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Abstract

Real-world deployment of reliable object detectors is
crucial for applications such as autonomous driving. How-
ever, general-purpose object detectors like Faster R-CNN
are prone to providing overconfident predictions for outlier
objects. Recent outlier-aware object detection approaches
estimate the density of instance-wide features with class-
conditional Gaussians and train on synthesized outlier fea-
tures from their low-likelihood regions. However, this strat-
egy does not guarantee that the synthesized outlier features
will have a low likelihood according to the other class-
conditional Gaussians. We propose a novel outlier-aware
object detection framework that distinguishes outliers from
inlier objects by learning the joint data distribution of all
inlier classes with an invertible normalizing flow. The ap-
propriate sampling of the flow model ensures that the syn-
thesized outliers have a lower likelihood than inliers of all
object classes, thereby modeling a better decision bound-
ary between inlier and outlier objects. Our approach sig-
nificantly outperforms the state-of-the-art for outlier-aware
object detection on both image and video datasets.

1. Introduction

General purpose object detectors such as Faster R-
CNN [42] and Mask R-CNN [17] deliver high performance
for inlier images. However, in many real-world scenarios,
such as autonomous driving [3], plenty of unknown outliers
(OD) naturally occur in an image or a video scene. Due
to the co-existence of OD with the labeled inlier (ID) ob-
jects in the scene, object detectors confuse outliers with in-
liers. Therefore, reliable object-detection deployments re-
quire detecting such anomalies without degrading the per-
formance of inlier object detection.

Many outlier detection approaches focus on multi-class
image classification task by either performing outlier de-
tection during inference [19, 24, 30, 31, 35, 44] or training
on real outlier data [1, 20, 39, 53]. However, such OD in-
puts are unaware of the decision boundary between inliers
and outliers, resulting in an inaccurate model regularization.
A popular work [29] proposed a novel training scheme to
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Figure 1. We compare distributions of log-likelihoods for inliers
(ID), background patches, and synthetic outlier (OD) samples by
applying a pre-trained model on Pascal-VOC [11] validation set.
The left plot shows the likelihoods of class-conditional Gaussians
from the official approach of VOS [10]. The right plot shows the
likelihoods recovered with our normalizing flow. We observe that
our flow separates the three distributions much better than VOS.

generate synthetic outlier samples in the high-dimensional
pixel space using Generative Adversarial Networks for out-
lier aware training of an image classification model. How-
ever, GANs are challenging to optimize and are likely to
deliver insufficient coverage [36]. Moreover, the previous
work [29] generates an entire image as an outlier sample,
whereas in an object detection problem, both inliers and
outliers can coexist in the same image space.

Recently, [10] proposed to model the inlier features as
class-conditional Gaussians and then synthesize OD fea-
tures from the low likelihood region of the modeled distri-
bution. Even though density is more easily estimated in the
feature space than in pixel space, the assumption of class-
conditional Gaussian may not provide an accurate decision
boundary between inliers and outliers. Furthermore, synthe-
sizing a low-likelihood OD sample from the Gaussian for
class A does not guarantee that the sample is also of the
low likelihood for the Gaussian of class B, as indicated in
the left plot of Figure 1. Recent work for object detection
in video [9] extracts the background patches for uncertainty
regularization by thresholding the dissimilarity with the ref-
erence inlier features. However, the extracted background
patches may lie far from the inlier-outlier decision bound-
ary, leading to sub-optimal regularization of the model.

We propose a novel approach for open-set object detec-
tion which we call Flow Feature Synthesis (FFS). Our ap-
proach trains an invertible normalizing flow to map the data
distribution of ID features of all object classes to a latent
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representation that conforms to a multivariate Gaussian dis-
tribution with zero mean and diagonal unit covariance. As a
result, it ensures principled estimation of the complex dis-
tribution of inlier features from all classes. We synthesize
outlier features from low-likelihood regions of the learned
distribution. This enables outlier features to be near the ID-
OD decision boundary, leading to more robust uncertainty
regularization of the object detector. In contrast, using gen-
erative adversarial models for the same task would be cum-
bersome due to its inability to infer density of the generated
samples, Furthermore, variational autoencoders can only in-
fer the lower bound of the sample density [27].

Specifically, FFS optimizes the normalizing flow model
by maximum likelihood training on ID features. This train-
ing scheme enables the model to estimate the actual data
distribution of the available ID features. Next, FFS uti-
lizes the invertibility of the flow model to randomly sam-
ple from its latent space and generate synthetic features in
the reverse direction of the model. The normalizing flow
allows efficient and exact inference of the distribution den-
sity in the generated samples. Consequently, our approach
can deliver suitable synthetic outlier data in fewer iterations
than VOS [10]. It also requires fewer synthetically gen-
erated samples than VOS [10] to obtain OD features from
the low-likelihood region of the modeled distribution by the
flow. Furthermore, we developed our end-to-end trainable
FFS framework to be effective on both image and video
datasets. In contrast, previous works [9, 10] proposed stan-
dalone strategies for each task. Our main contributions are:

• We present a new outlier-aware object detection frame-
work that utilizes Normalizing Flows to model the
joint data distribution of inlier features. Invertibility
of the flow allows efficient generation of synthetic out-
liers for effective uncertainty regularization.

• By mapping the data distribution of inlier features
from all object classes to a multivariate Normal dis-
tribution in the flow’s latent space, FFS ensures that
an outlier sampled using the flow model is OD with
reference to all ID classes.

• FFS achieves better OD detection performance while
training faster than VOS [10] and STUD [9], due to
having to generate fewer synthetic samples.

• We show that our method achieves state-of-the-art
performance in OD object detection while preserv-
ing the baseline ID detection performance for image
dataset PASCAL-VOC [11] and video datasets such as
Youtube-VIS [51] and BDD100K [52].

2. Related work
The research in outlier-aware object detection is in

the early stages compared to works in vanilla object de-
tection [13, 17, 42] or outlier-aware semantic segmenta-
tion [14]. This section overviews prior approaches to outlier

detection for image classification and proceeds to outlier-
aware object detection for images and videos.
Outlier-aware image classification. Past approaches
trained a classification model without knowledge about out-
liers and conducted OD detection during inference. For ex-
ample, [19] used simple softmax probability scores during
inference to detect OD samples, while other works used
Mahalanobis distance [30], rectified activations [46], KL
divergence [24] and Gram Matrices [44] instead of soft-
max scores to detect such samples. On the other hand,
ODIN [31] and Generalized ODIN [23] performed pertur-
bations to the test examples to enhance the performance of
softmax function for OD detection. Recently, energy func-
tion [33, 35, 48] has performed better for distinguishing ID
and OD samples than softmax scores.

Several other methods [20–22, 39, 47] proposed to regu-
larize image classifiers by exposing them with outlier data
during self-supervised training while a GAN based ap-
proach [29] synthesizes outliers in pixel space and uses it
for outlier-aware image classification. However, such syn-
thetic outliers are sampled from imprecise decision bound-
aries. Additionally, these approaches may not be applied
to an object detection task since outliers defined by such
methods are in the entire pixel space of the input image.
In contrast, an image may contain both inlier and outlier
objects simultaneously, and a trustworthy object detection
model should detect such scenarios.
Outlier-aware object detection for images. One of the
early open-set object detection works [5] highlighted the
importance of adding an extra background class for un-
known objects, though object detection inherently rejects
unknown object proposals. Several works improve the
background detection in open-set conditions [4, 15, 37,
38] by using Bayesian techniques, such as Monte Carlo-
Dropout [12]. However, such methods have high latency
during inference which could be sub-optimal for real-world
applications. Others [16, 43] presented uncertainty regu-
larization for localization regression but did not examine
outlier-aware object detection with a focus on classifica-
tion head. Works like [26] used the background patches
as OD samples for model regularization, but the perfor-
mance might be low as the samples may be far from the
decision boundary. VOS [10] applies energy-based regu-
larization [35] to synthetic OD features generated by class-
conditional Gaussians. Instead, our method map features
from all ID classes to a Gaussian prior with a normalizing
flow model, and thus achieves a tighter decision boundary
and improved performance.
Outlier-aware object detection for videos. Several
works aim to identify anomalous events on the object and
frame level. An object-level approach [8] uses the k-nearest
neighbors algorithm to detect anomalous objects while [25]
use k-means to cluster inlier features and train k binary clas-
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Figure 2. Overview of the FFS framework. The ID features lID(x, b̂) are selected for training the normalizing flow with the negative
log-likelihood loss Lnll. We recover outlier features os by iterative sampling in the latent space of the normalizing flow. The classification
logits of the ID features lID(x, b̂) and the outlier features os are used to calculate the energy scores. The uncertainty loss Lreg encourages
separation between the energy scores of inlier and outlier features. More details are given in Section 3.

sifiers so that each cluster can view other clusters as an out-
lier. A test object is labeled an outlier if the highest classi-
fication score is negative. Frame-level approaches [34, 41]
predicted future frames that preserve the events of the pre-
vious frames by ensuring the optical flow of the predicted
frame remains consistent with ground-truth. In contrast,
events with a significant difference between prediction and
ground-truth are labeled outliers. However, no previous
work synthesizes outliers from video frames for model reg-
ularization. Recent work [49] introduced self-supervised
learning to find the most distinct object in the next video
frame given an inlier object in the previous frame, leading
to more knowledge about unseen data domains. STUD [9]
uses the inliers in the first frame to select the outliers in the
following frames for model regularization. However, this
may deliver outlier patches that are very far away from the
decision boundary and thus lead to inferior model regular-
ization. To summarize, no single outlier-aware object detec-
tion framework exists for images and video with an effective
regularization that models a precise inlier manifold.

3. Method

Outlier-aware object detection problem is much more
complex than detecting outliers for an image classification
task since a real-world image may consist of both inlier
and outlier objects. Let us define an input x ∈ X with
X := (x1, x2, ..., xN ) being the training dataset consist-
ing of N images or video frames, ground-truth class la-
bels for each ID object as y ∈ Y with Y := {1, 2, ...,K}
for K classes and the coordinates of ground-truth bound-
ing boxes b ∈ B. Then, an end-to-end object detector
with parameters θ treated as a conditional probability dis-
tribution estimates bounding boxes as pθ(b|x) and the ob-
ject class as pθ(y|x, b). Figure 2 shows the training and
inference scheme of the FFS framework. The backbone
network extracts the feature maps at different resolutions,
and the Region Proposal Network (RPN) converts these

multi-resolution feature maps into object proposals. The
ROI align module classifies object proposals and provides
a vector of bounding boxes, b̂, and fixed-size box features,
l(x, b̂), of both ID (inlier) and background patches. Note
that l(x, b̂) is in a lower dimensional space than x. The
box features l(x, b̂) and bounding boxes b̂ are used to train
the object classification and box prediction heads according
to the object detection loss Ldet, given the ground-truth ID
classes and box coordinates, respectively. The box features
from l(x, b̂) with the ground-truth class as background are
filtered out to keep only ID features lID(x, b̂).

3.1. Overview

Our framework FFS is split into three stages: the train-
ing procedure, the threshold estimation for OD detection,
and the model inference as summarized in Algorithm 1.
During the training stage, we compute the standard object
detection loss Ldet via the chosen general-purpose object
detector. We define maximum-likelihood training objective
Lnll to train our normalizing flow module on inlier features
lID(x, b̂). Subsequently, we sample synthetic outliers os
from the flow model. The details related to the normaliz-
ing flow and the procedure to synthesize outlier features are
given in Section 3.2. We then compute energy scores for
inliers and outliers for the model regularization using Lreg.
Section 3.3 describes the details about model regularization,
and Section 3.4 discusses the overall training objective of
the FFS framework. We use the trained FFS model for
threshold estimation to perform OD detection. We fix the
energy-based threshold ξ such that the model correctly de-
tects 95% of inlier objects in the validation set. During in-
ference, given an object xt in a test image, the trained FFS
model provides a bounding box for the object as bt. The
decision of whether the object is an inlier or an outlier lies
on the energy E(h(l(xt, bt); θ)). Given an energy threshold
ξ, we assign xt as an inlier if E(h(l(xt, bt); θ)) < ξ and
OD if E(h(l(xt, bt); θ)) ≥ ξ. We obtain object class la-
bels for predicted inliers with the softmax confidence score
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and bounding box. We label the bounding box for objects
detected as outliers as OOD.

Algorithm 1 FFS: Normalizing Flow based Feature Syn-
thesis for Outlier-Aware Object Detection

Input: Training data {(xi,bi, yi)}Ni=1, vanilla object detec-
tor, normalizing flow f and binary classifier Φ with param-
eters θ, γ and ψ respectively, the loss weights α and β.
Output: Object detector with trained parameter θ.
while train do

1. Input training data to FFS model and compute Ldet.
2. Input the ID features lID(x, b̂) to the flow model f
and obtain Lnll using Eq 2.
if i ≤ iterations then

3. Update i and the parameters θ and γ by backprop-
agation of the total loss in Eq 5 with α = 0.

else
4. Generate synthetic features gk by sampling zk
from flow’s latent space with gk = f−1(zk).
5. Select os from pγ(gk)’s low-likelihood region.
6. Calculate energy scores E(h(lID(x, b̂); θ)) and
E(h(os; γ)) using the classification head h.
7. Compute regularization loss Lreg using Eq 4.
8. Update i and the parameters θ, γ and ψ by back-
propagation of the total loss in Eq 5.

end
end
Fix threshold ξ when 95% of inliers are correctly detected.
while eval do

1. Calculate the energy score of a test object.
2. Label it as an outlier or an inlier based on ξ.

end

3.2. Normalizing Flow for feature synthesis

For simplicity, we will denote the ID features lID(x, b̂)
as l ∈ L. In our framework, the normalizing flow f with pa-
rameters γ is a sequence ofM invertible bijective mappings
implemented as affine coupling layers. The flow f : L → Z
transforms the complex data distribution of the features l
to a multivariate Gaussian in its latent space z ∈ Z with
p(z) = Nd(µ,Σ) where d is the number of feature vec-
tor components, and µ is zero mean with Σ as the unit
variance. The bijective mapping ensures that the input and
the latent space share the same dimensionality d such that
f : Rd → Rd. Each coupling layer transforms the feature
vector components by scaling s and translation t, which are
learnable neural networks [27]. Such a transformation is
expressive and, at the same time, easily invertible with high
efficiency in computing Jacobian determinants.

3.2.1 Maximizing the likelihood of ID features

Given the above formulation of our normalizing flow f ,
which transforms input ID features l into z such that z =

f(l), we aim to maximize the log-likelihood of recovering
features lwith respect to f . To achieve this, we have to com-
pute the Jacobian matrix of f(l) with respect to the feature
vector components [27]. Let fi(l) be the components of f
in latent space and lj the components of feature space. The
entries of the Jacobian matrix are defined as Jf,lij = ∂fi(l)

∂lj

where i, j ∈ 1, ..., d. According to the change of variables
formula, the posterior likelihood pγ(l) can be described as:

pγ(l) = p(f(l)) ∗
∣∣det Jf,l∣∣ (1)

To obtain the log-likelihood of the posteriors, we take
a logarithm on both sides of the Eq 1. As the training of
a neural network requires minimization of a loss function,
we construct f by finding γ that maximizes log(pγ(l)) by
minimizing the negative log-likelihood Lnll objective:

Lnll(l; γ) =
1

N

N∑
i=1

− log(pγ(l(xi, b(xi)))) (2)

Normalizing flows are known for stable and exact train-
ing according to the maximum likelihood objective in Eq 2.

3.2.2 Random sampling from the latent space

We train the flow model f so that its parameters γ learn the
distribution of inlier features for a fixed number of train-
ing iterations. Next, we randomly sample k samples zk
from the latent distribution p(z) and propagate it in the re-
verse direction of f to generate synthetic samples gk where
gk = f−1(zk) during active training. As the flow model
learned the data distribution pγ(l) via the maximum like-
lihood training using Eq 2, the samples gk are synthesized
from pγ(l). Such generation procedure discourages mode
collapse, common in generative adversarial models. Hence,
we retrieve the exact data distribution of the features l in
synthesized samples gk. After that, we compute the log-
likelihood scores of each of the k samples gk using Eq 1.
Reasonably, the synthesized gk contains samples with a
high likelihood of being obtained from pγ(l) and should
lie well inside the boundary of the inlier distribution pγ(l).
Nevertheless, there should also be samples in gk with lower
likelihood scores that lie near or away from the boundary of
the distribution pγ(l).

3.2.3 Rejection Sampling based Outlier Synthesis

It is pivotal to sample useful synthetic outliers for an ef-
fective model regularization for OD detection. To achieve
this, our first approach involves rejection sampling. We se-
lect s samples as outliers os from the low-likelihood region
of the data distribution pγ(gk), where os ⊂ gk and s be-
ing much smaller than k. The motivation of such an ap-
proach is to obtain synthetic outliers from near the decision
boundary and outwards in the exterior outlier space. Fig-
ure 3 (a)-(b) shows that generating more synthetic samples
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gk and selecting a single outlier os with the least likelihood
(where s = 1) improves the OD detection. This is because
generating more samples gk leads to the selection of a low-
likelihood synthetic outlier os that genuinely lies in the out-
lier space, resulting in better model regularization.
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Figure 3. Validation of synthetic samples gk and selected outliers
os on OD detection. s = 1 in (a)-(b) and k = 200 in (c)-(d).

Eventually, however, the performance peaks as generat-
ing an even higher number of synthetic samples gk may lead
to the selection of an outlier os that is too far away in the
outlier space, resulting in a model that is unaware of the de-
cision boundary. Hence, by varying gk, our rejection sam-
pling approach can obtain outliers from the decision bound-
ary and from the outlier region away from the boundary.
Figure 3 (c)-(d) show the results when the number of se-
lected outliers os is varied while keeping the number of the
generated synthetic samples gk fixed. The selection of more
outliers os leads to a degradation in the OD detection per-
formance as some selected outliers with high log-likelihood
scores lie well within the inlier manifold leading to sub-
optimal model regularization.

3.2.4 Projection Sampling using Langevin Dynamics

We investigate whether our model can generalize the out-
lier space by using synthetic outliers sampled only close
to the decision boundary while still being effective with
OD detection. To accomplish this, we perform projection
sampling based on Stochastic Gradient Langevin Dynam-
ics (SGLD) to sample outliers from our flow model. Under
the approach, we generate s samples as outliers os directly
without needing rejection and require a likelihood thresh-
old to define the boundary of the inlier feature distribution.
We fix this threshold as the log-likelihood score δ of the
inlier, which is least likely to be obtained from the inlier
data distribution pγ(l). Next, we propagate the average log-
likelihood score of the synthetic outliers log pγ(os) in the
inverse direction of the flow without updating its parame-
ters and obtain the gradients ∂ log pγ(os)

∂os
. Subsequently, the

outliers os are updated as:

os := os − τ
∂ log pγ(os)

∂os
(3)

where τ is the step size of the gradient descent. We end this
iterative process when the average log-likelihood of the up-
dated os is equal to or lower than δ. Hence, the updated out-
liers os are precisely projected to the near decision bound-
ary of the inlier manifold where the least-likelihood inlier
is located. The results of our projection sampling approach
are shown in Figure 5 (f) and discussed in Section 4.3.

3.3. Energy-based model regularization

We obtained the outliers os by sampling from the data
distribution pγ(l), requiring no actual outliers during train-
ing. The classification head h now maps inlier features l
and outliers os to K + 1 classification logits as h(l; θ) and
h(os; γ), respectively. Note that h(l; θ) is influenced by all
θ parameters, whereas h(os; γ) depends on the flow pa-
rameters γ and the parameters of the classification head.
Recently, [10, 35] used energy function rather than soft-
max probabilities to differentiate inlier and outlier sam-
ples better. We follow [10] and apply the energy func-
tion on the classification logits h(l; θ) and h(os; γ) using
E(h(.)) = −T · log

∑K
wK · ehK(.)/T where T is a tem-

perature parameter of the energy function and weight w is
learned to overcome class imbalances. We then pass the en-
ergy scores through a binary classifier Φ with parameters ψ
and define the softmax output as pl when E(h(l; θ)) is the
input and po when E(h(os; γ)) is the input. Finally, we use
binary cross-entropy (BCE) based regularization loss Lreg:

Lreg =
1

N

N∑
i=1

−(log(pl) + log(1− po)) (4)

The Eq 4 shapes contrasting inlier and outlier energy sur-
faces by assigning low energy for inliers and high energy
for outliers.

3.4. Overall Training Objective

We describe the standard object detection loss Ldet as
a combination of losses for object classification given the
ground-truth inlier class labels y and bounding box regres-
sion given the ground-truth box coordinates b. Based on the
formulation of the negative log-likelihood loss Lnll and the
regularization loss Lreg from Eq 2 and 4 respectively, we
merge all these loss terms in our overall training objective:

min
θ,γ,ψ

E(x,b,y)∼X ,B,Y [Ldet + β · Lnll + α · Lreg] , (5)

where α and β are the weights of Lreg and Lnll re-
spectively. The Lreg loss acts as an adversary to Lnll loss
as Lnll tries to maximize the likelihood of obtaining inlier
features while Lreg forces the model to synthesize outliers
away from inliers. Thus, such a training scheme encourages
the generation of synthetic samples at the decision bound-
ary resulting in outlier awareness of the object detector.
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4. Experiments
This section evaluates our FFS framework for its effec-

tiveness with outlier-aware object detection. Section 4.1
provides the details related to the image and video datasets,
the neural network architecture, and the performance met-
rics. Section 4.2 shows the results obtained with FFS and
compares it with other related approaches. Finally, Sec-
tion 4.3 contains ablation studies to evaluate the perfor-
mance of our approach in varied experimental settings.

4.1. Implementation details

Datasets. We train our FFS model on the publicly
available image dataset PASCAL-VOC 2012 [11] contain-
ing 20 object categories as ID and use two OD datasets,
namely MS-COCO [32] and OpenImages [28] to evaluate
the performance. Additionally, we train FFS on two video
datasets, namely Berkeley DeepDrive (BDD100K) [52]
and Youtube-Video Instance Segmentation (Youtube-VIS)
2021 [51]. For the FFS trained on video datasets, we in-
fer on two OD datasets, namely MS-COCO [32] and nuIm-
ages [2]. We use the pre-processed datasets by VOS [10]
and STUD [9] so that the object categories in the OD dataset
are independent of the object categories in the ID dataset.

Network architecture. We adopt the Faster R-CNN
model [42] for object detection provided in the publicly
available Detectron2 framework [50]. We use RegNetX-
4.0GF [40] as the backbone architecture due to its superior
inlier detection performance. We employ Glow [27] as our
normalizing flow model after observing lower performance
for other flow architectures (details in Section 4.3).

Metaparameters. We run our experiments using
Python 3.8.6 and PyTorch 1.9.0 with each ID dataset trained
on four NVIDIA A100-SXM4 GPUs. We start the training
of the FFS framework by turning off uncertainty regulariza-
tion loss Lreg for a fixed number of iterations. This enables
the flow model to learn the data distribution of inlier objects
from all object classes. Across datasets, we found the loss
weightages β = 10−4 and α = 0.1 as reasonable values for
stable end-to-end training of the FFS framework. In Sec-
tion 4.3, we perform an exhaustive meta-parameter study.

Evaluation metrics. We compute the energy scores
from K classification logits of the inlier and outlier objects
in the validation set. We evaluate these scores according to
the standard outlier detection metrics. These metrics are
Area Under the Curve Receiver Operating Characteristic
(AUROC ↑) and False Positive Rate at 95% True Positive
Rate (FPR95 ↓), where True Positive is the correct detection
of an inlier. For ID detection, we first compute Intersection
over Union (IoU) between predicted bounding boxes and
ground-truth boxes. Then, we compute the average preci-
sion (AP) for the standard range of IoU thresholds. Finally,
the mean of the average precision over all known classes
(mAP ↑) measures ID detection performance.

4.2. Comparison with the State-of-the-Art

Tables 1 and 2 compare our method with other ap-
proaches on image and video datasets, respectively. We use
the results provided by VOS [10] and STUD [9] to show
the performance of the compared approaches. Some evalu-
ated approaches (except VOS and STUD) were developed
for image-wide OD detection. However, these approaches
can also be used to compare an outlier-aware object detec-
tion model since classification is one of the object detection
tasks. No real outlier datasets were used during training to
compare these approaches with our method.

ID Method FPR95 ↓ AUROC ↑ mAP ↑
OD: MS-COCO / OpenImages

PA
SC

A
L

-V
O

C GAN [29] 60.93 / 59.97 83.67 / 82.67 48.5
Energy [35] 56.89 / 58.69 83.69 / 82.98 48.7

CSI [47] 59.91 / 57.41 81.83 / 82.95 48.1
VOS [10] 47.77 / 48.33 89.00 / 87.59 51.5
FFS (ours) 44.15 / 45.08 89.71 / 88.29 51.8

Table 1. Main results on image datasets with Faster R-CNN model
and RegNetX-4.0GF [40] as the backbone for VOS and FFS.

ID OD Method FPR95 ↓ AUROC ↑ mAP ↑
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D

D
10

0K

nu
Im

ag
es
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Energy [35] 88.54 67.83 26.7
CSI [47] 82.43 71.81 24.2

STUD [9] 81.14 74.82 27.2
FFS (ours) 83.06 76.37 27.6

Table 2. Main results on video datasets with Faster R-CNN model
and RegNetX-4.0GF [40] as the backbone network.

In Table 1, we report a 7.58% and a 6.73% decrease
in FPR95 for FFS compared to VOS when evaluated on
MS-COCO and OpenImages, respectively. Additionally,
we note an increase in AUROC values when compared with
VOS and assessed on MS-COCO and OpenImages. We also
obtained higher ID detection performance and a faster train-
ing time of 2.18 hr compared to 2.43 hr for VOS on the
same hardware and batch size. In Table 2, FFS outperforms
STUD, where we report a 3.85% decrease in FPR95 and a
1.28% increase in AUROC compared to STUD when the
ID is BDD100K, and the OD is nuImages. We also register
a significant 12% increase in mAP performance compared
to STUD. Our training time is 2.7 hrs compared to 11 hrs
by STUD for the BDD100K dataset on the same hardware.
FFS also improves STUD results for the Youtube-VIS as ID
and MS-COCO as OD while maintaining high ID detection
performance. For this dataset, we report a lower training
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time of 8.2 hrs compared to 11.3 hrs by STUD.

ID Method FPR95 ↓ AUROC ↑ mAP ↑ Time (h)

PASCAL-VOC
VOS [10] 49.67 88.43 48.91 2.37
FFS (ours) 43.12 89.84 51.73 2.12

Youtube-VIS
STUD [9] 83.93 74.54 24.42 11.03
FFS (ours) 81.90 76.35 25.10 8.23

Table 3. Performance evaluation with ResNet-50 backbone.

In Table 3, we also show the performance while using
ResNet−50 [18] as an alternative backbone and compare
our results with VOS [10] and STUD [9] with MS-COCO as
the outlier dataset. The results show that using ResNet-50 as
the backbone achieves state-of-the-art ID and OD detection
performance with our framework. Overall, Tables 1, 2 and 3
demonstrate the effectiveness of FFS for OD detection for
images and videos with lower training time and high ID de-
tection performance.

4.3. Ablation Studies

In this section, we perform an exhaustive study of
meta-parameters that affects the performance of FFS. We
also qualitatively compare OD detection results with the
VOS approach. For uniformity, we fix the ID dataset as
PASCAL-VOC and OD dataset as MS-COCO unless stated
otherwise in the experiments.

VOS plus rejection sampling: Sampling outliers from
a class conditional Gaussian (as performed in VOS [10])
does not ensure that such an outlier will have lower likeli-
hoods for other class Gaussians. Therefore, we compute the
log-likelihoods of the outliers using all class Gaussians and
reject those with a higher likelihood from at least one other
class compared to its generator class. Table 4 shows the re-
sults for VOS [10], VOS plus rejection sampling (named as
VOS+), and FFS. VOS+ enhances the OD detection com-
pared to VOS [10] due to selecting more effective outliers,
but it is still worse than FFS. Furthermore, VOS+’s training
time is much higher due to the iterative process of comput-
ing log-likelihoods through each Gaussian class.

Method FPR95 ↓ AUROC ↑ mAP (ID)↑ Time (h)
OD: MS-COCO / OpenImages

VOS [10] 48.22 / 52.74 89.04 / 85.97 51.50 2.43
VOS+ 45.59 / 47.96 89.40 / 87.19 51.74 7.38
FFS (ours) 44.15 / 45.08 89.71 / 88.29 51.80 2.18

Table 4. Comparison of VOS, VOS+, and FFS (ours). The base-
line mAP of a closed-set object detector is 51.35.

Normalizing Flow: We conducted a thorough study on
several types of normalizing flow models. We selected
NICE [6], RealNVP [7], Glow [27] and GIN [45] in the
chronological order for this experiment. We fixed the same
coupling layers and each model’s sub-network s and t con-
figuration for an equivalent comparison. Table 5 shows that
Glow outperforms NICE, RealNVP and GIN in terms of

both FPR95 and AUROC scores. GIN performs best for ID
detection but has a worse OD detection performance. As
the primary task of FFS is OD detection, we chose Glow as
our flow model for all our experiments.

Flow model FPR95 ↓ AUROC ↑ mAP ↑ Time (h)
NICE [6] 48.23 88.46 51.81 2.23
RealNVP [7] 45.76 88.95 51.84 2.28
Glow [27] 44.15 89.71 51.80 2.18
GIN [45] 48.31 88.36 52.00 2.25

Table 5. Validation of the Normalizing Flow models.

Figure 5 (c) shows the effect of the number of coupling
layers M on OD detection performance. M = 2 produces
the best results as the inlier features fit a suitable num-
ber of flow parameters. However, the OD detection per-
formance degrades for M > 2, and the training time sig-
nificantly increases due to more trainable parameters in
the network. Adding more trainable parameters requires
more training data for effective training; otherwise, it might
lead to overfitting and a more complex optimization, which
should explain the degradation in performance. Hence, we
fix M = 2, and in Figure 5 (a), we study the effect of the
number of fully-connected (fc) layers within s and t sub-
networks of each coupling layer. There is a slight improve-
ment in OD detection performance when two fc layers are
employed. In Figure 5 (b), we fix the number of coupling
and fc layers in each s and t sub-networks as two and adjust
the number of neurons in each fc layer. We report a degra-
dation in OD detection performance above 2048 neurons.

Lreg FPR95 ↓ AUROC ↑ mAP ↑ Time (h)
CE 69.92 84.72 48.70 2.27
JSD 52.83 85.79 48.60 2.25

Hinge 51.32 86.34 46.54 2.19
BCE (Ours) 44.15 89.71 51.80 2.18

Table 6. Validation of Lreg on OD detection performance.

Regularization loss Lreg and its weightage α: We
studied several regularization losses for our FFS frame-
work. Firstly, we used a simple multi-class cross-entropy
loss (CE) on the classification logits without including the
energy module. Secondly, we evaluated Jensen-Shannon di-
vergence (JSD) loss, where we minimized the divergence
between the distribution of the classification logits of the
outlier samples and uniform distribution. In Table 6, we
show that our BCE based Lreg loss outperforms all other
loss functions in terms of OD detection performance. The
ID detection performance is also higher, even though the
training time is comparable. In Figure 5 (e), we demon-
strate the effect of changing the weightage α of Lreg for
PASCAL-VOC as ID and MS-COCO as OD. As α in-
creases, the OD detection performance improves. However,
an even higher weightage degrades the OD detection per-
formance, due to which a careful selection of α is desirable.
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Figure 4. Visualization of OD detection on MS-COCO and OpenImages with VOS [10] (first and third row) and FFS (ours) (second and
fourth row) trained on PASCAL-VOC 2012 images. Ideally, an object in the images should be labeled as OOD with a green bounding box.
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Figure 5. Validation of the flow architecture, loss weightage α,
batch size, and projection sampling. The training time (in hours)
is shown above the horizontal x axis in the plots.

Projection Sampling: Figure 5 (f) shows the results af-
ter varying synthetic outliers. The OD detection improves
as we increase the number of sampled outliers os but de-
grades with much higher values of s. The coverage of
log-likelihoods from many sampled outliers broadens even
though the average log-likelihood is similar to the likeli-
hood threshold δ. Hence, some outliers may lie inside,
while others exist far outside the decision boundary lead-
ing to bad regularization. We report that rejection sampling
achieves better OD detection performance when compared
to the best results of projection sampling. Since projection
sampling enforces the outliers to be close to the decision
boundary, it may be insufficient to estimate the entire out-
lier manifold. In contrast, the rejection sampling synthe-
sizes outliers near the decision boundary and in the proper

outlier manifold, leading to a better model regularization.
Qualitative analysis: Figure 4 shows the OD detection

results on MS-COCO and OpenImages with FFS and VOS
trained on PASCAL-VOC. The results show that FFS out-
performs VOS in recognizing outlier objects. Additionally,
our method’s softmax confidence score is lower than VOS
when both methods misclassify the outlier objects as inliers.

5. Conclusion
We presented a new methodology for outlier-aware ob-

ject detection that learns a combined data distribution of all
inlier object classes. By sampling from the low-likelihood
region of a jointly trained normalizing flow model, our
approach generates suitable synthetic outlier samples for
training the outlier detection head of our compound model.
In contrast, previous approaches model inliers with class-
conditional Gaussians, resulting in outlier samples that may
have a high likelihood for some other class. We report state-
of-the-art results for image and video datasets with standard
outlier detection metrics while decreasing the model train-
ing time. We also show that simple rejection sampling con-
tributes more useful synthetic outliers than projection sam-
pling with a fixed likelihood threshold. In future work, one
could validate this finding on other OD detectors. Our idea
also extends to developing an outlier-aware instance seg-
mentation model and an active learning scheme to correct
the failure modes in weakly-supervised object detectors.
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Supplementary Material

A. Glossary
X The training dataset with X := (x1, x2, ..., xN ) containing N images or videos
Y The ground-truth labels with Y := {1, 2, ...,K} for K + 1 inlier object classes
B The ground-truth coordinates of the bounding boxes with b ∈ B
l(x, b̂) The fixed-size box features of both inlier and background patches given the predicted bounding boxes b̂
lID(x, b̂) The fixed-size box features of only inlier patches given the predicted bounding boxes b̂
Ldet The standard object detection loss consisting of object classification and bounding-box regression losses
Lnll The negative log-likelihood loss to train the normalizing flow model on inlier features
Lreg The regularization loss for discriminative training using inlier and synthetic outlier features
ξ The energy-based threshold, when 95% of inlier objects in the validation set are correctly detected
h The classification head in the ROI head module of the Faster R-CNN architecture
f The normalizing flow network to maximize the likelihood of inlier features
Z The latent space of the flow network f defined as a multivariate Gaussian with zero mean and unit variance
Φ The binary classifier to differentiate the inlier from the synthesized outlier features via discriminative training
θ The learnable parameters of the standard object detector, i.e. Faster R-CNN
γ The learnable parameters of the normalizing flow f
ψ The learnable parameters of the binary classifier Φ
gk The generated synthetic features after randomly sampling k samples from flow’s latent space
os The selected synthetic outlier features from the generated features gk such that os ⊂ gk
τ The step size of the gradient descent for the projection sampling based outlier synthesis
δ The log-likelihood threshold to determine the synthesized outlier features based on projection sampling
E(h(.)) The energy-score calculated from the output of the classification head h
T The temperature coefficient to compute the energy score E(h(.))
α The weightage of the regularization loss Lreg in the overall training objective
β The weightage of the negative log-likelihood loss Lnll in the overall training objective

B. Visualization of inlier and synthesized outlier features
We provide the visualization of inlier features (in color) of PASCAL-VOC along with the synthesized outliers (in black)

after reducing the number of feature embeddings using Principal Component Analysis (PCA). We compare the results from
VOS [10] and our FFS approach in Figure 6. It is noticeable that VOS synthesizes outliers separately for each inlier class.
In contrast, our approach synthesizes outliers after estimating the accurate data distribution of all inlier classes using the
normalizing flow model, thereby leading to more effective regularization.

VOS FFS (ours)

Figure 6. PCA visualization of synthesized outliers (in black) and inlier features (in color) of all 20 PASCAL-VOC object classes.

11



C. Step size τ for projection sampling
In Table 7, we show the OD detection results of FFS approach for varying step size τ when projection sampling was

used to synthesize outliers precisely at the decision boundary. For this experiment, we fixed PASCAL-VOC as the inlier and
MS-COCO as the outlier dataset, respectively. We analyzed the number s of synthetic outliers, os, and τ to evaluate the
performance. It can be seen from the results that, irrespective of the step size τ , the OD detection performance improves as
we increase the number s of synthesized outliers os. However, the performance gets worse when the s is increased further.

# samples, s Step size, τ
τ = 1 τ = 0.5 τ = 0.1

FPR95 ↓ / AUROC ↑
1 55.56 / 85.90 51.13 / 86.73 52.34 / 86.21
2 50.56 / 87.39 49.48 / 87.95 49.94 / 86.92
4 48.93 / 88.83 47.23 / 89.44 47.49 / 88.72
8 49.79 / 88.96 48.28 / 89.61 48.95 / 88.84
16 59.02 / 81.47 59.60 / 82.09 59.32 / 83.54
32 60.44 / 82.38 57.92 / 81.99 58.54 / 82.65
64 57.72 / 82.43 58.67 / 82.22 59.91 / 83.43

Table 7. OD detection results after varying the step size τ of our projection sampling based strategy to synthesize outliers.

D. Datasets
Our experimental setup consists of three inlier and outlier datasets, where we train FFS on both image and video-based

inlier datasets. The image-based inlier dataset, i.e., PASCAL-VOC, does not contain the sequence of image frames in terms
of time. In contrast, the video-based datasets, BDD100K and Youtube-VIS, are a sequence of image frames dependent on
time. We follow the experimental setup of VOS [10] and STUD [9] and utilize the datasets provided for training and inference
of FFS. In addition, we show the object classes for each of the inlier datasets for a better interpretation of the subsequent
visual results:

• PASCAL-VOC: There are 16,551 training and 4,952 validation images in the dataset. The object classes are person,
bird, cat, cow, dog, horse, sheep, airplane, bicycle, boat, bus, car, motorcycle, train, bottle, chair, dining table, potted
plant, couch and tv.

• BDD100K: There are 273,406 training and 39,973 validation images in the dataset. The object classes are pedestrian,
rider, car, truck, bus, train, motorcycle and bicycle.

• Youtube-VIS: There are 67,861 training and 21,889 validation images in the dataset. The object classes are airplane,
bear, bird, boat, car, cat, cow, deer, dog, duck, earless seal, elephant, fish, flying disc, fox, frog, giant panda, giraffe,
horse, leopard, lizard, monkey, motorbike, mouse, parrot, person, rabbit, shark, skateboard, snake, snowboard, squirrel,
surfboard, tennis racket, tiger, train, truck, turtle, whale and zebra.

We evaluate our trained FFS framework on three different outlier datasets, namely MS-COCO, OpenImages, and nuIm-
ages. There are 930 images in MS-COCO and 1,761 images in OpenImages datasets, so objects in these images do not fall
into any of the inlier classes of PASCAL-VOC. Similarly, there are 2,100 images of the nuImages dataset for evaluating FFS
trained on BDD100K and 28,922 images of MS-COCO for evaluating FFS trained on Youtube-VIS. In all outlier datasets,
the objects present in the inlier dataset are mutually independent of objects in the outlier dataset.

E. Visualization of OD detection results for video datasets
In Figure 7 and Figure 8, we show the OD detection results when FFS was trained on video datasets. The results showcase

that we obtain significantly better results in detecting outliers and reducing the number of incorrect bounding box predictions
compared to STUD [9]. Additionally, for some image pairs, we reduce the model’s confidence when the object was wrongly
detected as an inlier by our approach and STUD [9].
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Figure 7. OD detection results on MS-COCO images when FFS was trained on Youtube-VIS dataset. In each image pair, the top image is
the results from STUD [9], and the bottom image is the results from FFS.
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Figure 8. OD detection results on nuImages when FFS was trained on BDD100K dataset. In each image pair, the top image is the results
from STUD [9], and the bottom image is the results from FFS.
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