
of all the consecutive frames.
More effective: [2] points out that when the input images
are taken with similar readout directions, RSBA fails to re-
cover structure and motion. The proposed solution is sim-
ply to avoid the degeneracy configurations by taking images
with perpendicular readout directions. This solution consid-
erably limits the use in common scenarios.
More efficient: GSBA argumentation with the RS motion
model has been reported as time-consuming, except for the
work of [9] to accelerate video-based RSBA. However, the
acceleration of unordered RSBA has never been addressed
in the existing works [2, 12, 14, 15].

In summary, an accurate and fast solution to unordered
images RSBA without camera motion assumptions, readout
direction is still missing. Such a method would be a vital
step in the potential widespread deployment of 3D vision
with RS imaging systems.

1.3. Contribution

In this paper, we present a novel RSBA solution and
tackle the challenges that remained in the previous works.
To this end, 1) we investigate the influence of normalization
to the image point on RSBA performance and show its ad-
vantages. 2) Then we present an analytical model for the
visual residual covariance, which can standardize the repro-
jection error during BA, consequently improving the overall
accuracy. 3) Moreover, the combination of Normalization
and covariance standardization Weighting in RSBA (NW-
RSBA) can avoid common planar degeneracy without con-
straining the capture manner. 4) Besides, we propose its
acceleration strategy based on the sparsity of the Jacobian
matrix and Schur complement. As shown in Fig. 1 that NW-
RSBA can be easily implemented and plugin GSSfM and
GSSLAM as RSSfM and RSSLAM solutions.

In summary, the main contributions of this paper are:

• We first thoroughly investigate image point normaliza-
tion’s influence on RSBA and propose a probability-
based weighting algorithm in the cost function to im-
prove RSBA performance. We apply these two insights
in the proposed RSBA framework and demonstrate its
acceleration strategy.

• The proposed RSBA solution NW-RSBA can easily plu-
gin multiple existing GSSfM and GSSLAM solutions to
handle the RS effect. The experiments show that NW-
RSBA provides more accurate results and 10× speedup
over the existing works. Besides, it avoids planar degen-
eracy with the usual capture manner.

2. Formulation of RSBA
We formulate the problem of RSBA and provide a brief

description of three RSBA methods in existing works. Since
this section does not contain our contributions, we give only
the necessary details to follow the paper.
• Direct-measurement-based RS model: Assuming a 3D
point Pi = [Xi Yi Zi] is observed by a RS camera j rep-
resented by measurement mj

i in the image domain. The
projection from 3D world to the image can be defined as:

mj
i =

[
uji vji

]>
= Π(KPcj

i ), (1)

Pcj
i = [Xcj

i Y
cj
i Z

cj
i ]
> = Rj(vji )Pi + tj(vji ), (2)

where Π([X Y Z]>) = 1
Z [X Y ]> is the perspective divi-

sion and K is the camera intrinsic matrix [8]. Rj(vji ) ∈
SO(3) and tj(vji ) ∈ R3 define the camera rotation and
translation respectively when the row index of measurement
vji is acquired. Assuming constant camera motion during
frame capture, we can model the instantaneous-motion as:

Rj(vji ) = (I + [ωj ]×v
j
i )Rj

0, tj(vji ) = tj0 + djvji , (3)



where [ωj ]× represents the skew-symmetric matrix of vec-
tor ωj and tj0, Rj

0 is the translation and rotation matrix
when the first row is observed. While dj = [djx, d

j
y, d

j
z]> is

the linear velocity vector and ωj = [ωj
x, ω

j
y, ω

j
z]> is the an-

gular velocity vector. Such model was adopted by [2,4,15].
Notice that RS instantaneous-motion is a function of vji ,
which we named the direct-measurement-based RS model.
•Normalized-measurement-based RS model: By assum-
ing a pre-calibrated camera, one can transform an image
measurement mj

i with K to the normalized measurement

[qj
i

>
, 1]> = K−1[mj

i

>
, 1]>. Thus, the projection model

and camera instantaneous-motion become:

qj
i =

[
cji rji

]>
= Π(Rj(rji )Pi + tj(rji )), (4)

Rj(rji ) = (I + [ωj ]×r
j
i )Rj

0, tj(rji ) = tj0 + djrji . (5)

In contrast to the direct-measurement-based RS model, tj0
and Rj

0 are the translation and rotation when the optical
centre row is observed. ωj , dj are scaled by camera focal
length. We name such model the normalized-measurement-
based RS model, which was used in [2, 9, 12, 24].
• Rolling Shutter Bundle Adjustment: The non-linear
least squares optimizers are used to find a solution θ∗ in-
cluding camera poses R∗, t∗, instantaneous-motion ω∗,d∗

and 3D points P∗ by minimizing the reprojection error ej
i

from point i to camera j over all the camera index in set F
and corresponding 3D points index in subset Pj :

θ∗ = {P∗,R∗, t∗,ω∗,d∗} = arg min
θ

∑
j∈F

∑
i∈Pj

∥∥∥ej
i

∥∥∥2
2
. (6)

(1) Direct-measurement-based RSBA: [5] uses the direct-
measurement-based RS model and compute the reprojec-
tion error as: ej

i = mj
i − Π(K(Rj(vji )Pi + tj(vji ))). We

name this strategy DM-RSBA.
(2) Normalized-measurement-based RSBA: [2] uses the
normalized-measurement-based RS model and compute the
reprojection error as: ej

i = qj
i − Π(Rj(rji )Pi + tj(rji )).

We name this strategy NM-RSBA.
(3) Direct-camera-base RSBA: Lao et al. [14] argue both
DM-RSBA and NM-RSBA can not simulate the actual pro-
jection. So [14] proposes a camera-based approach that
uses camera pose and instantaneous motion to compute the
reprojection without using either vji or rji . We name this
strategy DC-RSBA.

3. Methodology
In this section, we present a novel RSBA algorithm

called normalized weighted RSBA (NW-RSBA). The main
idea is to use measurement normalization (section 3.1) and
covariance standardization weighting (section 3.2) jointly
during the optimization. Besides, we provide a two-stage

Algorithm 1: Normalized Weighted RSBA
Input : Initial rolling shutter camera poses and

points as state vector θ. Observed point
measurement in normalized image
coordinate.

Output: Refined state vector θ∗

1 while (not reach max iteration) and (not satisfy
stopping criteria) do

2 for Each camera j ∈ F do
3 for Each point i ∈ Pj do
4 Calculate error êj

i using Eq.( 13);
5 Construct matrix Jj

i (supplemental
material);

6 Parallel connect Jj
i to J;

7 Stack êj
i into ê;

8 end
9 end

10 Solve equation J>Jδ = −J>ê using Alg. 6;
11 Update state vector θ using δ;
12 end

Table 1. Comparison of the proposed NW-RSBA and existing gen-
eral unordered RSBA methods [2, 5, 14]. D: Direct measurement;
N: normalized measurement; M-based: measurement-based pro-
jection model; C-based: camera-based projection model.

DM-RSBA [5] NM-RSBA [2] DC-RSBA [14] NW-RSBA
Normalization D N D N
Reprojecting
computation M-based M-based C-based M-based

Analytical
Jacobian ×

√
×

√

BA acceleration × × ×
√

(a)DM-RSBA (b) NM-RSBA

Figure 2. Reprojection loss surface of (a) DM-RSBA [5] and (b)
NM-RSBA [2] under the same configuration. The x-axis and y-axis
are djx and djy of camera motion, respectively. The * are the ground
truth solutions while the * are the minimums in loss surfaces.

Schur complement strategy to accelerate NW-RSBA in sec-
tion 3.3. The pipeline of NW-RSBA is shown in Alg. 3.
The main differences between NW-RSBA and existing meth-
ods [2, 5, 14] are summarized in Tab. 1.



(a) Prior image noise (b) NM-RSBA (c) NW-RSBA 

Figure 3. Simulated distributions of (a) prior Gaussian image
noise, error term of (b) NM-RSBA [2], and the proposed (c) NW-
RSBA.

3.1. Measurement Normalization

To the best of our knowledge, no prior research has in-
vestigated the influence of normalization on RSBA perfor-
mance. Thus, we conduct a synthetic experiment to eval-
uate the impact of normalization by comparing the perfor-
mances of DM-RSBA [5] and NM-RSBA [2]. The results in
Fig. 12 show that the normalization significantly improves
the RSBA accuracy. The improvement comes from the
more precise instantaneous-motion approximation of low-
order Taylor expansion in NM-RSBA. In DM-RSBA, the er-
rors on the image plane induced by the approximate have
the same directions and grow exponentially with the in-
crease of the row index. Thus, the optimizer will shift the
solution away from the ground truth to equally average the
error among all observations. In contrast, the error distribu-
tion in NM-RSBA is inherently symmetrical due to the oppo-
site direction with the row varying from the optical center,
thus exhibiting significantly lower bias. A synthetic exam-
ple shown in Fig. 2 verifies our insight that NM-RSBA has
an unbiased local minimum over DM-RSBA.

3.2. Normalized Weighted RSBA

Based on the measurement normalization, we further
present a normalized weighted RSBA (NW-RSBA) by mod-
elling image noise covariance.
• Weighting the reprojection error: In contrast to exist-
ing works [2, 5, 14], we consider the image noise in RSBA
by weighting the squared reprojection error with the inverse
covariance matrix of the error, which is also known as stan-
dardization of the error terms [22]. Thus the cost function
in Eq. (6) becomes:

θ∗ = arg min
θ

∑
j∈F

∑
i∈Pj

ej
i

>
Σj

i

−1
ej
i , (7)

where ej
i is the reprojection error computed by normalized-

measurement-based approach described in Eq. (4). By as-
suming the image measurement qj

i follows a prior Gaussian
noise: nj

i ∼ N (0,WΣW>), the newly introduced covari-
ance matrix of the error Σj

i is defined as follows (proof in
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Figure 4. The normalized reprojection error comparison between
our proposed method NW-RSBA and NM-RSBA [2] along the de-
generacy process.
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Iteration 1

Iteration 1

Iteration 1

Iteration 2 Iteration 3 Iteration 4

Iteration 5 Iteration 9 Iteration 13

Iteration 3 Iteration 5 Iteration 7

Error 0.048  Error 0.053 Error 0.052 Error 0.052 

Error 0.048 Error 0.023 Error 2.479 Error 5.387 

Error 0.048 Error 0.016 Error 0.014 Error 0.012 

Figure 5. Analysis of the degeneracy in synthetic cube scene cap-
tured by five cameras with parallel readout direction. The recon-
struction of NM-RSBA [2] (red) collapses to the plane gradually
while NW-RSBA (green) provides the most accurate result.

the supplemental material):

Σj
i = Cj

iWΣW>Cj
i

>
, (8)

Cj
i =

[
1 0
0 1

]
−


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

([ωj ]×RjPi + dj)

[
0
1

]>
, (9)

W =

[
1/fx 0

0 1/fy

]
, (10)

where Cj
i and W are 2 × 2 auxiliary matrices. fx and fy

are focal lengths.
• Advantages of noise covariance weighting: Note that
the standardisation in Eq. (7) scaling every term by its in-
verse covariance matrix Σj

i

−1
, so that all terms end up with

isotropic covariance [22]. In Fig. 3, we visualize the in-
fluence of error terms standardization, which re-scales the
prior covariance ellipse back to a unit one. We interpret the
re-weighting standardization leads two advantages:
(1) More accurate: With the re-weighting standardization
in Eq. (7), features with a high variance which means a high
probability of a large reprojection error, are offered less
confidence to down-weighting their influence on the total
error. Synthetic experiments in section F.1 demonstrate it
outperforms NM-RSBA under various noise levels.
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Figure 6. Example Jacobian matrices with 4 points and 3 cameras
in (a) GSBA, RSBA with (b) series and (c) parallel connection.
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Figure 7. Example Hessian matrices with 4 points and 3 cameras
in (a) GSBA, RSBA with(b) series and (c) parallel connection.

(2) Handle planar degeneracy: Though the proposed NW-
RSBA uses measurement-based projection during degener-
acy, it still provides stable BA results and even outperforms
C-RSBA with the noise covariance weighting. As demon-
strated in [2], under the planar degeneracy configuration,
the y-component of the reprojection error will reduce to
zero, which denotes that the covariance matrix holds a zero
element in the y direction. NW-RSBA explicitly modeled the
error covariance and standardized it to isotropy. Thus, the
proposed method exponentially amplifies the error during
degeneracy, as shown in Fig. 4, and prevents the continua-
tion of the decline from ground truth to the degenerated so-
lution (proofs can be found in the supplemental material). A
synthetic experiment shown in Fig. 5 verifies that NM-RSBA
easily collapses into degeneracy solutions while NW-RSBA
provide stable result and outperforms the GSBA.
• Jacobian of NW-RSBA: For more convenient optimiza-
tion, we reformulate covariance matrix Σj

i as a standard
least square problem using decomposition:

Σj
i

−1
= Cj

i

−>
W−>Σ−

1
2 Σ−

1
2 W−1Cj

i

−1
. (11)

By substituting Eq. (11) into (7), we get a new cost function:

θ∗ = arg min
θ

∑
j∈F

∑
i∈Pj

êj>
i êj

i , (12)

where, êj
i = Σ−

1
2 W−1Cj

i

−1
ej
i . (13)

We derive the analytical Jacobian matrix of êj
i in Eq. (12)

using the chain rule in the supplemental material.

3.3. NW-RSBA Acceleration

Based on the sparsity of the Jacobian, the marginaliza-
tion [16, 22] with Schur complement has achieved signifi-
cant success in accelerating GSBA. However, the accelera-

Algorithm 2: Solve the normal equation using two-
stage Schur complement

Input : Jacobian matrix J and weighted error
vector ê

Output: Update state vector δ
1 Compute Schur complement matrix Sp and Srs

using Eq. (16) and (17);
2 Compute auxiliary vectors t∗ and u∗using Eq. (19)

and (18);
3 Solve Eq. (20) cascadingly:

• Get δrs by solving Srsδrs = −t∗;

• Get δgs by solving U∗δgs = −u∗ − S∗>δrs;

• Get δp by solving Vδp = −v −T>δrs −W>δgs;

• Stack δgs, δrs, δp into δ;

tion strategy has never been addressed for the general un-
ordered RSBA in [2, 5, 14]. As shown in Fig. 6(b)(c), we
can organize the RSBA Jacobian in two styles:
(1) Series connection: By connecting camera pose and
instantaneous-motion in the Jacobian matrix (Fig. 7(b)) as
an entirety, we can use the one-stage Schur complement
technique [16] to marginalize out the 3D point and compute
the update state vector for R, t,ω,d first, followed by back
substitution for update state vector of points P.
(2) Parallel connection: Due to the independence between
camera pose and instantaneous-motion in the Jacobian ma-
trix (Fig. 7(c)), we propose a two-stage Schur complement
strategy to accelerate RSBA. When solving the non-linear
least square problem (e.g. Gauss-Newton), the approximate
Hessian matrix for Eq. (12) is defined as

J>J =

Jrs
>Jrs Jrs>Jgs Jrs

>Jp
Jgs>Jrs Jgs>Jgs Jgs>Jp

Jp>Jrs Jp
>Jgs Jp>Jp

 =

 R S T
S> U W
T> W> V

 , (14)

J =
[
Jrs Jgs Jp

]
=
[

∂ê
∂xrs

∂ê
∂xgs

∂ê
∂xp

]
, (14a)

ê =
[{

êj
i

}]
, xgs =

[{
Rj
} {

tj
}]
, (14b-1)

xrs =
[{
ωj
} {

dj
}]
, xp =

[{
Pi

}]
, (14b-2)

where R, U, V, S, T and W are submatrices computed by
the derivations Jrs, Jgs and Jp. As Alg. 6 shown that the
two-stage Schur complement strategy consists of 3 steps:
. Step 1: Construct normal equation. In each iteration,
using this form of the Jacobian and corresponding state vec-
tors and the error vector, the normal equation follows

J>Jδ =

 R S T
S> U W
T> W> V

δrsδgs
δp

 = −

t
u
v

 = −J>ê, (15)



GSBA DC-RSBA DM-RSBA NM-RSBA NW-RSBA

G
e

n
e

ra
l 

S
ce

n
e

V
a

ry
in

g
 n

o
is

e
 l

e
v
e

l
V

a
ry

in
g

 s
p

e
e

d

C
ri

ti
ca

l 
S

ce
n

e

V
a

ry
in

g
 r

e
a

d
o

u
t 

d
ir

e
ct

io
n

(d) Noise level (e) Noise level (f) Noise level

(a) Instantaneous-motion level (b) Instantaneous-motion level (c) Instantaneous-motion level

(g) Readout direction [deg] (h) Readout direction [deg] (i) Readout direction [deg]

0 0.5 1 1.5 2

-6

-4

-2

0

0 0.5 1 1.5 2

-7

-6

-5

-4

-3

-2

0 0.5 1 1.5 2

-5

-4

-3

-2

-1

0

0 25 50 75 90

-2

-1

0

1

2

0 25 50 75 90

-5

-4

-3

-2

-1

0 25 50 75 90

-2

-1

0

1

1 2 3 4 5

-3

-2

-1

0

1

1 2 3 4 5

-4

-3

-2

-1

0

1 2 3 4 5

-2

-1

0

1

P
o

in
t 

e
rr

o
r 

lo
g

1
0

 [
u

n
it

]

R
o

ta
ti

o
n

 e
rr

o
r 

lo
g

1
0

 [
d

e
g

]

T
ra

n
sl

a
ti

o
n

 e
rr

o
r 

lo
g

1
0

 [
d

e
g

]

P
o

in
t 

e
rr

o
r 

lo
g

1
0

 [
u

n
it

]

R
o

ta
ti

o
n

 e
rr

o
r 

lo
g

1
0

 [
d

e
g

]

T
ra

n
sl

a
ti

o
n

 e
rr

o
r 

lo
g

1
0

 [
d

e
g

]

P
o

in
t 

e
rr

o
r 

lo
g

1
0

 [
u

n
it

]

R
o

ta
ti

o
n

 e
rr

o
r 

lo
g

1
0

 [
d

e
g

]

T
ra

n
sl

a
ti

o
n

 e
rr

o
r 

lo
g

1
0

 [
d

e
g

]

Figure 8. Camera pose (2nd and 3rd columns) and reconstruction
(1st column) errors of GSBA, DC-RSBA, DM-RSBA, NM-RSBA and
NW-RSBA with increasing angular and linear velocity (1st row) and
noise levels in the image (2nd row) in a general scene, also with
increasing readout directions in a degeneracy scene (3rd row).

where δgs, δrs and δp are the update state vectors to xgs,
xrs, and xp, while t, u, and v are the corresponding descent
direction. Such formed normal equations show a block spar-
sity, suggesting that we can efficiently solve it.
. Step 2: Construct Schur complement. We construct
two-stage Schur complements Sp, Srs and two auxiliary
vectors u∗ and t∗ to Eq. (15) as

Sp =

[
R∗ S∗

S∗> U∗

]
=

[
R−TV−1T> S−TV−1W>

S> −WV−1T> U−WV−1W>

]
,

(16)

Srs = R∗ − S∗U∗−1S∗>, (17)

u∗ = u−WV−1v, (18)

t∗ = t− TV−1v− S∗U∗−1u∗. (19)

. Step 3: Orderly solve δgs, δrs and δp. Based on Sp,
Srs, u∗ and t∗, we reformulate the normal equation asSrs 0 0

S∗> U∗ 0
T> W> V

δrsδgs
δp

 = −

t∗

u∗

v

 , (20)

which enables us to compute δrs first, and then back substi-
tutes the results to get δgs. Finally, we can obtain δp based
on the 3rd row of Eq. (20).

3.4. Implementation

We follow Alg. 3 to implement the proposed NW-RSBA
in C++. The implemented NW-RSBA can serve as a little
module and can be easily plug-in such context:
• RS-SfM: We augment VisualSFM [23] by shifting the
incremental GSBA pipeline with the proposed NW-RSBA.
• RS-SLAM: We augment Orb-SLAM [18] by replacing
the local BA and full BA modules with NW-RSBA.

GSBA DC-RSBA NM-RSBA NW-RSBA-1S NW-RSBA-2SNW-RSBA-0SGSBA DC-RSBA NM-RSBA NW-RSBA-1S NW-RSBA-2SNW-RSBA-0S

Number of Cameras
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g1

0
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e 
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e
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n
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Figure 9. Time cost of GSBA [16], DC-RSBA [14], NM-RSBA [2],
NW-RSBA-0S (without Schur complement), NW-RSBA-1S (one-
stage Schur complement to Jacobian matrices with series connec-
tion), and proposed NW-RSBA-2S (two-stage Schur complement to
Jacobian matrices with parallel connection) with increasing cam-
era number and fixed point number.

4. Experimental Evaluation
In our experiments, the proposed method is compared to

three state-of-the-art unordered RSBA solutions:1) GSBA:
SBA [16]. 2) DC-RSBA: direct camera-based RSBA [14].
3) DM-RSBA: direct measurement-based RSBA [5]. 4) NM-
RSBA: normalized-measurement-based RSBA [2]. 5) NW-
RSBA: proposed normalized weighted RSBA.

4.1. Synthetic Data

Settings and metrics. We simulate 5 RS cameras located
randomly on a sphere pointing at a cubical scene. We com-
pare all methods by varying the speed, the image noise, and
the readout direction. The results are obtained after collect-
ing the errors over 300 trials per epoch. We measure the
reconstruction errors and pose errors.
Results. 1) Varying Speed. The results in Fig. 12(a)(b)(c)
show that the estimated errors of GSBA grow with speed
while DC-RSBA, DM-RSBA and NM-RSBA achieve better
results with slow kinematics. The proposed NW-RSBA pro-
vides the best results under all configurations. 2) Varying
Noise Level. In Fig. 12(d)(e)(f), GSBA shows better robust-
ness to noise but with lower accuracy than RS methods. The
proposed NW-RSBA achieves the best performance with all
noise levels. 3) Varying Readout Direction. We evaluate
five methods with varying readout directions of the cam-
eras by increasing the angle from parallel to perpendicu-
lar. Fig. 12(g)(h)(i) show that under a small angle, the re-
construction error of DM-RSBA, DC-RSBA and DM-RSBA
grow dramatically even bigger than GSBA, suggesting a de-
generated solution. In contrast, NW-RSBA provides stable
results under all settings, even with the parallel readout di-
rection.
Runtime. As shown in Fig. 13 that without analytical Ja-
cobian, DC-RSBA is the slowest one while the proposed
NW-RSBA achieves similar efficiency as NM-RSBA. How-
ever, by using acceleration strategies, NW-RSBA-1S and
NW-RSBA-2S reduce the overall runtime. Note that NW-
RSBA-2S achieves an order of magnitude faster than NM-
RSBA.
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Figure 10. Ground truth and trajectories estimated by GSBA [16], NM-RSBA [2] and proposed NW-RSBA after Sim(3) alignment on 3
sequences from TUM-RSVI [21] and 1 sequence from WHU-RSVI [3] datasets.

Table 2. Statistics of 10 sequences from TUM-RSVI [21] and
2 sequences from WHU-RSVI [3] datasets. The realtime factor
ε and tracking duration DUR of Orb-SLAM, Orb-SALM+NM-
RSBA [2], and proposed Orb-SLAM+NW-RSBA.

Seq Duration
[s]

length
[m]

Realtime factor ε ↑ | Tracking duration DUR ↑

Orb-SLAM [18]
Orb-SLAM

+NM-RSBA [2]
Orb-SLAM
+NW-RSBA

#1 40 46 1.47 | 0.50 1.48 | 0.28 1.38 | 1
#2 27 37 1.51 | 0.90 1.40 | 0.81 1.40 | 1
#3 50 44 1.47 | 0.58 1.41 | 0.36 1.39 | 1
#4 38 30 1.61 | 1 1.35 | 1 1.56 | 1
#5 85 57 1.51 | 1 1.28 | 1 1.38 | 1
#6 43 51 1.47 | 0.76 1.37 | 0.76 1.38 | 1
#7 39 45 1.61 | 0.89 1.47 | 0.97 1.49 | 1
#8 53 46 1.56 | 0.79 1.37 | 0.96 1.35 | 1
#9 45 46 1.61 | 0.14 1.51 | 0.23 1.55 | 0.42

#10 54 41 1.56 | 0.29 1.46 | 0.29 1.47 | 1
t1-fast 28 50 1.92 | 1 1.51 | 1 1.81 | 1
t2-fast 29 53 1.92 | 1 1.40 | 1 1.67 | 1

4.2. Real Data

Datasets and metrics. We compare all the RSBA meth-
ods in two publicly available RS datasets: WHU-RSVI [3]
dataset1, TUM-RSVI [21] dataset2. In this section, we use
three evaluation metrics, namely ATE eate (absolute trajec-
tory error) [21], tracking duration DUR (the ratio of the
successfully tracked frames out of the total frames) and real-
time factor ε (sequence’s actual duration divided by the al-
gorithm’s processing time).

4.2.1 RSSLAM

We compare the performance of conventional GS-based
Orb-SLAM [18] versus augmented versions with NM-
RSBA [2] and proposed NW-RSBA on 12 RS sequences.
Real-time factor and tracking duration. Tab. 2 shows
the statistics about 12 RS sequences and the performance of

1http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset
2https://vision.in.tum.de/data/datasets/rolling-shutter-dataset

three approaches run on an AMD Ryzen 7 CPU. The results
verify that all three methods achieve real-time performance.
One can also confirm that the proposed Orb-SLAM+NW-
RSBA is slower than Orb-SLAM by a factor roughly around
1.2 but is slightly faster than Orb-SLAM+NM-RSBA. As
for tracking duration, Orb-SLAM and Orb-SLAM+NM-
RSBA [2] fail with an average DUR < 0.5 in most
sequences once the camera moves aggressively enough.
In contrast, the proposed Orb-SLAM+NW-RSBA achieves
completed tracking withDUR = 1 in almost all sequences.
Absolute trajectory error. The ATE results on WHU-
RSVI and TUM-RSVI datasets demonstrate that the pro-
posed Orb-SLAM+NW-RSBA is superior to Orb-SLAM and
Orb-SLAM+NM-RSBA when dealing with RS effect. Qual-
itatively, this is clearly visible in Figs. 1 and 14. The sparse
3D reconstructions look much cleaner for Orb-SLAM+NW-
RSBA and close to the ground truth. The quantitative dif-
ference also becomes apparent in Tab. 3. Orb-SLAM+NW-
RSBA outperforms Orb-SLAM and Orb-SLAM+NM-RSBA
both in terms of accuracy and stability.

4.2.2 RSSfM

Quantitative Ablation Study. We randomly choose 8
frames from each of the 12 RS sequences to generate 12 un-
ordered SfM datasets and evaluate the RSBA performance
via average ATE and runtime. Besides, we ablate the NW-
RSBA and compare quantitatively with related approaches.
The results are presented in Tab. 4. The baseline methods’
performance show that NW-RSBA obtains ATE of 0.007,
which is half of the second best method DC-RSBA and
nearly 3% of GSBA. The removal of normalization from
proposed NW-RSBA adversely increases ATE up to 100%.
The removal of covariance weighting from NW-RSBA ad-
versely impacts the camera pose estimation quality with
ATE growth from 0.007 to 0.020. We believe that covari-
ance weighting helps BA leverage the RS effect and random

http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset
https://vision.in.tum.de/data/datasets/rolling-shutter-dataset


Table 3. Absolute trajectory error (ATE) of different RSBA methods after Sim(3) alignment to ground truth. The best results are shown in
green. Since some methods will lose tracking without processing the whole sequence, thus we highlight the background of each cell with
different colours depending on its corresponding DUR value. Specifically, DUR > 0.9, 0.5 < DUR 6 0.9 and DUR 6 0.5 are highlighted
in light green , cyan , and orange .

Input Methods
ATE↓

TUM-RSVI [21] WHU-RSVI [3]

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 t1-fast t2-fast

GS data Orb-SLAM [18] 0.015 0.013 0.018 0.107 0.030 0.013 0.054 0.053 0.020 0.024 0.044 0.008

RS data
Orb-SLAM [18] 0.059 0.100 0.411 0.126 0.055 0.044 0.217 0.218 0.176 0.373 0.237 0.018

Orb-SLAM+NM-RSBA [2] 0.115 0.088 0.348 0.120 0.062 0.060 0.251 0.246 0.156 0.307 0.204 0.030
Orb-SLAM+NW-RSBA (ours) 0.011 0.008 0.031 0.071 0.034 0.008 0.260 0.115 0.028 0.108 0.054 0.012

Input GSBA NM-RSBA NW-RSBA

Figure 11. Three-view graph of reconstructions using SfM pipeline with GSBA [16], NM-RSBA [2] and proposed NW-RSBA.

Table 4. Quantitative ablation study of RSSfM on TUM-
RSVI [21] and WHU-RSVI [3] datasets. ATE: absolute trajectory
error of estimated camera pose in meters (m), Runtime: time cost
in seconds (s). Best and second best results are shown in green
and blue respectively.

Ablation Approach ATE
(m)

Runtime
(s)

GSBA [16] 0.210 2.9
DC-RSBA [14] 0.016 1302

No normalization & weighting DM-RSBA [5] 0.023 740
No weighting NM-RSBA [2] 0.020 15.8
No normalization W-RSBA 0.013 16.1
No Schur complement NW-RSBA-0S

0.007
16.9

with 1-stage Schur complement NW-RSBA-1S 13.0
Consolidated NW-RSBA-2S 9.8

image noise better. We ablate the consolidated NW-RSBA-
2S to NW-RSBA-0S by removing the proposed 2-stage Schur
complement strategy and compare to NW-RSBA-1S. The in-
creases from 9.8s to 13.0s and 16.9s is observed for average
runtime. Despite the fact NW-RSBA-2S is slower than GSBA
by a factor of 3, but still 2 times faster than NM-RSBA, 2 or-
ders of magnitude faster than DC-RSBA and DM-RSBA.
Qualitative Samples. We captured two datasets using
a smartphone camera and kept the same readout direc-
tion, which is a degeneracy configuration in RSBA and
will quickly lead to a planar degenerated solution for NM-

RSBA [2]. As shown in Fig. 11 that NW-RSBA works better
in motion and 3D scene estimation while GSBA [16] obtains
a deformed reconstruction. Specifically, the sparse 3D re-
constructions and recovered trajectories of NW-RSBA look
much cleaner and smoother than the ones from GSBA. NM-
RSBA reconstructs 3D scenes which collapse into a plane
since the datasets contain only one readout direction. In
contrast, NW-RSBA provides correct reconstructions. The
results also verify our discussion in section 3.2 that error
covariance weighting can handle the planar degeneracy.

5. Conclusion

This paper presents a novel RSBA solution without
any assumption on camera image manner and type of
video input. We explain the importance of conducting
normalization and present a weighting technique in RSBA,
which leads to normalized weighted RSBA. Extensive ex-
periments in real and synthetic data verify the effectiveness
and efficiency of the proposed NW-RSBA method.
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A. Proof of Reprojection Error Covariance

In this section, we perform a detailed proof of reprojec-
tion error covariance. Firstly, we decompose a normalized
image measurement point qj

i =
[
c r

]>
into a perfect nor-

malized image measurement point q̃j
i =

[
c̃ r̃

]>
and a nor-

malized image Gaussian measurement noise
[
nc nr

]>
:[

c r
]>

=
[
c̃ r̃

]>
+
[
nc nr

]>
, (21)

with, [
nc nr

]> ∼ N (0,WΣW>), (22)

W =

[
1/fx 0

0 1/fy

]
, (23)

where Σ is the prior Gaussian measurement noise and fx fy
are the x-axis and y-axis focal length respectively. Then
we can substitute Eq. (21) to the normalized measurement
based reprojection cost function as:

ej
i =

[
cji rji

]> −Π(Rj(rji )Pi + tj(rji ))

=
[
cji rji

]> −Π(Rj(r̃ji + nr)Pi + tj(r̃ji + nr)),
(24)

where Π(Rj(r̃ji + nr)Pi + tj(r̃ji + nr)) can be linearized
using the Taylor first order approximation:

Π(Rj(r̃ji + nr)Pi + tj(r̃ji + nr))

≈
[
c̃ji
r̃ji

]
+
∂Π(Rj(rji )Pi + tj(rji ))

∂nr
nr.

(25)

∗ Authors contributed equally
† Corresponding author: yizhenlao@hnu.edu.cn
Project page: https://delinqu.github.io/NW-RSBA

mailto:yizhenlao@hnu.edu.cn
https://delinqu.github.io/NW-RSBA


Then by substituting Eq. (25) into Eq. (24), we have

ej
i =

[
nc
nr

]
− ∂Π(Rj(rji )Pi + tj(rji ))

∂nr
nr = Cj

i

[
nc
nr

]
.

(26)
By applying the chain rule of derivation, we can get the
analytical formulation of matrix Cj

i .

∂Π(Rj(rji )Pi + tj(rji ))

∂nr
=
∂Π(Rj(rji )Pi + tj(rji ))

∂Pcj
i

∂Pcj
i

∂nr
,

(27)
with,

∂Π(Rj(rji )Pi + tj(rji ))

∂Pcj
i

=


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

, (28)

∂Pcj
i

∂nr
= [ωj ]×RjPi + dj . (29)

By substituting Eq. (27) into Eq. (26), we can get analytical
formulation:

Cj
i =

[
1 0
0 1

]
−


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

([ωj ]×RjPi + dj)

[
0
1

]>
, (30)

where Pcj
i =

[
Xcj

i Y cj
i Zcj

i

]>
= Rj(rji )Pi + tj(rji )

is the world point Pi in camera j coordinates. Combining
Eq. (22) with Eq. (26), we prove that ej

i follows a weighted
Gaussian distribution:

ej
i ∼ N (0,Cj

iWΣW>Cj
i

>
). (31)

B. Analytical Jacobian matrix Derivation
In this section, we provide a detailed derivation of the

analytical Jacobian matrix used in our proposed NW-RSBA
solution.

B.1. Jacobian Matrix Parameterization

To derive the analytical Jacobian matrix of Eq. (35), we
use ξji ∈ so(3) to parametrize Rj

i ∈ SO(3). These two
representations can be transformed to each other by Ro-
drigues formulation Rj

i = Exp(ξji ) and ξji = Log(Rj
i ),

which are defined as:

R = Exp(ξ)

= I +
sin(‖ξ‖)
‖ξ‖

ξ∧ +
1− cos(‖ξ‖)
‖ξ‖2

(ξ∧)
2
.

(32)

ξ = Log(R)

=
θ

2sin(θ)
(R−R>)

∨
,

(33)

with,

θ = arccos((tr(R)− 1)/2), (34)

where ∧ is the skew-symmetric operator that can transform
a vector to the corresponding skew-symmetric matrix. Be-
sides, ∨ is the inverse operator.

B.2. Partial Derivative of Reprojection error

Recall the normalized weighted error term, which is de-
fined as:

êj
i = Σ−

1
2 W−1Cj

i

−1
ej
i . (35)

Then we can get five atomic partial derivatives of ∂êj
i over

∂Pi, ∂ξj , ∂tj , ∂ωj and ∂dj as:

∂êj
i

∂Pi
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂Pi
+

[
ej
i

> ∂Cj
i (1)

−>

∂Pi

ej
i

> ∂Cj
i (2)

−>

∂Pi

]
), (36)

∂êj
i

∂ξj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂ξj
+

ej
i

> ∂Cj
i (1)

−>

∂ξj

ej
i

> ∂Cj
i (2)

−>

∂ξj

), (37)

∂êj
i

∂tj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂tj
+

[
ej
i

> ∂Cj
i (1)

−>

∂tj

ej
i

> ∂Cj
i (2)

−>

∂tj

]
), (38)

∂êj
i

∂ωj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂ωj
+

[
ej
i

> ∂Cj
i (1)

−>

∂ωj

ej
i

> ∂Cj
i (2)

−>

∂ωj

]
), (39)

∂êj
i

∂dj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂dj
+

[
ej
i

> ∂Cj
i (1)

−>

∂dj

ej
i

> ∂Cj
i (2)

−>

∂dj

]
), (40)

with,

∂ej
i

∂Pcj
i

= −

 1

Zcj
i

0 − Xcj
i

(Zcj
i )

2

0 1

Zcj
i

− Y cj
i

(Zcj
i )

2

 , (41)

∂Pcj
i

∂Pi
= (I + [ωj ]×r

j
i )Rj , (42)

∂Pcj
i

∂ξj
= −(I + [ωj ]×r

j
i )[RjPi]×, (43)

∂Pcj
i

∂tj
= [I]3×3, (44)

∂Pcj
i

∂ωj
= −rji [RjPi]×, (45)

∂Pcj
i

∂dj
= rji [I]3×3, (46)



where Cj
i (1) and Cj

i (2) represents the first and second row
of matrix Cj

i respectively.

We further need to derive the partial derivatives of
∂Cj

i (.)
−> over ∂Pi, ∂ξj , ∂tj , ∂ωj and ∂dj in Eq. (36

- 40). Recall the Cj
i and W definition in Eq. (30) and

Eq. (23). For convenience, we define the following two
intermediate variables:

γj
i =


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

, (47)

δji = [ωj ]×RjPi + dj . (48)

Then we can rewrite Eq. (30) as:

Cj
i =

[
1 0
0 1

]
− γj

i δ
j
i

[
0 1

]
=

[
1 −γj

i δ
j
i

0 1− γj
i δ

j
i

]
, (49)

and its inverse formulation as:

Cj
i

−1
=

1
γj
i δ

j
i

1−γj
i δ

j
i

0 1

1−γj
i δ

j
i

 . (50)

Then we can derive the partial derivative as:

∂Cj
i (1)−>

∂Pi
=

 [0]1×3

(1−β)
∂α

j
i

∂Pi
+α

∂β
j
i

∂Pi

(1−βj
i )

2

 , (51)

∂Cj
i (2)

−>

∂Pi
=

 [0]1×3
∂β

j
i

∂Pi

(1−βj
i )

2

 , (52)

∂Cj
i (1)−>

∂ξj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂ξj
+αj

i

∂β
j
i

∂ξj

(1−βj
i )

2

 , (53)

∂Cj
i (2)

−>

∂ξj
=

 [0]1×3
∂β

j
i

∂ξj

(1−βj
i )

2

 , (54)

∂Cj
i (1)−>

∂tj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂tj
+αj

i

∂β
j
i

∂tj

(1−βj
i )

2

 , (55)

∂Cj
i (2)

−>

∂tj
=

 [0]1×3
∂β

j
i

∂tj

(1−βj
i )

2

 , (56)

∂Cj
i (1)−>

∂ωj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂ωj +α
j
i

∂β
j
i

∂ωj

(1−βj
i )

2

 , (57)

∂Cj
i (2)

−>

∂ωj
=

 [0]1×3
∂β

j
i

∂ωj

(1−βj
i )

2

 , (58)

∂Cj
i (1)−>

∂dj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂dj +αj
i

∂β
j
i

∂dj

(1−βj
i )

2

 , (59)

∂Cj
i (2)

−>

∂dj
=

 [0]1×3
∂β

j
i

∂dj

(1−βj
i )

2

 , (60)

where C(1) and C(2) are the first and second row of C
respectively, and two intermediate variables αj

i β
j
i are the

first and second row of γj
i δ

j
i respectively

γj
i δ

j
i =

[
αj

i

βj
i

]
. (61)

Finally we have to derive the partial derivative of
∂αj

i and ∂βj
i over ∂Pi, ∂ξj , ∂tj , ∂ωj and ∂dj in Eq. (51

- 60):

∂(γj
i δ

j
i )

∂Pi
= γj

i

∂δji
∂Pi

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂Pi

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂Pi

 , (62)

∂(γj
i δ

j
i )

∂ξj
= γji

∂δji
∂ξj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂ξj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂ξj

 , (63)

∂(γj
i δ

j
i )

∂tj
= γj

i

∂δji
∂tj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂tj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂tj

 , (64)

∂(γj
i δ

j
i )

∂ωj
= γj

i

∂δji
∂ωj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂ωj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂ωj

 , (65)

∂(γj
i δ

j
i )

∂dj
= γj

i

∂δji
∂dj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂dj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂dj

 , (66)

with,

∂γj
i (1)>

∂Pcj
i

=


0 0 − 1

Zcj
i

2

0 0 0

− 1

Zcj
i

2 0
2Xcj

i

Zcj
i

3

 , (67)



∂γj
i (2)>

∂Pcj
i

=


0 0 0
0 0 − 1

Zcj
i

2

0 − 1

Zcj
i

2

2Y cj
i

Zcj
i

3

 , (68)

∂δji
∂Pi

= [ωj ]×Rj , (69)

∂δji
∂ξj

= [ωj ]×[RjPi]×, (70)

∂δji
∂tj

= [0]3×3, (71)

∂δji
∂ωj

= −[RjPi]×, (72)

∂δji
∂dj

= [I]3×3. (73)

C. The proof of degeneracy resilience ability
As proved in [2], under the planar degeneracy config-

uration, the y-component of the reprojection error will re-
duce to zero. To say it in another way, the noise perturba-
tion along the y-component of the observation will not be
reflected in the y-component of the reprojection error (re-
mains at zero). The reprojection error covariance matrix
must have a zero variance in the y-coordinate of its values
according to the definition of covariance. We prove this the-
oretically in the following.

In correspondence with notations in the manuscript, we
first define Pgj

i = [Xgj
i Y

gj
i Z

gj
i ]
> = Rj

0Pi + tj0 and it
can be related with Pcj

i as [ωj ]×Rj
0Pi + dj = (Pcj

i −
Pgj

i ) / v
j
i . Then we rewrite the Eq. (30):

Cj
i =

[
1 0
0 1

]
−


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

Pcj
i −Pgj

i

vji

[
0
1

]>

=

[
1 0
0 1

]
−

Zgj
iX

cj
i−Z

cj
iX

gj
i

vj
iZ

cj
i

2

Zgj
iY

cj
i−Z

cj
iY

gj
i

vj
iZ

cj
i

2

[0
1

]>
.

(74)

Under the degeneracy configuration, the observed point
will project to the plane y = 0 in the camera coordinate. We
then substitute the degeneracy condition Y gj

i = 0, Zgj
i =

Zcj
i , v

j
i = Y cj

i/Z
cj
i into Eq.(74). It can be verified that the

lower right component of Cj
i reduces to zero, which means

that the y-coordinate variance in the reprojection error co-
variance matrix will reduce to zero.

Based on the explicitly modeled reprojection error co-
variance, we can decompose its inverse form and then
reweight the reprojection error Eq.(11-13), which will re-
sult an isotropy covariance (Fig. 3). The corresponding
weight will rapidly approach infinite during the degeneracy
process since the y-coordinate variance gradually reduces
to zero. As a result, the reweighted reprojection error will
grow exponentially, which will prevent the continuation of
the degeneracy. The error of NM-RSBA decreases gradu-
ally during the degeneracy process, while NW-RSBA grows
exponentially and converges around the ground truth.

D. The equivalent between Normalized DC-
RSBA and NW-RSBA

In this section, we provide an equivalent proof and il-
lustrate the deep connection between the Normalized DC-
RSBA and proposed NW-RSBA method.

D.1. Pre-definition

Recall the Eq. (26), we define a new vector χj
i for con-

venience:

χj
i =

∂Π(Rj(rji )Pi + tj(rji ))

∂nr

=
∂Π(Rj(rji )Pi + tj(rji ))

∂rji
,

(75)

then we can reformulate Eq. (30) as:

Cj
i =

[
1 0
0 1

]
− ∂Π(Rj(rji )Pi + tj(rji ))

∂nr

[
0 1

]
=

[
1 −χj

i (1)

0 1− χj
i (2)

]
,

(76)

where χj
i (1) χj

i (2) are the first and second row of χj
i , and

its inverse formulation is defined as:

Cj
i

−1
=

1
χj

i (1)

1−χj
i (2)

0 1

1−χj
i (2)

 . (77)

Then we can define a new rectified image coordinate vector[
cji

”
rji

”
]>

which represents the virtual image point after
weighting.[

cji
rji

]
−

[
cji

”

rji
”

]
= Cj

i

−1
(

[
cji
rji

]
−

[
cji

′

rji

′

]
), (78)

where
[
cji

′

rji

′]>
is the projection image point with image

measurement
[
cji rji

]>
, which is defined as:[

cji

′

rji

′]>
= Π(Rj(rji )Pi + tj(rji )). (79)



Our goal is to prove that using rectified coordinates as the
observed image point will project on the same image point
with the normalized measurement-based projection. We can
summarize such equivalent as the following equation:[

cji
”

rji
”
]>

= Π(Rj(rji
”
)Pi + tj(rji

”
)). (80)

We follow the schedule that firstly solves the Eq. (78) to get

the rectified image coordinate vector
[
cji

”
rji

”
]>

, use the
rectified image coordinate vector in normalized measure-
ment based projection to get the projection point and finally
check out whether it is the same.

D.2. New Rectified Image Coordinate Solution

We solve Eq. (78) consequently. Firstly, we solve rji
”
.

(1− χj
i (2))(rji − r

j
i

”
) = (rji − r

j
i

′

), (81)

rji
”

= rji +
rji

′

− rji
1− χj

i (2)

= rji

′

+
χj

i (2)(rji

′

− rji )

1− χj
i (2)

,

(82)

We then substitute rji
”

to solve cji
”
.

(cji − c
j
i

”
) =

χj
i (1)

1− χj
i (2)

(rji − r
j
i

′

) + (cji − c
j
i

′

), (83)

cji
”

= cji

′

+
χj

i (1)(rji

′

− rji )

1− χj
i (2)

. (84)

D.3. Proof of equivalent after projection

We then substitute rji
”

and cji
”

in normalized measurement
based projection.

[
cji

new

rji
new

]
= Π(Rj(rji

”
)Pi + tj(rji

”
))

= Π(Rj(rji +
rji

′

− rji
1− χj

i (2)
)Pi + tj(rji +

rji

′

− rji
1− χj

i (2)
))

≈

[
cji

′

rji

′

]
+ (

∂Π(Rj(rji )Pi + tj(rji ))

∂rji
)
rji

′

− rji
1− χj

i (2)

=

[
cji

′

rji

′

]
+ χj

i

rji

′

− rji
1− χj

i (2)

=

[
cji

”

rji
”

]

(85)

D.4. Connection between Normalized DC- RSBA
and NW-RSBA

From Eq. (85), we can get a such summary that Nor-
malized DC-RSBA is equivalent to the proposed NW-RSBA
mathematical. It is amazing to view that although the
two formulations are totally different from each other,
they both bring in the implicit rolling shutter constraint
to optimization. However, although these two methods
are equivalent to each other, our proposed NW-RSBA is
much easier and faster to solve since we provide detailed
analytical Jacobian matrices.

E. Proposed NW-RSBA Algorithm Pipeline
In this section, we provide a detailed bundle adjustment

algorithm pipeline with the standard Gauss-Newton least
square solver.

List of Algorithms
1 Normalized Weighted RSBA . . . . . . . . . 3
2 Solve the normal equation using two-stage

Schur complement . . . . . . . . . . . . . . 5
3 Normalized Weighted RSBA . . . . . . . . . 13
4 Computation of weighted reprojection error . 14
5 Computation of Jacobian matrix . . . . . . . 14
6 Solve the normal equation using two-stage

Schur complement . . . . . . . . . . . . . . 14

F. Experimental Settings and Evaluation Met-
rics

In this section, we provide detailed experiment settings
and evaluation metrics used in synthetic data experiments
and real data experiments.

F.1. Synthetic Data

Experimental Settings. We simulate 5 RS cameras located
randomly on a sphere with a radius of 20 units pointing to
a cubical scene with 56 points. The RS image size is 1280
× 1080 px, the focal length is about 1000, and the optical
center is at the center of the image domain. We compare all
methods by varying the speed, the noise on image measure-
ments, and the readout direction. The results are obtained
after collecting the errors over 300 trials each epoch. The
default setting is 10 deg/frame and 1 unit/frame for angular
and linear velocity, standard covariance noise.

• Varying Speed: We evaluate the accuracy of five ap-
proaches against increasing angular and linear velocity
from 0 to 20 deg/frame and 0 to 2 units/frame gradu-
ally, with random directions.



Algorithm 3: Normalized Weighted RSBA
Input: Initial rolling shutter camera poses

{R1, t1,ω1,d1},...,{Rj , tj ,ωj ,dj}, points
P1,...,Pi as θ and point measurement in
normalized image coordinate q1...j

1...i

Output: Refined parameters θ∗

1 while (not reach max iteration) and (not satisfy
stopping criteria) do

2 for Each camera j ∈ F do
3 for Each point i ∈ Pj do
4 Calculate weighted reprojection error êj

i

using Alg. 4;
5 Construct Jacobian matrix Jj

i using
Alg. 5;

6 Parallel connect Jj
i to J;

7 Stack êj
i into ê;

8 end
9 end

10 Solve normal equation J>Jδ = −J>ê using
Alg. 6;

11 Update camera poses and points parameters θ
using δ;

12 end

Algorithm 4: Computation of weighted reprojec-
tion error

Input : Rolling shutter camera poses
{Rj , tj ,ωj ,dj}, points Pi and point
measurement in normalized image
coordinate qj

i

Output: Normalized weighted error êj
i

1 Compute weight matrix Cj
i using Eq. (30);

2 Compute standard reprojection error ej
i ;

3 Return normalized weighted reprojection error êj
i

using Eq. (35);

• Varying Noise Level: We evaluate the accuracy of five
approaches against increasing noise level from 0 to 2
pixels.

• Varying Readout Direction: We evaluate the robust-
ness of five methods with an RS critical configuration.
Namely, the readout directions of all views are almost
parallel. Thus, we vary the readout directions of the
cameras from parallel to perpendicular by increasing
the angle from 0 to 90 degrees.

• Runtime: We compare the time cost of all methods
against increasing the number of cameras from 50 -
250 with a fixed number of points.

Algorithm 5: Computation of Jacobian matrix

Input : RS camera poses {Rj , tj ,ωj ,dj}, points
coordinate Pi and point measurement in
normalized image coordinate qj

i

Output: Jacobian matrix Jj
i

1 Calculate ∂êj
i

∂Pi
using Eq. (36);

2 Calculate ∂êj
i

∂ξj using Eq. (37);

3 Calculate ∂êj
i

∂tj using Eq. (38);

4 Calculate ∂êj
i

∂ωj using Eq. (39);

5 Calculate ∂êj
i

∂dj using Eq. (40);
6 Construct

Jj
i =

[
Jj
i,rs Jj

i,gs Jj
i,p

]
=
[
[
∂êj

i

∂ωj ,
∂êj

i

∂dj ] [
∂êj

i

∂ξj ,
∂êj

i

∂tj ]
∂êj

i

∂Pi

]
;

Algorithm 6: Solve the normal equation using two-
stage Schur complement

Input : Jacobian matrix J and weighted error
vector ê

Output: Updated vector δ
1 Compute Schur complement matrix Sp and Srs;
2 Compute auxiliary vectors t∗ and u∗;
3 Solve normal equation cascadingly:

• Get δrs by solving Srsδrs = −t∗;

• Get δgs by solving U∗δgs = −u∗ − S∗>δrs;

• Get δp by solving Vδp = −v −T>δrs −W>δgs;

• Stack δgs δrs δp into δ;

Evaluation metrics. In this section, we use three metrics
to evaluate the performances, namely reconstruction error,
rotation error, and translation error.

• Reconstruction Error epoint: We use the reconstruc-
tion error to measure the difference between computed
and ground truth 3D points, which is defined as:
epoint =

∥∥P−PGT
∥∥2.

• Rotation Error erot: We utilize the geodesic distance
to measure the error between optimized rotation and
ground truth. The error is defined as:
erot = arccos((tr(RR>GT)− 1)/2).

• Translation Error etrans: We use normalized inner
product distance to measure the error between opti-



mized translation and ground truth, which is defined
as:
etrans = arccos(t>tGT/(‖t‖ ‖tGT‖)).

F.2. Real Data

Datasets Settings. We compare all the RSC methods in the
following publicly available RS datasets.

• WHU-RSVI: WHU dataset 3 was published in [3] and
provided ground truth synthetic GS images, RS images
and camera poses.

• TUM-RSVI: The TUM RS dataset4 was published
in [21] and contained time-synchronized global-
shutter, and rolling-shutter images captured by a
non-perspective camera rig and ground-truth poses
recorded by motion capture system for ten RS video
sequences.

Evaluation metrics. In this section, we use three metrics to
evaluate the performances, namely absolute trajectory error,
tracking duration and real-time factor.

• Absolute trajectory error (ATE). We use the abso-
lute trajectory error (ATE) [21] to evaluate the VO
results quantitatively. Given ground truth frame po-
sitions c̄i ∈ R3 and corresponding Orb-SLAM [18]
tracking results ci ∈ R3 using corrected sequence by
each RSC method. It is defined as

eate = min
T∈Sim(3)

√√√√ 1

n

n∑
i=1

‖T(ci)− c̄i‖, (86)

where T ∈ Sim(3) is a similarity transformation that
aligns the estimated trajectory with the ground truth
one since the scale is not observable for monocular
methods. We run each method 20 times on each se-
quence to obtain the ATE eate.

• Tracking duration (DUR). Besides, we find out that
some RSC solutions provide the results of corrections
that are even worse than the original input RS frames.
This leads to failure in tracking and makes Orb-SLAM
interrupt before the latest capture frame. Therefore, we
use the ratio of the successfully tracked frames out of
the total frames DUR as an evaluation metric.

• Realtime factor ε. The realtime factor ε is calculated
as the sequence’s actual duration divided by the algo-
rithm’s processing time.

3http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset/
4https://vision.in.tum.de/data/datasets/rolling-shutter-dataset

http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset/
https://vision.in.tum.de/data/datasets/rolling-shutter-dataset
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Figure 12. Camera pose (2nd and 3rd columns) and reconstruction (1st column) errors of GSBA, DC-RSBA, DM-RSBA, NM-RSBA and NW-
RSBA with increasing angular and linear velocity (1st row) and noise levels in the image (2nd row) in general scenes, also with increasing
readout directions in degeneracy scene (3rd row).
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Figure 13. Time cost of GSBA [16], DC-RSBA [14], NM-RSBA [2], NW-RSBA-0S (without Schur complement), NW-RSBA-1S (one-stage
Schur complement to Jacobian matrices with series connection), and proposed NW-RSBA-2S (two-stage Schur complement to Jacobian
matrices with parallel connection) with increasing camera number.
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Figure 14. Ground truth and trajectories estimated by GSBA [16], NM-RSBA [2] and proposed NW-RSBA after Sim(3) alignment on 10
sequences from TUM-RSVI [21] and 2 sequences from WHU-RSVI [3] datasets.
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