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Abstract

3D semantic scene graphs are a powerful holistic rep-
resentation as they describe the individual objects and de-
pict the relation between them. They are compact high-level
graphs that enable many tasks requiring scene reasoning.
In real-world settings, existing 3D estimation methods pro-
duce robust predictions that mostly rely on dense inputs.
In this work, we propose a real-time framework that incre-
mentally builds a consistent 3D semantic scene graph of
a scene given an RGB image sequence. Our method con-
sists of a novel incremental entity estimation pipeline and
a scene graph prediction network. The proposed pipeline
simultaneously reconstructs a sparse point map and fuses
entity estimation from the input images. The proposed net-
work estimates 3D semantic scene graphs with iterative
message passing using multi-view and geometric features
extracted from the scene entities. Extensive experiments
on the 3RScan dataset show the effectiveness of the pro-
posed method in this challenging task, outperforming state-
of-the-art approaches. Our implementation is available at
https://shunchengwu.github.io/MonoSSG.

1. Introduction
Scene understanding is a cornerstone in many computer

vision applications requiring perception, interaction, and
manipulation, such as robotics, AR/VR and autonomous
systems [17, 54–56]. Semantic Scene Graphs (SSGs) go
beyond recognizing individual entities (objects and stuff)
by reasoning about the relationships among them [61, 66].
They also proved to be a valuable representation for com-
plex scene understanding tasks, such as image caption-
ing [26, 67], generation [13, 24], scene manipulation [10,
11], task planning [27], and surgical procedure estima-
tion [42, 43]. Given the benefits of such representations,
scene graph estimation received increasing attention in the
computer vision community.

While earlier methods mainly estimate SSGs from im-
ages [18, 19, 33, 66, 72], recent approaches have also in-
vestigated estimating them from 3D data. Compared to
2D scene graphs, which describe a single image, 3D scene
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Figure 1. We propose a real-time 3D semantic scene graph estima-
tion method that relies on an abstract understanding of a scene ge-
ometry built with RGB input. Our method estimates scene graphs
incrementally by continuously estimating scene graphs and fusing
local predictions into a global 3D scene graph.

graphs depict the entire 3D scenes, enabling applications
requiring a holistic understanding of the whole scene, such
as path planning [47], camera localization, and loop clo-
sure detection [23]. However, existing 3D methods either
require dense 3D geometry of the scenes to estimate 3D
scene graphs [1, 23, 61, 64], which limits the use case since
dense geometry is not always available, or constraints the
scene graph estimation at the image-level [15,27,66], which
tend to fail inferring relationships among objects beyond the
individual viewpoints. A method that estimates 3D scene
graphs relies on sparse scene geometry and reasoning about
relationships globally has not been explored yet.

In this work, we propose a real-time framework that in-
crementally estimates a global 3D SSG of a scene simply
requiring an RGB sequence as input. The process is illus-
trated in Fig. 1. Our method simultaneously reconstructs
a segmented point cloud while estimating the SSGs of the
current map. The estimations are bound to the point map,
which allows us to fuse them into a consistent global scene
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graph. The segmented map is constructed by fusing en-
tity estimation from images to the points estimated from
a sparse Simultaneous Localization and Mapping (SLAM)
method [3]. Our network takes the entities and other proper-
ties extracted from the segmented map to estimate 3D scene
graphs. Fusing entities across frames is non-trivial. Exist-
ing methods often rely on dense inputs [38,58] and struggle
with sparse inputs since the points are not uniformly dis-
tributed. Estimating scene graphs with sparse input points
is also challenging. Sparse and ambiguous geometry ren-
ders the node representations unreliable. On the other hand,
directly estimating scene graphs from 2D images ignores
the relationship beyond visible viewpoints. We aim to over-
come the aforementioned issues by proposing two novel
approaches. First, we propose a confidence-based fusion
scheme which is robust to variations in the point distribu-
tion. Second, we present a scene graph prediction network
that mainly relies on multi-view images as the node feature
representation. Our approach overcomes the need for exact
3D geometry and is able to estimate relationships without
view constraints. In addition, our network is flexible and
generalizable as it works not only with sparse inputs but
also with dense geometry.

We comprehensively evaluate our method on the 3D SSG
estimation task from the public 3RScan dataset [60]. We ex-
periment and compare with three input types, as well as 2D
and 3D approaches. Moreover, we provide a detailed abla-
tion study on the proposed network. The results show that
our method outperforms all existing approaches by a signif-
icant margin. The main contributions of this work can be
summarized as follows: (1) We propose the first incremen-
tal 3D scene graph prediction method using only RGB im-
ages. (2) We introduce an entity label association method
that works on sparse point maps. (3) We propose a novel
network architecture that generalizes with different input
types and outperforms all existing methods.

2. Related Work

2.1. 3D Object Localization from Images

Localizing 3D objects from images aims to predict the
position and orientation of objects. Existing methods can
be broadly divided into two categories: without and with
explicit geometrical reasoning.

In the former category, many works focus on estimating
3D bounding boxes by extending 2D detectors with learned
priors [28, 37, 41, 70]. When sequential input is available,
single view estimations can be fused to estimate a consis-
tent object map [2, 22, 29, 30]. However, the fused results
may not fulfill the multi-view geometric constraints. Multi-
view approaches estimate oriented 3D bounding boxes from
the given 2D detection of views. They mainly focus on min-
imizing the discrepancies between the projected 3D repre-

sentation and the detected 2D bounding boxes.
In the latter category, 3D objects are localized with

the help of explicit geometric information. Many exist-
ing methods treat object detection as spatial landmarks in
a map [21, 35, 40, 53, 65, 69], also known as object-level
SLAM. Others focus on fusing dense per-pixel predictions
to a reconstructed map [6,16,36,38,44,71], which is known
as semantic mapping or semantic SLAM.

A major difference between object-level and seman-
tic SLAM is that the former focuses only on foreground
objects, while the latter also considers the structural and
background information. Specifically, SemanticFusion [36]
fuses dense semantic segments from images to a consistent
dense 3D map with Bayesian updates. Its map representa-
tion provides a dense semantic understanding of a scene ig-
noring individual instances. PanopticFusion [38] proposes
to combine the instance and semantic segmentation from
images to a panoptic map. Their approach considers fore-
ground object instances and non-instance semantic informa-
tion from the background. SceneGraphFusion [64] relies on
3D geometric segmentation [59] and scene graph reasoning
to achieve instance understanding of all entities in a scene.

One significant difficulty in instance estimation for se-
mantic SLAM is associating the instances across frames.
Existing approaches mainly rely on a dense map to associate
predictions by calculating the intersection-over-union (IoU)
or the overlapping ratio between the input and the rendered
image from the map. However, these methods produce sub-
optimal results when the map representation is sparse due
to the non-uniform distribution of the map points. We over-
come this problem by proposing a confidence-based associ-
ation.

2.2. 3D Semantic Scene Graph

Estimating 3D scene graphs methods can be divided ac-
cording to various criteria. From the perspective of the
scene graph structure, some methods focus on hierarchical
scene graphs [1, 23, 48, 50]. These approaches mainly ad-
dress the problem of relationship estimation between enti-
ties from different hierarchical levels, e.g. object, and room
level. The other methods focuses on pairwise relationships,
e.g. support and comparative relationships, between nodes
within a scene [27, 61, 64, 66]. From the perspective of in-
put data, some previous methods rely on RGB input [15,27]
by fusing 2D scene graph predictions to a consistent 3D
map. On the other hands, other methods rely on 3D in-
put [1, 23, 48, 50, 61, 64] by using known 3D geometries.
Nevertheless, most of the existing methods estimate scene
graphs offline [1, 15, 48, 49], while a few works [23, 27, 64]
predict scene graph in real-time.

Among all existing work, the pioneering work in 3D
scene graph estimation is proposed by [15]. The authors ex-
tend the 2D scene graph estimation method from [66] with
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temporal consistency across frames and use geometric fea-
tures from ellipsoids. Kim et al. [27] propose an incremen-
tal framework to estimate 3D scene graphs from 2D estima-
tions. Armeni et al. [1] are the first work to estimate 3D
scene graphs through the hierarchical understanding of the
scene. Rosinol et al. [48] build on top of [1] to capture mov-
ing agents. This work is subsequently extended to a SLAM
system [50]. Wald et al. [61] propose the first 3D scene
graph method based on the relationship between objects at
the same level, along with 3RScan: a richly annotated 3D
scene graph dataset. Wu et al. [64] extend [61] to real-
time scene graph estimation with a novel feature aggrega-
tion mechanism. Hughes et al. [23] propose to reconstruct
a 3D hierarchical scene graph in real-time incrementally.
Our method incrementally estimates a flat scene graph with
multi-view RGB input and a sparse 3D geometry, which dif-
ferentiates our work from the previous methods relying on
3D input [61,64], and approaches without geometric under-
standing [15, 27].

3. Method

The proposed framework is illustrated in Fig. 2, which
shows how, given a sequence of RGB images, it can es-
timate a 3D semantic scene graph incrementally. The In-
cremental Entity Estimation (IEE) front end makes use of
the images to generate segmented sparse points. Those are
merged into 3D entities and used to generate both an entity
visibility graph and a neighbour graph. The Semantic Scene
Graph Prediction (SSGP) network uses the entities and both
graphs to estimate multiple scene graphs and then fuse them
into a consistent 3D SSG.

We define a SSG as Gs = (V, E), where V and E de-
note a set of entity nodes and directed edges. Each node
vi ∈ V is assigned an entity label li ∈ L, a set of points Pi,
an Oriented Bounding Box (OBB) bi and a node category
cnode
i ∈ Cnode. Each edge ei→j ∈ E , connecting node vi to
vj where i 6= j, consists of an edge category cedge

i→j ∈ Cedge.

L, Cnode, and Cedge denote all entity labels, a node category
set, and an edge category set, respectively. An OBB bi is a
gravity-aligned 3D bounding box consisting of a boundary
dimension bi ∈ R3, a center oi ∈ R3, and an angle that
encodes the rotation along the gravity axis. The OBBs are
used to build both graphs and features. The entity visibility
graph models the visibility relationship of the entities as a
bipartite graph Gc = (V,K, Ec) where K, Ec denote a set
of keyframes and visibility edges, respectively. Gc gives the
knowledge of the visibility of entity nodes in keyframes,
which is used in computing multi-view visual features in
SSGP. The neighbour graph encodes the proximity relation-
ship of the entities as an undirected graph Gp = (V, Ep),
where Ep is the set of proximity edges. The neighbour graph
also serves as the initial graph for the message propagation
step in SSGP.

3.1. Incremental Entity Estimation

During the first step of the IEE front end pipeline, a set of
labeled 3D points are estimated from the sequence of RGB
images (Sec. 3.1.1). The entity labels are determined us-
ing an entity segmentation method on selected keyframes
(Sec. 3.1.2). Then, they are associated and fused into a
sparse point map (Sec. 3.1.3). Finally, the entities and
their properties are extracted using the labeled 3D points
(Sec. 3.1.4).

3.1.1 Sparse Point Mapping

We use ORB-SLAM3 [3] to simultaneously estimate the
camera poses and build a sparse point map by matching es-
timated keypoints from sequential RGB frames. To guaran-
tee real-time performance, an independent thread is used to
run the local mapping process using the stored keyframes.
The same thread additionally takes care of running the en-
tity detector and performing the label mapping process. For
each point pm ∈ P in the map, we store its 3D coordinates,
an entity label lm, and its confidence score wm ∈ R≥0.
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3.1.2 2D Entity Detection

We estimate an entity label mask M̃t(u) ∈ L̃t and a confi-
dence mask W̃t(u) ∈ [0, 1] ⊂ R with every given keyframe
kt ∈ K, where u ∈ R2 denotes the image coordinates and
L̃t all entity labels in kt. Both masks are estimated using
a class-agnostic segmentation network which further im-
proves other instance segmentation methods [4, 7, 31] by
enabling the discovery of unseen entities [14, 25, 46]. Al-
though segmentation networks provide accurate masks, the
estimations are independent across frames. Thus, a label
association stage is required to build a consistent label map.

3.1.3 Label Association and Fusion

Inspired by [35, 38, 51, 58], we use the reference map ap-
proach to handle the label inconsistency. It relies on a map
reconstruction to solve label consistency by comparing in-
put label mask to rendered mask. Then fuse the associated
mask to the global point map.
Label Association. We start by building a reference entity
mask Mt(u) ∈ L by projecting point entity labels from the
sparse point map using the pose of kt. The consistency-
resolved entity mask M̂ ′t(u) is estimated by evaluating the
corresponding labels on the image mask M̃t(u) and the
reference mask Mt(u). This evaluation can be performed
by different methods such as using intersection over union
statistics [38] or the maximum overlapping ratio between la-
bel masks [58]. However, both methods assume that points
are uniformly distributed; a premise that fails in most sparse
point reconstruction tasks. In such cases, these methods be-
come unstable, as shown in the example provided in the
supplementary material. To overcome this problem, we pro-
pose to use the maximum mean confidence as the criteria to
find the best candidate. First, a confidence mask Wt(u) is
built by projecting the point label confidence using the pose
of kt, then the mean confidence score of a label l̃ ∈ M̃t(u)
and a reference label l ∈Mt(u) is computed by

M̄(l̃, l) =

∑
u′∈Π(l̃,l)Wt(u

′)

#
(
Π(l̃, l)

) , (1)

where Π(l̃, l) gives a set of image coordinates u′ ∈ R2

where l̃ and l overlap: {u′ | (M̃t(u
′) = l̃)∧ (Mt(u

′) = l)},
and # (·) is the cardinality operator. Then, the mask M̂ ′t(u)
is generated by replacing the per-pixel entity label l̃ ∈
M̃t(u) with either a reference label l or a new label lnew /∈ L
depending on:

l̃ =

{
arg maxl M̄(l̃, l) if maxl

#(Π(l̃,l))
#(Mt(u)=l)

> τ

lnew otherwise
, (2)

where we filter out a match if the number of overlapped
pixel has a low coverage over the total number of label l on

the reference mask with a threshold τ . In addition, similar
to [38], a reference entity label is assigned to only one input
entity label. If a reference label has been assigned, we use
descending order to search for the next best candidate.
Label Fusion. After the association process, the associated
entity labels M̂ ′t(u) are fused to the sparse point map P.
Since each label on M̂ ′t(u) sources from a map point, the
label and confidence value of a point are updated by

wψ(u) =

{
wψ(u) + W̃t (u) if Mt (u) = M̂ ′t (u)

wψ(u) − W̃t (u) otherwise
, (3)

where ψ(u) is the corresponding point index that is pro-
jected on the pixel location u on both Mt(u) and Wt(u). In
particular, when wψ(u) < 0, we set the entity label lψ(u) to
M̂ ′t(u), and the weight wψ(u) to W̃t(u).

3.1.4 Extraction

We use the points belonging to each entity label to com-
pute the 3D OBB bi of an entity vi ∈ V . We perform sta-
tistical outlier removal (from PCL [52]) to filter out points
that could lead to distorted boxes. For the computation, we
make use of the minimum volume estimation method [5]
assuming gravity alignment.

The entity visibility graph Gc = (V,K, Ec) consists of all
nodes V and keyframes K connected by visibility edges Ec.
A visibility edge eij ∈ Ec exists if entity vi ∈ V is visible in
keyframe kj ∈ K. Specifically, the visibility is determined
by checking if any point in node vi is visible at kj .

The neighbour graph Gp = (V, Ep) consists of nodes V
and its proximity edges Ep. A proximity edge ei→j ∈ Ep |
vi, vj ∈ V, i 6= j exists if nodes vi, vj are close in space,
which is determined using a bounding box collision detec-
tion method. Since the size of the OBBs is not precise, we
extend their dimensions by a margin τC to include addi-
tional potential neighbours.

3.2. Semantic Scene Graph Prediction

For every of the scene extractions obtained by the IEE
front end, SSGP estimates 3D semantic scene graphs using
message passing to jointly update initial feature represen-
tations and relationships [15, 61, 64, 66]. In the last step,
the network fuses all of them into a consistent global 3D
SSG. The initial node features are computed with multi-
view image features (Sec. 3.2.1), while the initial edge
feature is computed with the relative geometric properties
of its connected two nodes (Sec. 3.2.2). Both initial fea-
tures are jointly updated with a GNN along the connectiv-
ity given by the neighbour graph (Sec. 3.2.3). The updated
node and edge are used to estimate their class distribution
(Sec. 3.2.4). We apply a temporal scene graph fusion pro-
cedure to combine the predictions into a global 3D SSG
(Sec. 3.2.5).
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Our network architecture combines the benefits of 2D
and 3D scene graph estimation methods by using 2D image
features and 3D edge embedding. Image features are gen-
erally a better scene representation than 3D features, while
using edge embedding in 3D allows performing relationship
estimation without the constraint of the field of view. The
effects of 2D and 3D features are compared in Sec. 4.2.

3.2.1 Node Feature

For each node vi ∈ V , we compute a multi-view image
feature vi and a geometric feature gi. We use the former as
the initial node feature fvi = vi and include the latter with a
learnable gate in the message passing step (Sec. 3.2.3).

The multi-view image feature is computed by aggregat-
ing multiple observations of vi on images given by the en-
tity visibility graph. For each view, an image feature is ex-
tracted with an image encoding network given the Region-
of-Interest (ROI) of the node. The image features are aggre-
gated using a mean operation to the multi-view image fea-
ture vi. Although there are sophisticated methods to com-
press multi-view image features, such as using gated aver-
aging [15] and learning a canonical representation [63], we
empirically found that averaging all the input features [57]
yields the best result (see supplementary material). The
mean operation also allows incrementally computing the
multi-view image feature with a simple moving average.
The geometric feature gi is computed from the point set
Pi using a simple point encoder [45].

3.2.2 Edge Feature

For each edge ei→j ∈ Ep, an edge feature fei→j is computed
using the node properties from its connected two nodes vi
and vj by

fei→j = gs ([oj − oi,bj − bi, Ri→j ]) , (4)

where gs (·) is a Multilayer Perceptron (MLP), [·] denotes a
concatenation function, andRi→j is a relative pose descrip-
tor which encodes the relative angle between two entities.

The relative pose descriptor is designed to implicitly en-
code relative angles between two nodes. Using an explicit
one is not optimal since OBB estimations do not return
the exact pose of an object, which makes explicit pose de-
scriptor not applicable. We instead use the relative geome-
try properties on a reference frame constructed by the two
nodes to implicitly encode the relative pose, as illustrated in
Fig. 3. First, we construct a reference frame with the ori-
gin the midpoint of the center of two nodes, the x-axis to
oj , the y-axis to the inverse of the gravity direction, and the
z-axis the cross product of the x-axis and y-axis. Second,
we take maximum and minimum values on each axis of the

y-axis

z-axis

x-axis

Figure 3. An illustration of our relative pose descriptor. The de-
scriptor describe the relative maximum and minimum value of
given two bounding boxes on a reference frame.

reference frame to compute the relative pose descriptor as

Ri→j = log
(∣∣[pmax

i � pmax
j ,pmin

i � pmin
j

]∣∣) , (5)

where � is the Hadamard division, pmax
� ,pmin

� ∈ R3 are the
maximum and minimum points on the reference frame for
� ∈ (i, j). We use an absolute logarithm ratio to improve
the numerical stability.

3.2.3 Message Passing

Given an initial node feature fvi and an edge feature fei→j ,
we aggregate the messages from the neighbors for both
nodes and edges to enlarge the receptive field and leverage
the spatial understanding composition of the environment.
We follow [66] by aggregating the messages with a respec-
tive GRU unit shared for all nodes and edges. Following,
we explain the process taking place in each of the message-
passing layers.

First, we incorporate the geometric feature to each node
feature using a learnable gate:

f̂vi = fvi + σ
(
wT [fvi ,gi]

)
σ(gi), (6)

where f̂vi is the enhanced node feature, σ denotes a sigmoid
function, and wT are learnable parameters. The geometric
feature may be unreliable, especially when the input geom-
etry is ambiguous or unstable. Thus, we use the learnable
gate to learn if the feature should be included. A node mes-
sage mi and an edge message mi→j are computed by

mi = gv

([
f̂vi , max

j∈N (i)

(
FAN

(
f̂vi , f

e
i→j , f̂

v
j

))])
, (7)

mi→j = ge

(
[f̂vi , f

e
i→j , f̂

v
j ]
)
, (8)

where gv (·) and ge (·) are MLPs, N (i) is the set of in-
dices representing the neighbouring nodes of i, FAN is
the feature-wise attention network [64] which weights all
neighbour node feature f̂vj using input query f̂vi , and key
fei→j given j ∈ N (i).
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3.2.4 Class Prediction and Loss Functions

We use the softmax function to estimate the class distribu-
tion on both nodes and edges. For multiple predicate esti-
mations, we use the sigmoid function (with a threshold of
0.5) to estimate whether a predicate exists. The network is
trained with a cross-entropy loss for classifying both enti-
ties and edges. The loss for the edge class is replaced with
binary cross entropy for multiple predicates estimation [61].

3.2.5 Fusion

Multiple predictions on the same nodes and edges are fused
to ensure temporal consistency. We use the running average
approach [8] to fuse predictions [64]. For each entity and
edge, we store the full estimated probability estimation µt

and a weight ρt ∈ R≥0 at time t. Given a new prediction,
we update the previously stored µt−1 and ρt−1 as

µt =
µt · ρt + µt−1 · ρt−1

ρt + ρt−1
, (9)

ρt = min
(
ρmax, ρ

t + ρt−1
)
, (10)

where ρmax is the maximum weight value.

4. Evaluation
We evaluate our method on the task of 3D semantic scene

graph estimation (Sec. 4.2) and incremental label associa-
tion (Sec. 4.3). In addition, we provide ablation studies on
the proposed network (Sec. 4.4), and a runtime analysis of
our pipeline (Sec. 4.5).

4.1. Implementation Details

In all experiments, we use the default ORB-SLAM3 [3]
setup provided by the authors1 for our IEE front end. For
the 2D entity detection, we use EntitySeg [46] with a
ResNet50 [20] backbone pretrained on COCO [32] and
fine-tuned on the 3RScan [60] training split. For multi-
view feature extraction, we use a ResNet18 [20] pretrained
on ImageNet [9] without fine-tuning. The point encoder
is the vanilla PointNet without learned feature transforma-
tion [45]. Regarding hyperparameters, we set τ to 0.2, τC to
0.5 meters, ρmax to 100, and the number of message passing
layers to 2.

We use the ground truth pose to guide the scene recon-
struction because (i) our focus lands on entity detection
and scene graph estimation, and (ii) the provided image se-
quence from 3RScan [60] has a low frame rate (10 Hz),
severe image blur, and jittery motion.

4.2. 3D Semantic Scene Graph estimation

For the input types, we compare all methods with the in-
put of ground truth segmentation [61] (GT), geometric seg-

1https://github.com/UZ-SLAMLab/ORB_SLAM3.git

Method Recall(%) mRecall(%)
Rel. Obj. Pred. Obj. Pred.

G
T

IMP [66] 49.8 70.1 94.3 53.0 38.1
VGfM [15] 49.3 69.4 94.8 57.5 44.6
3DSSG [61] 34.6 58.0 95.2 46.8 58.7
SGFN [64] 41.8 63.8 94.3 57.7 65.5
Ours 66.1 81.2 95.6 77.4 71.5

D
en

se

IMP [66] 25.8 51.8 90.4 30.0 23.0
VGfM [15] 28.3 53.3 90.7 31.6 24.4
3DSSG [61] 17.5 41.4 88.2 31.9 26.6
SGFN [64] 31.4 56.7 89.6 38.3 30.5
Ours 34.1 58.1 89.9 43.0 33.3

Sp
ar

se

IMP [66] 7.9 27.5 90.7 20.6 14.0
VGfM [15] 8.2 26.9 90.8 17.6 15.4
3DSSG [61] 0.9 9.7 87.9 5.9 15.1
SGFN [64] 1.7 12.6 88.9 8.3 14.4
Ours 9.9 29.5 90.4 23.5 16.5
Ours (i) 10.7 30.2 90.4 24.5 15.9

Table 1. We compare our method with four baseline methods on
the task of scene graph prediction on 3RScan [60] dataset with 20
objects and 8 predicate classes. The results from Ours are obtained
by using our network to obtain predictions, while Ours (i) contains
the results from using the incremental pipeline.

Method Recall(%) mRecall(%)
Rel. Obj. Pred. Obj. Pred.

IMP [66] 44.5 35.9 9.0 18.7 4.9
VGfM [15] 44.5 37.9 14.7 17.9 6.5
3DSSG [61] 46.8 29.6 68.8 11.7 25.5
SGFN [64] 45.2 29.4 42.8 11.8 13.5
Ours 52.7 56.7 50.4 27.2 23.9

Table 2. Evaluation on scene graph prediction with 160 object
and 26 predicate classes using ground truth segmentation and fully
connected neighbor graph.

mentation [59] (Dense) and sparse segmentation (Sparse).
For the baseline methods, we compare ours with two 2D
methods (IMP [66], and VGfM [15]), and two 3D methods
(3DSSG [61] and SGFN [64]).
Baseline Methods. We will briefly discuss baseline
methods here. Check supplementary for further details.
IMP [66] computes a node feature using the image feature
cropped from the ROI of the node in an image and com-
putes an edge feature using the union of two ROIs from
its connected nodes. Both features are jointly updated with
prime-dual message passing and learnable message pool-
ing. VGfM [15] extends IMP by adding geometric features
and temporal message passing to handle sequential estima-
tion. 3DSSG [61] extends the ROI concept in IMP [66] in
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Figure 4. Qualitative evaluation of our scene graph prediction
framework. Each 3D bounding box represents a detected entity
on the left, and the color is the predicted label. On the right side,
we visualize the estimated scene graph on this scene. We only
select representative entities on the scene graph visualization for
visualization purposes.

3D by replacing ROIs to 3D bounding boxes. The node and
edge features are computed with PointNet [45]. Both fea-
tures are jointly updated with a graph neural network with
average message pooling. SGFN [64] improves 3DSSG by
replacing the initial edge descriptor with the relative geom-
etry properties between two nodes and introducing an atten-
tion method to handle dynamic message aggregation, which
enables incremental scene graph estimation.
Implementation. For all methods, we follow their imple-
mentation details and train on 3RScan dataset [60] from
scratch until converge, using a custom training and test split
since the scenes in the original test do not have ground truth
scene graphs provided. For IMP [66], since it is a single
image prediction method, we adopt the voting mechanism
as in [27] to average the prediction over multiple frames.
Since ours and other 2D baseline methods rely on image
input, we generate a set of keyframes by sampling all in-
put frames using their poses for the GT and Dense inputs
(check supplementary material for further details). To en-
sure diversity in the viewpoint, we filter out a frame if its
pose is too similar to any selected frames with the threshold
values of 5 degrees in rotation and 0.3 meters in translation.
Evaluation Metric. We report the overall recall (Recall) as
used in many scene graph work [34, 61, 64, 66, 68] but with
the strictest top-k metric with k = 1 as in [62]. In addition,
we report the mean recall (mRecall) which better indicates
model performance when the input dataset has a severe data
imbalance issue (see supplementary material for the class
distribution). Moreover, since different segmentation meth-
ods may result in different number of segments, we map all
predictions on estimated segmentation back to ground truth.
This allows us to compare the reported numbers across dif-
ferent segmentation methods. We report the Recall of re-
lationship triplet estimation (Rel.), object class estimation
(Obj.) and predicate estimation (Pred.), and the mRecall of
object class estimation and predicate estimation.
Results. Following the evaluation scheme in [64] and in

[61], we report two evaluations in Tbl. 1 and Tbl. 2, respec-
tively. The former one maps the node classes to 20 NYUv2
labels [39] to suppress the severe class imbalance in the data
as discussed in [62] and estimates a single predicate out of
seven support relationship types plus the “same part” rela-
tionship to handle over-segmentation. The latter uses 160
node and 26 edge classes with multiple predicate estima-
tion.

In Tbl. 1, overall, it can be seen that all image-based
methods (IMP, VGfM, Ours) outperforms points-based
methods (3DSSG, SGFN) in almost all object prediction
metrics, while the methods based on 3D edge descriptor
(3DSSG, SGFN, Ours) tend to have better predicate esti-
mation. This suggests that the 2D representations from im-
ages are more representative than 3D, and 3D edge descrip-
tors are more suitable for estimating support types of pred-
icates. By comparing IMP [66] and VGfM [15], it can be
seen that the effect of the geometric feature and the tem-
poral message passing is mainly reflected in the mRecall
metrics. However, it deteriorates the performance when the
input is sparse. A possible reason is that the geometric fea-
ture is relatively unstable, which decreases the network per-
formance. It is also reflected in the two 3D methods, i.e.
3DSSG and SGFN, where they failed to perform in classi-
fying objects with sparse segmentation while giving a sim-
ilar performance in the predicate classification. Among all
methods, our method outperforms all baselines among all
input types and all metrics, apart from the predicate estima-
tion, which has a slightly worse result on some input types.
In addition, we report ours using the proposed incremental
estimation pipeline, denoted as Ours(i). The incremental es-
timation process improves slightly in object estimation. The
same behavior is also reported in [64]. We show a qualita-
tive result using our full pipeline in Fig. 4.

In Tbl. 2, our method outperforms all other methods in
the relationship and object estimation in Recall and object
estimation in mRecall. 3DSSG [61] has the best results in
predicate estimations. This suggests that union 3D bound-
ing boxes are more suitable when estimating multiple pred-
icates.

4.3. Incremental Label Association

We evaluate our label association method in the task of
incremental entity segmentation, which aims to estimate ac-
curate class-agnostic segmentation given sequential sensor
input, with two baseline methods, i.e. InSeg [58] and Panop-
ticFusion [38].
Baseline Methods. Both baseline methods use reference
map approaches as mentioned in Sec. 3.1.3. InSeg [58]
considers only the overlapping ratio between labels on an
estimated mask and a reference mask. PanopticFusion uses
IoU [38] as the evaluation method and limits one reference
label can only be assigned to one query label.
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Method AOS (%)
InSeg [58] 38.6
PanopticFusion [38] 35.9
Ours 39.6

Table 3. Evaluation of different label association methods in the
task of incremental entity estimation in 3RScan dataset [60].

Implementation. For all methods, we use our IEE pipeline
with different label association methods on all training
scenes in the 3RScan dataset [60].
Evaluation Metric. We use the Average Overlap Score
(AOS) as the evaluation metric [59]. It measures the ra-
tio of the dominant segment of its corresponding ground
truth instance. We use the nearest neighbour search to find
the ground truth instance label of a reconstructed point.
Since our method reconstructs a sparse point map, using the
ground truth points as the denominator does not reflect the
performance. We instead calculate the score over the sum
of all estimated points within the ground truth instance as:

AOS =
∑

i

maxj Overlap(Si,Pj)
# (Si)

, (11)

where Si is the set of all estimated points with ground truth
instance label i.
Results. The evaluation result is reported in Tbl. 3. Our ap-
proach achieves the highest AOS, which is 1 % higher than
InSeg [58] and 3.7% higher than PanopticFusion [38]. The
use of a confidence-based approach handles better the la-
bel consistency and thus improves the final AOS score. We
provide an example of how our method improves tempo-
ral consistency under non-uniform distributed points in the
supplementary material.

4.4. Ablation Study

We ablate our network with two components, i.e. geo-
metric descriptor gi and relative pose descriptor Ri→j . The
experiment setup is the same as in [64], which makes the ab-
lation comparable to Tbl. 1. The result is reported in Tbl. 4.
More ablation studies are in the supplementary material.

Our vanilla network without gi and Ri→j outperform
baselines in most of the metrics. With gi, there is a con-
sistent improvement on all metrics except the Pred. in mRe-
call. Compared to VGfM [15] in Tbl. 1, VGfM [15] fails
to improve the performance of IMP [66] with sparse input.
Our gated geometric feature aggregation improves its base-
line with sparse input, bringing a more consistent perfor-
mance gain than VGfM [15]. The Ri→j improves the mRe-
call performance with GT and Dense inputs but decreases
the model Recall performance. This behavior suggests that
Ri→j helps handle class imbalance issues. The combina-
tion of both components achieves the best Recall. However,
the model tends to focus on dominant classes, resulting in
slightly worse performance in mRecall.

Method Recall(%) mRecall
gi Ri→j Rel. Obj. Pred. Obj. Pred.

G
T

61.9 76.4 95.6 74.3 69.2
X 62.9 77.9 95.9 74.2 64.3

X 60.4 76.3 95.0 75.3 73.2
X X 66.1 81.2 95.6 77.4 71.5

D
en

se

30.2 54.0 88.5 44.9 33.2
X 33.9 56.4 89.7 45.7 33.8

X 28.7 52.7 88.2 47.5 34.3
X X 34.1 58.1 89.9 43.0 33.3

Sp
ar

se

9.6 28.6 90.0 25.6 17.7
X 9.8 28.5 90.0 25.7 18.1

X 9.6 28.1 90.2 23.3 16.9
X X 9.9 29.5 90.4 23.5 16.5

Table 4. Ablation study on the proposed network. We ablate the
proposed gated geometric feature (gi) and the relative pose de-
scriptor (Ri→j) using the same experiment setup as in Tbl. 1.

Front end Back end
Sparse Mapping 2D Entity Est. Label Fusion Scene Graph Est.

Mean [ms] 14.7 124.6 14.2 52.5

Table 5. Runtime [ms] of the different components of our method.

4.5. Runtime

We report the runtime of our system on 3RScan [60] se-
quence 4acaebcc-6c10-2a2a-858b-29c7e4fb410d in Tbl. 5.
The analysis is done with a machine equipped with an Intel
Core i7-8700 3.2GHz CPU with 12 threads and a NVidia
GeForce RTX 2080ti GPU.

5. Conclusion
We present a novel method that estimates 3D scene

graphs from RGB images incrementally. Our method
runs in real-time and does not rely on depth inputs,
which could benefit other tasks, such as robotics and
AR, that have hardware limitations and real-time de-
mand. The experiment results indicate that our method
outperforms others in three different input types. The
provided ablation study demonstrates the effectiveness of
our design. Our vanilla network, without any geometric
input and relative pose descriptor, still outperforms other
baselines. Our method provides a novel architecture
for estimating scene graphs with only RGB input. The
multiview feature is proven to be more powerful than
existing 3D methods. Our method can be further improved
in many directions. In particular, using semi-direct SLAM
methods such as SVO [12] might improve the handling
of untextured regions where feature-based methods often
fail. In addition, the multiview image encoder could
be replaced with a more powerful encoder to improve
the scene graph estimation with a computational penalty.
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[42] Ege Özsoy, Evin Pınar Örnek, Ulrich Eck, Tobias Czempiel,
Federico Tombari, and Nassir Navab. 4d-or: Semantic scene
graphs for or domain modeling. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2022. 1
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6. Method Comparison and Implementation
We provide an overview of all the methods evaluated in

Sec. 4.2, including our adaptation to enable comparisons
among them in our experiments. As a brief recall, we com-
pare our method to two image-based methods, i.e. IMP [16]
and VGfM [2], and two point-based methods, 3DSSG [12]
and SGFN [14]. All methods shared a similar scene graph
generation pipeline:

1. using a node and an edge encode to compute an initial
node and edge embeddings.

2. using message passing to calculate messages for up-
dating node and edge features.

3. updating node and edge feature with the messages
from step 2.

4. integrating class prediction over time.

For all methods, we closely follow the original implementa-
tion from the respective papers. We refer interested readers
to check out their papers for all detail. Here, we describe
our adaptation to enable fair comparison in our experiments.
We report the comparison of all five methods in Tab. 6.

Object Detection. IMP and VGfM rely on a regional pro-
posal network to detect objects. We replace it with our en-
tity detection methods described in Sec. 3.1.2.

Geometric Features in VGfM. For VGfM, they extract
geometric features from ellipsoids. In our implementation,
we replace the use of ellipsoids with oriented bounding
boxes, which can provide equivalent information as needed
by VGfM.

Fusion for IMP. For IMP, as mentioned in the main pa-
per, we added the voting mechanism in [5] to fuse multi-
ple predictions. For handling the incremental nature, our
experiment in Table 1 follows the setup in [14]. We do a
single global estimation of all methods and provide incre-
mental estimations of our methods. Hence, no modification
is needed for all the baseline methods.

Entity visibility graph and the neighbour graph for the
GT setup Unlike in Dense and Sparse, where we run an
incremental estimation system to obtain Gc and Gp, the GT
requires an additional procedure to obtain the entity vis-
ibility graph Gc = (V,K, Ec) and the neighbour graph
Gp = (V, Ep). The entities V are directly inherited from
the ground truth annotation from the 3RScan dataset [11].
The proximity edges Ep is estimated with the same strategy
as described in Sec. 3.1.4, using the ground truth bound-
ing boxes of entities. Here we detail how we estimate K
and Ec for the GT setup. For K and Ec, we follow a sim-
ilar approach as in VGfM [2], where we first find all rel-
evant frames across all entities and then select keyframes
with our keyframe selection strategy (Sec. 7). We use the
ground truth instance mask from [11] to check if an entity
appears in an image. However, an entity may be heavily
occluded and cannot provide reasonable image features. To
avoid this, we estimate the occupancy of an entity in an im-
age as the ratio of the number of relevant pixels over all
pixels within the bounding box of the entity. Furthermore,
to prevent an entity is not aligned to the image coordinate,
which will cause the occupancy value to be very low even
if it is not occluded, we downscale each input mask by a
factor of 8 with a maximum relevant selection, i.e. a down-
scaled pixel is considered relevant if one among the eight
pixels in the original image is relevant. This gives the visi-
bility of each entity on each input frame. We then apply the
keyframe selection strategy to prevent duplicate views and
to ensure good view coverage.

7. Keyframe selection strategy.

Selecting keyframes is crucial when the estimation qual-
ity is solely based on multiview images. Having diverse
view coverage of objects usually results in better feature
representation of objects [4, 13, 17]. Unlike the keyframes
selection in ORBSLM [3], which focuses more on the
pose estimation quality than the view coverage, we select
keyframes mainly based on the pose difference and, in ad-
dition, the quality of detected objects. A frame is selected
as a keyframe only 1) it has at least one valid object detected
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Method Node Type Edge Type Message Passing Type Message Update Method Fusion

IMP Image ROI Image ROI Union Prime-Dual GRU Voting [5]
VGfM Image ROI Image ROI Union Prime-Dual + Geo. description GRU Temporal Gate
3DSSG Points Points Union Triplet concatenation N/A
SGFN Points geometric description FAN concatenation running mean
Ours MV Image ROIs geometric description FAN + Gated Points GRU running mean

Table 6. A summary of the modules used for different methods. The text colored in cyan involves our modification to make all methods
comparable.

and 2) its pose is dissimilar to other existing keyframes.
We measure the validity of bounding boxes by checking if
their minimum width and height are larger than 200 pixels,
and the pose difference threshold is set to 5 degrees in rota-
tion and 0.3 meters in translation. This keyframe selection
method is used for all input, i.e. GT, Dense, and Sparse,
cases in our experiments.

8. Data Distribution

We provide the class distribution on objects and predi-
cates in Fig. 5. It can be seen that the setup in [12] has
severe long-tail data distribution. After mapping to 20
NYUv2 labels [8], the distribution is relatively well dis-
tributed but still unbalanced. The unbalanced distribution
indicates that the mRecall metric reflects better the model
performance.

9. Multi-view Feature Encoding

As mentioned in Sec. 3.2.1, the multi-view feature of
a node is computed by aggregating image features of the
node from multiple images. This is essentially the task of
3D shape recognition with arbitrary views. We compare the
use of simple mean aggregation, as in MVCNN [9], with the
state-of-the-art method, CVR [13] on ScanNet [1] dataset.
Since the main comparison is on the multi-view feature ag-
gregation, we use the same backbone, ResNet18 [3], for
both methods. All networks are trained from scratch us-
ing the splits from ScanNet, following the same training ap-
proach described in the respective papers. We report the
mean intersection-over-union (mIoU), precision (mPrec),
and recall (mRecall).

The result is shown on Tbl. 7. It can be seen that the
use of simple mean operation outperforms canonical trans-
formation in CVR [13]. Although the number reported in
CVR [13], it outperforms MVCNN in ModelNet40 [15],
ScanObjectNN [10] and RGBD [6]. We investigated the
difference between the three datasets mentioned above and
ScanNet and found that the images from ScanNet [1] con-
tain more background objects while the others have non-
cluttered backgrounds. We demonstrate some example im-
ages in Fig. 6. The performance inconsistency may indicate

mIoU(%) mPrec(%) mRecall(%)

CVR [13] 32.3 45.2 54.4
MVCNN [9] 39.2 50.5 61.4

Table 7. Object classification result on ScanNet dataset. A simple
averaging of overall image features (MVCNN) outperforms the
sophisticated multi-view image encoding method (CVR).

that using the mean operator makes the model less sensitive
to background things.

10. Comparing confidence and IoU-based
methods

We provide an example of the difference between using
the maximum IoU and our maximum mean confidence to
find the most probable correspondence with a sparse point
map. In figure 7, given three consecutive frames at t = n,
t = n+1 and t = n+2 for the label association and fusion,
their entity maps and the association result are shown on the
second and third columns (separated by white space). The
second column is the label fusion result with IoU [7], and
the third column is ours. When using IoU (second column),
the table label at t = n is assigned to the floor at t = n+ 2.
This is due to the map points created at t = n + 1 on the
floor (carpet) having larger IoU than the table. With our
approach (third column), the table label at t = n remains at
the table at t = n+2. This shows that our method provides
more consistent label association. Note that the label colors
are different between IoU and ours since the segment color
are randomly in each run.

11. Ablation Study

We provide two additional ablation studies: (1) the use
of edge descriptor (Tab. 8) and (2) the effect of the sig-
moid gate on the geometric feature (Tab. 9). In Tab. 8,
it can be seen that the use of our relative pose descriptor
Ri→j leads to better overall performance in GT and Sparse
settings while having slightly worse performance in Dense
setting. In Tab. 9, using the gated geometric feature consis-
tently achieves better performance in all three setups.
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https://docs.google.com/spreadshe
ets/d/1qOwLqGquqUXBzuVkZmOU
zxohAtyiyz8Oz09x_HHVO48/edit#g
id=0

Node class distribution Edge class distribution

(a)

(b)

Figure 5. We provide the class distribution for two scene graph experiments in Tbl. 1 and Tbl. 2. The row (a) is the distribution for the
experiment setup in [14] and in Tbl. 1. (b) is the distribution for the experiment setup in [12] and in Tbl. 2.

Figure 6. We provide examples of multi-view images of the same
object in the ScanNet dataset. For display purposes, we only select
four views of the same object. It can be seen that the multi-view
observation of an object in a standard indoor dataset includes some
non-target objects in the field of view. Those objects are consid-
ered noise which affects the multi-view image encoding.

Recall(%) mRecall
Edge Type Rel. Obj. Pred. Obj. Pred.

GT
Points 62.0 77.9 95.9 68.4 69.0
Ri→j 66.1 81.2 95.6 77.4 71.5

Dense
Points 35.1 57.5 89.6 47.9 33.2
Ri→j 34.1 58.1 89.9 43.0 33.3

Sparse
Points 10.0 28.7 90.6 21.1 16.3
Ri→j 9.9 29.5 90.4 23.5 16.5

Table 8. Ablation study on the use of input type for computing
edge feature. The experiment setup is the same as in Tbl. 1. Here
Points means taking the point cloud union as in [12], and Ri→j is
the relative pose descriptor described in Sec. 3.2.2.

11.1. Comparison in edge descriptor

compare non-learned and learned descriptors.

Recall(%) mRecall
Gate Rel. Obj. Pred. Obj. Pred.

GT
61.5 77.1 95.3 77.1 70.9

X 66.1 81.2 95.6 77.4 71.5

Dense
32.9 55.5 89.1 41.0 31.4

X 34.1 58.1 89.9 43.0 33.3

Sparse
8.6 26.9 90.5 24.4 15.6

X 9.9 29.5 90.4 23.5 16.5

Table 9. Ablation study on the proposed gated geometric feature.
We ablate the use of a sigmoid function of a gate for the input
geometric feature using the same experimental setup as in Tbl. 1.

11.2. Gate on the geometric feature

whether to use the gate in the geometric feature or to
use different ways of selecting keyframes. We provide an
additional ablation study on the effect of using a sigmoid
gate when including the geometric feature in our message
passing payer.

12. Additional Results

12.1. Per-class prediction result

In Tbl. 10, We provide the per entity class recall for the
experiment reported in Tbl. 1. Our method has dominant
performance on most of the classes regardless of the input
segmentation types.

12.2. Without consider None estimation

Our evaluations follow the line of work [12, 14] which
consider None relationship is crucial, unlike other work [2,

3



Input Image Ours

t = n

t = n+1

PanopticFusion

t = n+2

Input Image Entity map WithWith

t = n

t = n+1

t = n+2

Entity map Entity map

Figure 7. An example of comparing the use of IoU and our label association approach with the sparse input points. Our method handles
non-uniformly distributed data better than the IoU-based method.

bath. bed bkshf cab. chair cntr. curt. desk door floor ofurn pic. refri. show. sink sofa table toil. wall wind. avg

G
T

IMP 0.000 0.667 0.143 0.562 0.688 0.677 0.712 0.292 0.541 0.957 0.262 0.727 0.000 0.143 0.617 0.579 0.731 0.889 0.856 0.560 0.530
VGfM 0.750 0.833 0.286 0.423 0.854 0.677 0.712 0.042 0.658 0.969 0.319 0.693 0.000 0.286 0.633 0.592 0.641 0.852 0.847 0.429 0.575
3DSSG 0.500 0.333 0.000 0.477 0.838 0.516 0.432 0.417 0.622 0.957 0.288 0.205 0.000 0.143 0.717 0.605 0.563 0.630 0.609 0.357 0.460
SGFN 1.000 0.833 0.143 0.385 0.696 0.839 0.577 0.417 0.631 0.963 0.372 0.830 0.111 0.143 0.783 0.434 0.647 0.593 0.718 0.429 0.577
Ours 1.000 1.000 0.000 0.619 0.927 0.645 0.847 0.583 0.838 0.969 0.539 0.943 0.667 1.000 0.900 0.671 0.808 1.000 0.877 0.655 0.774

D
en

se

IMP 0.000 0.667 0.000 0.381 0.453 0.000 0.477 0.000 0.081 0.951 0.199 0.023 0.000 0.000 0.200 0.474 0.485 0.667 0.770 0.179 0.300
VGfM 0.000 0.667 0.000 0.346 0.494 0.000 0.486 0.042 0.198 0.957 0.141 0.011 0.000 0.000 0.233 0.579 0.569 0.630 0.780 0.179 0.316
3DSSG 0.250 0.667 0.000 0.200 0.510 0.258 0.505 0.000 0.477 0.914 0.147 0.034 0.222 0.143 0.250 0.474 0.425 0.259 0.519 0.131 0.319
SGFN 0.750 0.333 0.000 0.508 0.636 0.194 0.405 0.083 0.387 0.969 0.230 0.114 0.111 0.000 0.383 0.553 0.623 0.519 0.730 0.131 0.383
Ours 0.750 1.000 0.000 0.504 0.656 0.194 0.459 0.125 0.342 0.969 0.251 0.057 0.000 0.143 0.383 0.579 0.599 0.667 0.761 0.155 0.430

Sp
ar

se

IMP 0.000 0.333 0.000 0.235 0.146 0.129 0.252 0.167 0.099 0.798 0.068 0.023 0.000 0.286 0.183 0.329 0.281 0.259 0.324 0.214 0.206
VGfM 0.000 0.333 0.000 0.273 0.150 0.097 0.243 0.042 0.081 0.810 0.047 0.011 0.000 0.000 0.150 0.276 0.263 0.222 0.325 0.202 0.176
3DSSG 0.000 0.000 0.000 0.085 0.045 0.000 0.108 0.000 0.063 0.558 0.005 0.011 0.000 0.000 0.017 0.000 0.186 0.000 0.048 0.060 0.059
SGFN 0.000 0.000 0.000 0.058 0.081 0.032 0.072 0.042 0.063 0.712 0.010 0.034 0.000 0.000 0.083 0.092 0.174 0.000 0.097 0.107 0.083
Ours 0.500 0.333 0.286 0.273 0.227 0.129 0.270 0.042 0.135 0.810 0.110 0.068 0.000 0.000 0.217 0.211 0.263 0.296 0.342 0.179 0.235

Table 10. The per-class Recall of all methods in 3RScan dataset [11] with 20 node classes.

16] which only consider edges with annotated non-None re-
lationships. Both approaches have their advantages. Con-
sidering None estimation prevents excessive relationship es-
timation while also preventing potential relationship discov-
ery, e.g. should exist but was not annotated. For further
comparison and the interest of potential readers, we provide
the evaluation result without considering the None relation-
ship in Tab. 11 and Tab. 12, with the experiment setup as
reported in Tbl. 1 and Tbl. 2.
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