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Figure 1. Novel view synthesis from a single wide-baseline stereo image pair. In a single forward pass, our method maps a wide-baseline
stereo image pair to features that enable fast rendering of novel views, trained using only posed multi-view images of static scenes without
ground-truth or proxy geometry. We outperform all prior art on novel view synthesis from sparse observations, taking a significant step
towards matching the quality of overfitting on single scenes in this challenging setting.

Abstract

We introduce a method for novel view synthesis given only
a single wide-baseline stereo image pair. In this challenging
regime, 3D scene points are regularly observed only once,
requiring prior-based reconstruction of scene geometry and
appearance. We find that existing approaches to novel view
synthesis from sparse observations fail due to recovering in-
correct 3D geometry and due to the high cost of differentiable
rendering that precludes their scaling to large-scale train-
ing. We take a step towards resolving these shortcomings
by formulating a multi-view transformer encoder, proposing
an efficient, image-space epipolar line sampling scheme to
assemble image features for a target ray, and a lightweight
cross-attention-based renderer. Our contributions enable
training of our method on a large-scale real-world dataset of
indoor and outdoor scenes. We demonstrate that our method
learns powerful multi-view geometry priors while reducing
the rendering time. We conduct extensive comparisons on
held-out test scenes across two real-world datasets, signif-
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icantly outperforming prior work on novel view synthesis
from sparse image observations and achieving multi-view-
consistent novel view synthesis.

1. Introduction

The goal of novel view synthesis is to render images of a
scene from unseen camera viewpoints given a set of image
observations. In recent years, the emergence of differentiable
rendering [26, 28, 45, 46, 51] has led to a leap in quality and
applicability of these approaches, enabling near photorealis-
tic results for most real-world 3D scenes. However, methods
that approach photorealism require hundreds or even thou-
sands of images carefully exploring every part of the scene,
where special care must be taken by the user to densely
image all 3D points in the scene from multiple angles.

In contrast, we are interested in the regime of novel view
synthesis from a sparse set of context views. Specifically,
this paper explores whether it is possible to sythesize novel
view images using an extremely sparse set of observations.
In the most challenging case, this problem reduces to using
input images such that every 3D point in the scene is only ob-
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served from a single camera perspective. Towards this goal,
we propose a system that uses only a single wide-baseline
stereo image pair of the scene as input. This stereo image
pair regularly has little overlap, such that many 3D points are
indeed only observed in one of the images, see Fig. 1. Image
observations themselves are thus insufficient information to
compute 3D geometry and appearance via multi-view stereo,
and we must instead learn prior-based 3D reconstruction.
Nevertheless, reasoning about multi-view consistency is crit-
ical, as prior-based reconstructions must agree across images
to ensure multi-view-consistent reconstruction.

This is a novel problem setting: While some existing
methods demonstrate novel view synthesis from very sparse
observations [46, 52, 59], they are limited to object-level
scenes. In contrast, we are interested in large real-world
scenes that are composed of multiple objects with complex
geometry and occlusions. Previous approaches for novel
view synthesis of scenes focus on small baseline renderings
using 3− 10 images as input [7, 8, 18, 25, 48, 54, 59]. In this
setting, most 3D points in the scene are observed in multiple
input images, and multi-view feature correspondences can
be used to regress 3D geometry and appearance. Thus, these
methods in practice learn to amortize multi-view stereo. In
our setting, we use a wide-baseline stereo image pair as in-
put, where it is not sufficient to rely on multi-view feature
correspondences due to many points only being observed in
a single view. We show that in this challenging setting, exist-
ing approaches do not faithfully recover the 3D geometry of
the scene. In addition, most existing methods rely on costly
volume rendering for novel view synthesis, where the num-
ber of samples per ray required for high-quality rendering
makes it difficult to train on complex real-world scenes.

In this paper, we propose a new method that addresses
these limitations, and provides the first solution for high-
quality novel view synthesis of a scene from a wide-baseline
stereo image pair. To better reason about the 3D scene, we
introduce a multi-view vision transformer that computes
pixel-aligned features for each input image. In contrast to a
monocular image encoder commonly used in previous ap-
proaches [52, 54, 59], the multi-view transformer uses the
camera pose information as input to better reason about the
scene geometry. We reduce the memory and computational
costs for computing image features by combining this vision
transformer at lower resolutions with a CNN at higher reso-
lutions. A multi-view feature matching step further refines
the geometry encoded in these feature maps for any 3D point
that can be observed in both images.

We also introduce an efficient differentiable renderer that
enables large-scale training. Existing approaches that use
volume rendering sample points along camera rays in 3D
and project these points onto the image planes to compute
the corresponding features using bilinear interpolation. Since
perspective projection is a non-linear operation, uniformly

sampled 3D points are not uniformly distributed in 2D, lead-
ing to some pixels in the feature maps being sampled mul-
tiple times, and other pixels not being sampled at all. Thus,
this sampling strategy does not use the information in the
pixel-aligned feature maps optimally. We instead take an
image-centric sampling approach where we first compute
the epipolar lines of a target pixel in the input images, and
sample points uniformly on these lines in 2D. This exploits
the fact that the number of pixels along the epipolar lines
is the maximum effective number of samples. In addition,
we use lightweight cross-attention layers that directly aggre-
gate the sampled features and compute the pixel color. In
contrast to volume rendering where we need to sample very
close to a surface in order to render its color, thus requiring a
large number of samples, our learned renderer does not share
this limitation and can compute the pixel color even with
sparse samples. Our lightweight rendering and feature back-
bone components enable us to train on large-scale real-world
datasets. We demonstrate through extensive experiments on
two datasets that our method achieves state-of-the-art results,
significantly outperforming existing approaches for novel
view synthesis from sparse inputs.

2. Related Work

Image-based rendering. Image-based rendering (IBR)
methods generate images from novel camera viewpoints
by blending information from a set of input images. We
provide a brief overview of some methods. Please refer to
the review by Shum and Kang [42] for details. Some IBR
approaches directly model the plenoptic function without
using information about the scene geometry [20, 31]. Other
approaches use a proxy scene geometry computed using
multi-view stereo to guide the blending of information from
the input images [3, 9, 16, 23]. While rendering without com-
puting an explicit 3D geometry leads to higher-quality re-
sults, it requires a large number of input images. In contrast,
methods that rely on 3D geometry can work with sparse
image inputs. However, multi-view stereo from a sparse set
of input views often leads to inaccurate geometry, especially
for scenes with complex geometry, limiting the quality of
rendered images. Methods have been proposed for higher-
quality geometry computation [5, 15], optical flow-based
refinement [4, 10, 11], and improved blending [14, 35, 38].
In contrast to these image-based rendering methods, we rely
on priors learned from data that enable novel-view synthesis
from just a wide-baseline stereo image. We do not create any
explicit proxy geometry of the scene and are thus unaffected
by inaccurate multi-view stereo.

Single-Scene Volumetric Approaches. Recent progress
in neural rendering [51] and neural fields [28,43,57] has led
to a drastic jump in the quality of novel-view synthesis from
several input images of a scene. Here, a 3D scene represen-
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tation is optimized via differentiable rendering to fit a set of
image observations. Early approaches leveraged voxel grids
and learned renderers [26, 32, 45]. More recent approaches
rely on neural fields [2, 27, 28, 57] to parameterize the 3D
scene and volumetric rendering [26,28,50] for image synthe-
sis. This leads to photorealistic view synthesis but requires
hundreds of input images that densely sample the 3D scene.
Hand-crafted and learned priors may reduce the number of
required images to the order of three to ten [33], but 3D
points still need to be observed from at least two perspec-
tives. A major challenge of these approaches is the cost of
accurate differentiable rendering, regularly requiring hun-
dreds of samples per ray. Recent approaches have achieved
impressive speed-ups in 3D reconstruction leveraging high-
performance data structures and sparsity [6,13,24,29]. While
promising, reconstruction can still take a few minutes per
scene, and sparse data structures such as octrees and hash
tables cannot easily be used with learned priors.

Our approach tackles a different setting than these meth-
ods, using only a single wide-baseline stereo image as input,
where 3D points are regularly only observed in a single view.
Our approach does not require any per-scene optimization
at test time. Instead, it reconstructs the scene in a single for-
ward pass. Note that while our method does not achieve the
quality of per-scene optimization methods that use hundreds
of input images, it demonstrates a significant step up in novel
view synthesis from very sparse image observations.

Prior-based 3D Reconstruction and View Synthesis. In-
stead of overfitting to a single scene, differentiable render-
ing can also be used to supervise prior-based inference
methods. Some methods generalize image-based render-
ing techniques by computing feature maps on top of a
proxy geometry [1, 19, 38, 56]. Volume rendering using
multi-plane images has been used for small baseline novel
view synthesis [47, 53, 61, 62]. Early neural fields-based ap-
proaches [34, 46] were conditioned on a single global latent
code and rendered via sphere tracing. In contrast to a global
latent code, several approaches use a feature backbone to
compute pixel-aligned features that can be transformed using
MLPs [21,52,59] or transformers layers [37,54] to a radiance
field. Ideas from multi-view stereo such as the construction
of plane-swept cost volumes [7,18,25], or multi-view feature
matching [8] have been used for higher-quality results.

Alternatively to these radiance field-based approaches,
some methods use a light field rendering formulation where
an oriented camera ray can directly be transformed to the
pixel color as a function of the features computed from
the input images [44, 49]. Scene Representation Transform-
ers [39] use transformers with global attention to compute
a set-latent representation that can be decoded to pixel col-
ors when queried with a target camera ray. However, global
attention layers on high-resolution input images are very
compute and memory intensive. Developed concurrently

with our work, Suhail et al. [48] proposed to use a trans-
former to only compute features for image patches along the
epipolar rays of the pixel being rendered. This is still very
expensive due to global attention layer computations over
multiple image patches for every rendered pixel. In addition,
this method ignores the context information of the scene,
since all computation is performed only for patches that lie
on the epipolar lines.

All existing prior-based reconstruction methods either
only support object-level scenes or very small baseline ren-
derings, or rely on multiple image observations where most
3D points are observed in multiple input images. This is
different from our setting where we only use a wide-baseline
stereo image pair of scenes as input.

3. Method
Our goal is to render novel views of a 3D scene given

a wide-baseline stereo image pair I1 and I2. We assume
known camera intrinsic Ki ∈ R3×3 and extrinsic Ei ∈
R4×3 expressed relative to context camera 1. We use a multi-
view encoder to compute pixel-aligned features, and a cross-
attention-based renderer to transform the features into novel
view renderings, see Figure 2 for an overview.

3.1. Multiview Feature Encoding

An essential part of novel view synthesis given context
images is an accurate reconstruction of scene geometry. Our
method implicitly reconstructs 3D geometry and appearance
of the scene in the form of pixel-aligned feature maps for
each stereo image. In prior work, pixel-aligned features are
obtained by separately encoding each image via a vision
transformer or CNN [21, 59]. However, in our early experi-
ments, we found this led to artifacts in renderings observing
boundary regions between context images. We hypothesize
that separate encoding of images leads to inconsistent geom-
etry reconstruction across context images. We thus introduce
our multi-view encoder, which obtains pixel-aligned features
by jointly processing the images and the relative pose be-
tween them. Encoding the pose information has also been
shown to act as an effective inductive bias for 3D tasks [58].

We now describe this architecture in detail, which extends
the dense vision transformer proposed by Ranftl et al. [36].
Please see Figure 2 for an overview. From each stereo im-
age, we first independently extract convolutional features via
a ResNet50 CNN. We then flatten both images, obtaining
2× 16× 16 features in total. To each feature, we add (1) a
learned per-pixel positional embedding encoding its pixel
coordinate and (2) a camera pose embedding, obtained via
a linear transform of the relative camera pose between con-
text images 1 and 2. These tokens are processed by a vision
transformer, which critically performs self-attention across
all tokens across both images. In-between self-attention lay-
ers, per-image features are re-assembled into a spatial grid,
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Figure 2. Method Overview. (a) Given context images from different viewpoints, a multi-view encoder extracts pixel-aligned features,
leveraging attention across the images and their corresponding camera pose embeddings. (b) Given a target ray, in each context view, we
sample primary features along the epipolar line equidistant in pixel space. We then project the corresponding 3D points onto the other views
and sample corresponding secondary epipolar line features, where out-of-bounds features are set to zero. (c) We render the target ray by
performing cross-attention over the set of all primary and secondary epipolar line features from all views.

up-sampled, and processed by a fusion CNN [36] to yield
per-image spatial feature map. Directly using these spatial
feature maps for novel view synthesis leads to blurry recon-
structions, due to the loss of high-frequency texture informa-
tion. We thus concatenate these features with high-resolution
image features obtained from a shallow CNN.

3.2. Epipolar Line Sampling and Feature Matching

We aim to render an image of the scene encoded in the two
pixel-aligned feature maps from a novel camera viewpoint.
A common way to achieve this is volume rendering, where
we cast a camera ray, compute density and color values at
many depths along the ray, and integrate them to compute
the color of the pixel. Sampling locations are determined in
3D. Coarse samples are either uniformly spaced in euclidean
space or spaced with uniform disparity, and fine samples are
distributed closer to the surface as computed by the coarse
samples [2, 28, 30]. However, in our regime of generalizable
novel view synthesis with pixel-aligned feature maps, this
sampling scheme is suboptimal. In this case, sampling along
the ray should be determined by the resolution of the con-
text images: the number of pixels along the epipolar line is
the maximum effective number of samples available for any
method. More samples would not provide any extra infor-
mation. We propose a sampling strategy to exploit this and
demonstrate its effectiveness in an ablation study.

Consider a pixel coordinate ut = (u, v) in the target
image It, with assumed known intrinsic Kt and extrinsic
Tt =

[
Rt tt
0 1

]
camera parameters relative to the context

camera I1. Its epipolar lines l{1,2}, in context cameras 1 and
2 are given as:

li = Fi [u, v, 1]
T
= K−T

i ([tt]×Rt)K
−1
t [u, v, 1]

T (1)

via the fundamental matrix Fi. We now uniformly sample
N pixel coordinates along the line segment of the epipolar
line within the image boundaries. To enable the renderer to
reason about whether to use a certain pixel-aligned feature
or not, a critical piece of information is the depth in the con-
text coordinate frame at which we are sampling this feature.
This depth value can be computed via triangulation, using
a closed-form expression. Please refer to the supplemental
document for details. We now obtain N tuples {(d, f)k}Nk=1

of depth d and image feature f per context image for a total
of 2N samples which we call primary samples.

We further propose a feature matching module to refine
the geometry encoded in the primary epipolar line samples
via correspondence matching. Consider a primary epipolar
line sample obtained from context image i, a tuple (d, f) cor-
responding to a pixel coordinate ut. We propose to augment
this sample by a corresponding feature in the other context
image. Specifically, we first solve for the corresponding 3D
point, and then project this 3D point onto the other context
image to retrieve a corresponding feature f̂ , which we refer
to as a secondary feature. The secondary features are set
to zero if the projected point is out of the image bounds.
Intuitively, primary and secondary features together allow
a final stage of geometry refinement for 3D points that are
observed in both images: if the features agree, this sample
likely encodes a surface. If the projected point on the other
image lies outside the image boundary, we simply set the sec-
ondary features to zeros. We obtain the input to the renderer
as the final set of features by concatenating each primary
epipolar line feature with its corresponding secondary fea-
ture in the other context view, yielding a set {(d, f , f̂)k)2Nk=1.
In practice, we sample N = 64 points on the epipolar lines
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for both images, leading to a total of 2N = 128 tuples.

3.3. Differentiable Rendering via Cross-Attention

To render the target ray, it remains to map the set of
epipolar line samples {(d, f , f̂)k)2Nk=1 to a color value. As
this operation has to be executed once per ray, a key con-
sideration in the design of this function is computational
cost. We propose to perform rendering via a lightweight
cross-attention decoder.

For each point on the epipolar line, we embed the target
ray origin ot, target ray direction rt, depth with respect to
the target ray origin dt, and context camera ray direction rc
for the epipolar point into a ray query token q via a shallow
MLP as Φ([ot, rt, rc, dt]). The 2N ray feature values are
independently transformed into key and value tokens using
a 2-layer MLP. Our renderer now performs two rounds of
cross-attention over this set of features to obtain a final fea-
ture embedding, which is then decoded into color via a small
MLP.

The expectation of the Softmax distribution over the
sampled features gives a rough idea of the scene depth
as e =

∑
k dkαk, where dk denotes the depth of the k-

th epipolar ray sample along the target ray and αk is the
corresponding Softmax weight as computed by the cross-
attention operator. Note that e is not the actual depth but
a measure of which epipolar samples the renderer uses to
compute the pixel color. Unlike volume rendering, where
we need to sample very close to a surface to render its color,
our light field-based renderer can reason about the surface
without exactly sampling on it. The learned cross-attention
layers can use the target camera ray information, along with
a sparse set of epipolar samples, to compute the pixel color.
Thus, our method does not require explicit computation of
accurate scene depth for rendering.

3.4. Training and Losses

We now have a rendered image from a novel camera
viewpoint. Our loss function consists of two terms:

L = Limg + λregLreg . (2)

The first term evaluates the difference between the rendered
image from a novel camera viewpoint, R and the ground
truth, G as:

Limg = ||R−G||1 + λLPIPSLLPIPS(R,G) , (3)

where LLPIPS is the LPIPS perceptual loss [60]. In practice,
we render square patches with a length of 32 pixels and
evaluate these image losses at the patch level.

We also use a regularization loss on the cross-attention
weights of the renderer for better multi-view consistency:

Lreg =
∑
(u,v)

∑
(u′v′)∈N (u,v)

((e(u, v)− e(u′, v′))2 . (4)

Here, e(u, v) denotes the expected value of the depth of
the epipolar samples at pixel (u, v), and N () defines the
neighborhood around a pixel.

For better generalization, we further perform several
geometrically-consistent data augmentations during the train-
ing procedure. We center crop and scale the input and target
images, which leads to transformation in the intrinsics of the
camera. We also flip the images which leads to transforma-
tion of the extrinsics.

4. Experiments
We quantitatively and qualitatively show that our ap-

proach can effectively render novel views from wide-
baseline stereo pairs. We describe our underlying experi-
mental setup in Section 4.1. Next, we evaluate our approach
on challenging indoor scenes with substantial occlusions in
Section 4.2. We further evaluate on outdoor scenes in Sec-
tion 4.3. We analyze and ablate the underlying components
in Section 4.4. Finally, we illustrate how our approach can
render novel views of unposed images of scenes captured in
the wild in Section 4.5.

4.1. Experimental Setup

Datasets. We train and evaluate our approach on
RealEstate10k [62], a large dataset of indoor and outdoor
scenes, and ACID [22], a large dataset of outdoor scenes.
We use 67477 scenes for training and 7289 scenes for test-
ing for RealEstate10k, and 11075 scenes for training and
1972 scenes for testing for ACID, following default splits.
We train our method on images at 256× 256 resolution and
evaluate methods on their ability to reconstruct intermediate
views in test scenes (details in the supplement).

Baselines. We compare to several existing approaches for
novel view synthesis from sparse image observations. We
compare to pixelNeRF [59] and IBRNet [54] that use pixel-
aligned features, which are decoded into 3D volumes ren-
dered using volumetric rendering. We also compare to Gen-
eralizable Patch-based Rendering (GPNR) [48], which uses
a vision transformer-based backbone to compute epipolar
features, and a light field-based renderer to compute pixel
colors. These baselines cover a wide range of design choices
used in existing methods, such as pixel-aligned feature maps
computed using CNNs [54, 59] and transformers [48], volu-
metric rendering by decoding features using MLPs [59] and
transformers [54], and light field-based rendering [48]. We
use publicly available codebases for all baselines and train
them on the same datasets we use for fair evaluations. Please
refer to the supplemental for comparisons to more baselines.

Evaluation Metrics. We use LPIPS [60], PSNR,
SSIM [55], and MSE metrics to compare the image quality
of rendered images with the ground truth.
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Input Images PixelNeRF IBRNet GPNR Ours Target

Figure 3. Comparative Rendering Results on RealEstate10k. Our approach can render novel views of indoor scenes with substantial
occlusions with high fidelity using a wide-baseline input image pair, outperforming all baselines. Note that many points of the 3D scene are
only observed in a single image in such inputs. Our method can correctly reason about the 3D structures from such sparse views.

Input Images Rendered Novel Views

Figure 4. Novel view renderings of our approach given a large
baseline stereo pair. Our approach can synthesize intermediate
views that are substantially different from input images, even with
very limited overlap between images.

4.2. Indoor Scene Neural Rendering

We first evaluate the ability of our approach and baselines
to render novel views in complex indoor environments with
substantial occlusions between objects.

Qualitative Results. In Figure 3, we provide qualitative
results of novel view renderings of our approach, compared

Method LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓
pixelNeRF [59] 0.591 0.460 13.91 0.0440
IBRNet [54] 0.532 0.484 15.99 0.0280
GPNR [48] 0.459 0.748 18.55 0.0165
Ours 0.262 0.839 21.38 0.0110

Table 1. Novel view rendering performance on RealEstate10K.
Our method outperforms all baselines on all metrics.

Method LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓
pixelNeRF [59] 0.628 0.464 16.48 0.0275
IBRNet [54] 0.385 0.513 19.24 0.0167
GPNR [48] 0.558 0.719 17.57 0.0218
Ours 0.364 0.781 23.63 0.0074

Table 2. Novel view rendering performance on ACID. Our
method outperforms all baselines on all metrics.

to each of our baselines. We provide additional novel view
results of our method in Figure 4. Compared to the baselines,
our approach reconstructs the 3D structure of the scene better,
and also captures more high-frequency details.

Quantitative Results. We quantitatively evaluate our ap-
proach and baselines in Table 1. We find that our approach
substantially outperforms each compared baseline in terms
of all of our metrics.
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PixelNeRF IBRNet GPNR Ours TargetInput Images

Figure 5. Comparative Results on ACID. Our approach is able to render novels views with higher quality than all baselines.

4.3. Outdoor Scene Neural Rendering

We further evaluate on outdoor scenes with potentially
unbounded depth.

Qualitative Results. We illustrate qualitative results in
Figure 5. In comparison to the baselines, our approach is
able to more accurately reconstruct the geometry, and is
able to synthesize multi-view consistent renderings from
two large baseline views.

Quantitative Results. Similar to indoor scenes, our ap-
proach also outperforms all baselines in terms of all metrics
on outdoor scenes, see Table 2.

4.4. Ablations and Analysis

We next analyze and ablate individual components of
our approach. We use the RealEstate10k dataset for these
experiments.

Ablations. We evaluate the importance of different com-
ponents of our method in Table 3. The “Base Model” corre-
sponds to a vanilla architecture that does not include some
of our proposed contributions. It samples points uniformly
in 3D, instead of our proposed 2D epipolar line sampling.
It uses a monocular encoder instead of our proposed multi-
view encoder, and does not use correspondence matching
across views for refining the geometry. It also does not use
the regularization loss for multi-view consistency or any data
augmentation during training. We find that all components of
our approach are essential for high-quality performance. The
results in Table 3 show that sampling in 3D sub-optimally
uses the information in the feature maps, that our multi-view
encoder and cross-image correspondence matching can com-
pute features that better encode the 3D scene structure com-
pared to monocular encoders, and that data augmentation
helps with generalization. While we found that the incorpo-
ration of the regularization loss led to a slight decrease in
PSNR, we found that it improved multi-view consistency in
the rendered video results, and also improved both LPIPS
and SSIM perceptual metrics.

Models LPIPS↓ SSIM↑ PSNR↑ MSE↓

Base Model 0.452 0.735 18.11 0.0201
+ 2D Sampling 0.428 0.762 19.02 0.0159
+ Cross Correspondence 0.415 0.766 19.52 0.0142
+ Multiview Encoder 0.361 0.794 20.43 0.0132
+ Regularization Loss 0.358 0.808 19.84 0.0139
+ Data Aug 0.262 0.839 21.38 0.0110

Table 3. Ablations. All components of our proposed method are
essential for high-quality novel view synthesis.

IBRNet

PixelNeRF

GPNR

Ours

Ours (Faster)

Figure 6. FPS vs PSNR. Our approach strikes the best trade-off
between rendering quality and rendering speed. We can further
reduce the number of Epipolar samples (“Ours (Faster)”), which
makes our method faster than all baselines, while still significantly
outperforming them in terms of rendering quality.

Speed. Next, in Figure 6, we study the relationship be-
tween rendering quality and rendering speed for all ap-
proaches. Our lightweight approach achieves the best trade-
off, significantly outperforming all methods in terms of ren-
dering quality, while being at-par with the most efficient
baseline. By reducing the number of sampled epipolar points
from 64 to 48 samples per image, we can further speed up
our approach, outperforming all baselines both in terms of
rendering speed and image quality.

Epipolar Attention. Finally, we visualize the underlying
epipolar attention weights learned by our approach in Fig-
ure 7. The expected value of the depths of the epipolar sam-
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Figure 7. Visualization of Epipolar Attention Weights. The ex-
pected value of the depths of the epipolar samples under the at-
tention weights can be seen as a depth proxy. As our renderer is
not a volume renderer, these attention weights need not exactly
correspond to the actual depth for correct renderings.

ples can be seen as a proxy depth and corresponds roughly
to the underlying geometry of the scene. This enables us to
analyze the learned computation of our renderer.

4.5. Novel View Synthesis from Unposed Images

Our method uses a wide-baseline stereo image as input
with known relative pose between them. We show that our
method can perform novel view synthesis even without the
knowledge of this relative pose information. In this case,
we utilize SuperGlue [40] to compute reliable pixel cor-
respondences between the input images. Since we do not
know the camera intrinsics for in-the-wild images, we use
the average intrinsics of the RealEstate10k dataset and com-
pute the Essential matrix from the correspondences using
RANSAC [12]. We then compute the pose information from
the essential matrix [17] and use it as input for our method.
Note that the recovered translation is only defined up to a
scale. Figure 8 demonstrates results on some in-the-wild
scenes using images from the internet. Even in this unposed
setting, our method can reason about the geometry of the
scene by aggregating information across the sparse input
views. This is an extremely challenging setting, and existing
approaches for novel view synthesis from sparse views do
not demonstrate any results on unposed images.

5. Discussion
While we have presented the first approach for novel

view synthesis of scenes from very sparse input views, our
approach still has several limitations. Our rendering results
are not at the same quality as those obtained by methods
that optimize on single scenes using more images. Learning
priors that enable novel view synthesis from sparse views is a
significantly more challenging problem compared to using a
large number of input images, where 3D points are regularly
observed in many images. Our approach takes a step towards

Input Images Rendered Novel Views

Figure 8. Novel View Synthesis from Unposed Images. Our ap-
proach can also render novel views using two unposed images
captured in the wild. Note that parts of the scene only visible in one
of the images can be correctly rendered from novel viewpoints.

photorealistic renderings of scenes using only sparse views.
As our approach relies on learned priors, it does not gen-
eralize well to new scenes with very different appearances
compared to the training scenes. However, our efficient ap-
proach lends itself to large-scale training on diverse datasets,
in turn enabling reconstruction of diverse scenes. Finally,
while our method, in theory, can be extended to take more
than two input views, we have only experimented with two
views as a first step towards very sparse multi-view neural
rendering.

6. Conclusion

We introduce a method for implicit 3D reconstruction
and novel view synthesis from a single, wide-baseline stereo
pair, trained using only self-supervision from posed color
images. By leveraging a multi-view encoder, an image-space
epipolar line feature sampling scheme, and a cross-attention
based renderer, our method surpasses the quality of prior
art on datasets of challenging scenes. Our method further
strikes a compelling trade-off between rendering speed and
quality, rendering novel views significantly faster than most
prior methods. Meanwhile, leveraging epipolar line geometry
strikes a compelling trade-off between structured and gen-
eralist learning paradigms, enabling us to train our method
on real-world datasets such as RealEstate10k. We believe
that this work will inspire the community towards further
exploring the regime of extreme few-shot and generalizable
novel view synthesis.
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In this supplemental document, we provide experimental
details of our method (Section A), additional comparisons
with other baselines (Section B), additional analysis of our
approach (Section C), and derivation of epipolar correspon-
dences in (Section D). Please refer to the project webpage
for video results.

A. Experimental Details

We provide detailed experimental details necessary to
reproduce the results listed in our paper.

Dataset Details. We use the download script
from https : / / github . com / cashiwamochi /
RealEstate10K_Downloader to download videos
in RealEstate and ACID datasets at 640 × 480 image
resolution. Our datasets are smaller than the original ACID
and RealEstate datasets because some of the listed YouTube
URLs were not available anymore.

Training Details. We use a batch size of 48 and train our
models using the Adam optimizer with a learning rate of 5e-5.
We train on 4 Nvidia V100 GPUs for around 100k iterations,
which takes a total of 3 days. We do not use LPIPS and
regularization losses for the first 30k iterations. Both LPIPS
and the regularization losses are computed across 32x32
patches of rendered images. Input frames are sampled so
that are between 92 and 150 frames apart with intermediate
frames rendered.

Model Architecture. We utilize the VIT architecture from
Ranftl et al. [36] as our multi-view backbone. We use the
output feature maps of the last 2 RefineNet branches of the
architecture as our features. The high-resolution feature map
is obtained by applying a single convolutional layer with a
kernel size of 3x3 with 64 channel dimensions. We embed
query tokens using a 2 layer MLP with hidden dimension
of 128. We likewise obtain key vectors for cross-attention
using a 2 layer MLP on input features. Attention values are
computed using the dot product of key and query vectors,
with dot product between vectors scaled by 1/16 for numer-
ical stability. For the second round of cross-attention, the
output feature from the previous round of cross-attention
is concatenated to each query token. The MLP architecture
used to decode RGB colors from pooled features is 3 layers
in size with a hidden dimension of size 128.

Evaluation Details We use test scenes for evaluation in
both RealEstate10k and ACID datasets. We use two frames
128 timesteps apart as the input to the methods and recon-
struct an intermediate frame using the GT pose from the
datasets.
† Equal Advising

Neural Rendering of Unposed Images. As mentioned in
the main paper, we use SuperGlue [41] to estimate corre-
spondences between two unposed images, and then estimate
the relative pose between them by computing the essential
matrix. We use the average RealEstate10k intrinsic param-
eters. The recovered translation is only defined up to scale.
We perform a grid search to find the best-performing scale
offset. We set the intrinsic matrix of unposed images to be
the average focal length of scenes in RealEstate10k (225).

Input Images RegNeRF Renderings

Input Images Our Renderings

Figure 9. Visualization of RegNeRF Renderings. Comparison of
RegNeRF renderings (top) with renderings of our method (bottom).

Method LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓
RegNeRF (Single Scene) [33] 0.669 0.491 11.59 0.0741
Ours (Single Scene) 0.209 0.657 20.12 0.0102

pixelNeRF [59] 0.591 0.460 13.91 0.0440
StereoNeRF [8] 0.604 0.486 15.40 0.0318
GeoNeRF [18] 0.541 0.511 16.65 0.0209
IBRNet [54] 0.532 0.484 15.99 0.0280
GPNR [48] 0.459 0.748 18.55 0.0165
Ours 0.262 0.839 21.38 0.0110

Table 4. Extended table of Novel view rendering performance
on RealEstate10K. Our method outperforms all baselines on all
metrics. RegNeRF results are reported for one evaluation scene (as
the method requires a separate model to be fit per scene).

B. Additional Baseline Comparisons
We further compare with RegNeRF [33] , StereoNeRF [8],

GeoNeRF [18]. Quantitative comparisons with all baselines
can be found in Table 4. We significantly outperform these
baselines. Since RegNeRF is scene-specific, we perform this
evaluation on one test scene of the RealEstate10k dataset.
RegNeRF takes several hours to compute the 3D reconstruc-
tion for a single scene, unlike our approach, where only a
single forward pass is used. Qualitative comparisons can be
found in Figure 9. Our method can better reconstruct the 3D
scene structure as it learns a prior over scenes.

C. Additional Analysis Results
We provide further analysis of our approach below.
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Input Images Novel View Input Images Novel View

Figure 10. Rendering with Different Context Views. Visualization of rendering results when rendering with multiple context views.

3D Samples 64 128 192 Epi. Samples

PSNR ↑ 19.29 20.35 20.60 21.38
SSIM ↑ 0.769 0.778 0.790 0.839
LPIPS ↓ 0.319 0.284 0.273 0.262

Table 5. Rendering Results with Volumetric Samples. Perfor-
mance of rendering as a function of the number of volumetric
samples used. A large number of volumetric samples still does not
match epipolar samples.

Views 1 2 3

PSNR ↑ 18.48 21.38 22.29
SSIM ↑ 0.700 0.839 0.848
LPIPS ↓ 0.357 0.262 0.251

Table 6. Rendering Results with Different Context Views. Per-
formance of rendering as a function of number of context views
used.

Performance with Epipolar Samples. In Table 5, we il-
lustrate the effects of using uniform samples on the epipolar
lines compared to a large number of volumetric samples. A
very large number of volumetric samples still does not match
the underlying performance of epipolar samples.

Multiview Encoder Ablations. We qualitatively illustrate
the ablation of adding a multiview compared to a single
image encoder in Figure 11.

Results on Varying Context Views We illustrate how we
can render our approach with a different number of views
in Table 6. We qualitatively illustrate rendering results with
a different number of context views in Figure 10. Our ren-
derer improves performance with a larger number of context
views.

Results on Varying Baseline Size. In Table 7, we illus-
trate rendering performance as we change the underlying
baseline from which our approach is rendered. We find that
as we decrease the baseline (distance) between frames, the
underlying rendering performance improves.

Baseline 32 64 96 128

PSNR ↑ 26.24 22.50 21.93 21.38
SSIM ↑ 0.915 0.852 0.845 0.839
LPIPS ↓ 0.149 0.223 0.246 0.262

Table 7. Rendering Results with Baseline Changes. Performance
of rendering as a function of change of baseline. Smaller baselines
induce higher quality renderings.

Input Images w/o Multiview Multiview

Figure 11. Ablation of Multiview Encoder. Qualitative visualiza-
tion of rendering results when removing or adding a multiview
encoder.

D. Triangulation
Here, we provide details on computing 3D points using

triangulation. For a pixel coordinate in the context image
(u′, v′), we may solve for its corresponding 3D point via:

l∗ = argmin
l

∥πt(oi + l ·R−1
i K−1

i [u′, v′, 1])− ut∥22,

(5)

where oi is the camera origin of the respective context im-
age, πt(·) denotes projection onto the target camera, and
ut is the pixel coordinate of the target ray we aim to
render. The 3D point p∗ can then be obtained as p∗ =
oi+ l∗ ·R−1

i K−1
i [u′, v′, 1], and its depth in the context cam-

era can be obtained as the z-coordinate of the point in the
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context camera’s coordinates. Let ri denotes the normalized
ray direction R−1

i K−1
i [u′, v′, 1]. The closed form solution

can be represented as:

l∗ =
u · oi[z]− cxoi[z]− fxoi[x]

fxri[x] + cxri[x]− uri[z]

=
v · oi[z]− cyoi[z]− fyoi[y]

fyri[y] + cyri[y]− uri[z]
,

where K =

[
fx 0 cx
0 fy cy
0 0 1

]
.
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