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Abstract

Semantic map construction under bird’s-eye view (BEV)
plays an essential role in autonomous driving. In contrast
to camera image, LiDAR provides the accurate 3D obser-
vations to project the captured 3D features onto BEV space
inherently. However, the vanilla LIDAR-based BEYV feature
often contains many indefinite noises, where the spatial fea-
tures have little texture and semantic cues. In this paper,
we propose an effective LiDAR-based method to build se-
mantic map. Specifically, we introduce a BEV feature pyra-
mid decoder that learns the robust multi-scale BEV features
for semantic map construction, which greatly boosts the ac-
curacy of the LiDAR-based method. To mitigate the de-
fects caused by lacking semantic cues in LiDAR data, we
present an online Camera-to-LiDAR distillation scheme to
facilitate the semantic learning from image to point cloud.
Our distillation scheme consists of feature-level and logit-
level distillation to absorb the semantic information from
camera in BEV. The experimental results on challenging
nuScenes dataset demonstrate the efficacy of our proposed
LiDAR2Map on semantic map construction, which signifi-
cantly outperforms the previous LiDAR-based methods over
27.9% mloU and even performs better than the state-of-the-
art camera-based approaches. Source code is available at:
https://github.com/songw-zju/LiDAR2Map.

1. Introduction

High-definition (HD) map contains the enriched seman-
tic understanding of elements on road, which is a fundamen-
tal module for navigation and path planning in autonomous
driving. Recently, online semantic map construction has at-
tracted increasing attention, which enables to construct HD
map at runtime with onboard LiDAR and cameras. It pro-
vides a compact way to model the environment around the
ego vehicle, which is convenient to obtain the essential in-
formation for the downstream tasks.

Most of recent online approaches treat semantic map
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Figure 1. Comparisons on semantic map construction frameworks
(camera-based, LiDAR-based, Camera-LiDAR fusion methods)
and our proposed LiDAR2Map that presents an effective online
Camera-to-LiDAR distillation scheme with a BEV feature pyra-
mid decoder in training.

learning as a segmentation problem in bird’s-eye view
(BEV), which assign each map pixel with a category label.
As shown in Fig. 1, the existing methods can be roughly
divided into three groups, including camera-based meth-
ods [20,21,31,33,53], LiDAR-based methods [11,20] and
Camera-LiDAR fusion methods [20, 28, 38]. Among them,
camera-based methods are able to make full use of multi-
view images with the enriched semantic information, which
dominate this task with the promising performance. In con-
trast to camera image, LiDAR outputs the accurate 3D spa-
tial information that can be used to project the captured
features onto the BEV space. By taking advantage of the
geometric and spatial information, LiDAR-based methods
are widely explored in 3D object detection [19, 39,48, 58]
while it is rarely investigated in semantic map construction.


https://github.com/songw-zju/LiDAR2Map

HDMapNet-LiDAR [20] intends to directly utilize the Li-
DAR data for map segmentation, however, it performs in-
ferior to the camera-based models due to the vanilla BEV
feature with the indefinite noises. Besides, map segmenta-
tion is a semantic-oriented task [28] while the semantic cues
in LiIDAR are not as rich as those in image. In this work, we
aim to exploit the LIDAR-based semantic map construction
by taking advantage of the global spatial information and
auxiliary semantic density from the image features.

In this paper, we introduce an efficient framework for se-
mantic map construction, named LiDAR2Map, which fully
exhibits the potentials of LiDAR-based model. Firstly,
we present an effective decoder to learn the robust multi-
scale BEV feature representations from the accurate spa-
tial point cloud information for semantic map. It provides
distinct responses and boosts the accuracy of our baseline
model. To make full use of the abundant semantic cues
from camera, we then suggest a novel online Camera-to-
LiDAR distillation scheme to further promote the LiDAR-
based model. It fully utilizes the semantic features from the
image-based network with a position-guided feature fusion
module (PGF>M). Both the feature-level and lo git-level dis-
tillation are performed in the unified BEV space to facili-
tate the LiDAR-based network to absorb the semantic rep-
resentation during the training. Specially, we suggest to
generate the global affinity map with the input low-level
and high-level feature guidance for the satisfactory feature-
level distillation. The inference process of LIDAR2Map is
efficient and direct without the computational cost of dis-
tillation scheme and auxiliary camera-based branch. Ex-
tensive experiments on the challenging nuScenes bench-
mark [4] show that our proposed model significantly outper-
forms the conventional LiDAR-based method (29.5% mloU
vs. 57.4% mloU). It even performs better than the state-of-
the-art camera-based methods by a large margin.

Our main contributions are summarized as: 1) an effi-
cient framework LiDAR2Map for semantic map construc-
tion, where the presented BEV feature pyramid decoder can
learn the robust BEV feature representations to boost the
baseline of our LiDAR-based model; 2) an effective online
Camera-to-LiDAR distillation scheme that performs both
feature-level and logit-level distillation during the training
to fully absorb the semantic representations from the im-
ages; 3) extensive experiments on nuScenes for semantic
map construction including map and vehicle segmentation
under different settings, shows the promising performance
of our proposed LiDAR2Map.

2. Related Work

Semantic Map Construction. High-definition (HD) maps
have the rich information on road layout, which are essen-
tial to autonomous vehicles [1, 24, 46]. Traditional offline
approaches to HD map construction require lots of manual

annotations and regular updates [3, 17,44,50,55], which in-
cur the expensive costs on labeling. Recently, the learning-
based methods [20,25,57] have been proposed to construct
semantic map online with camera image and LiDAR point
cloud using an end-to-end network, which can be roughly
divided into three groups, including camera-based methods,
LiDAR-based approaches and Camera-LiDAR fusion meth-
ods. Camera-based methods [31,33, 53] learn to project the
perspective view (PV) features onto BEV space through the
geometric prior, which often have the spatial distortions in-
evitably. Besides, the camera-based methods rely on high-
resolution images and large pre-trained models for better
accuracy [21, 53], which brings serious challenges to the
practical scenarios. LiDAR-based approaches [11, 20] di-
rectly capture the accurate spatial information for the uni-
fied BEV feature representation. However, they cannot ro-
bustly deal with large noises in the vanilla BEV feature.
Camera-LiDAR fusion methods [20, 28, 38] make use of
both the semantic features from camera and geometric in-
formation from LiDAR. They achieve better results than
those approaches with single modality under the same set-
ting while having the larger computational burden. In this
paper, we intend to construct the semantic map from LiDAR
point cloud effectively.

Multi-sensor Fusion. Multi-sensor fusion is always a key
issue in autonomous driving, among which camera and
LiDAR fusion research is the most in-depth. Previous
methods obtain the promising performance on 3D detec-
tion and segmentation through a point-to-pixel fusion strat-
egy [43,49,59]. However, such pipeline requires the corre-
spondences between points and pixels, which cannot fully
utilize the information of whole image and all the point
cloud. Recently, multi-modal feature fusion in the unified
BEV space has attracted some attention [22, 28]. Convert-
ing the semantic features from camera into a BEV repre-
sentation can be better integrated with spatial features from
LiDAR [30,32]. This provides the enriched information for
downstream tasks like planning and decision-making. How-
ever, the fusion of multi-sensor may increase the computa-
tional burden on the deployment. In this work, we exploit
an effective online Camera-to-LiDAR distillation scheme to
fully absorb the semantic features for LIDAR-based branch.

Cross-modal Knowledge Distillation. Knowledge distil-
lation is originally proposed for model compression [14],
where knowledge can be transferred from a pre-trained
model to an untrained small model. In addition to logit-level
distillation [5, 7, 54], feature-level distillation has received
more attention [ 12, 13,35,47]. Cross-modal knowledge dis-
tillation has been validated in many tasks such as LiDAR
semantic segmentation [ 16,45], monocular 3D object detec-
tion [6], 3D hand pose estimation [51] and 3D dense cap-
tioning [52]. In this work, we introduce both feature-level
and logit-level distillation on BEV representation.
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Figure 2. Overview of LIDAR2Map Framework. LiDAR2Map employs the LiDAR-based network as the main branch to encode the
point cloud feature with a robust BEV feature pyramid decoder (BEV-FPD) for semantic map construction. During the training, the
camera-based branch is adopted to extract the semantic image features. Both feature-level and logit-level distillation are performed to
allow LiDAR-branch to benefit from the providing image features without the overhead during inference.

3. LIDAR2Map
3.1. Overview

In this work, we aim to explore the potentials of an ef-
ficient LIDAR-based model for semantic map construction.
Different from the previous LiDAR-based methods [1 1,20],
we introduce an effective BEV feature pyramid decoder to
learn the robust representations from the spatial information
of point cloud. To enhance the semantic information of sin-
gle LiDAR modality, we take into account of the images
through an online distillation scheme on the BEV space
that employs the multi-level distillation during the train-
ing. In the inference stage, we only preserve the LiDAR
branch for efficient semantic map prediction. Fig. 2 shows
the overview of our proposed LIDAR2Map framework.

3.2. Map-Oriented Perception Framework

Multi-Modal Feature Extractors. LiDAR sensor typically
outputs a set of unordered points, which cannot be directly
processed by 2D convolution. We investigate the most
commonly used backbones in 3D object detection, includ-
ing PointPillars [19] and VoxelNet [58], which can extract
the effective 3D features F;D)\ . from LiDAR point cloud.
Specifically, PointPillars converts the raw point cloud into
multiple pillars, and then extracts features from pillar-wise
point cloud by 2D convolution. VoxelNet directly voxelizes
the point cloud first and uses the sparse convolution to build
3D network to encoder the better 3D feature representation.
Then, the unified BEV representation FPLY) . is obtained by
pooling the 3D features F;D .

Besides, we build another network branch to encode the
pixel-level semantic features in perspective view from the
images, which is used in our presented online distillation
scheme (see Sec. 3.3). As in [32], we adopt a similar 2D-
3D transformation manner. Firstly, we extract the perspec-

tive features FLY__ from each input image I € R3*H*W
by 2D convolution and predict the depth distribution of D
equally spaced discrete points associated with each pixel.
Secondly, we assign the perspective features Fhy, . to D
points along the camera ray direction to obtaina D x H x W
pseudo point cloud features Fé?mera. Finally, the pseudo
point cloud features are flatten to the BEV space FEEYV

through the pooling as the LiDAR branch.

BEV Feature Pyramid Decoder. BEV features are re-
garded as the unified representation in our framework,
which can absorb both the geometric structure from LiDAR
and semantic features from the images. Based on BEV fea-
tures, the current LiDAR-based method in [20] employs a
fully connected layer as the segmentation head to obtain
segmentation results directly. Since the vanilla BEV fea-
ture from LiDAR backbone contains the ambiguous noise
response, it obtains the inferior performance compared with
camera-based models [31,53].

In this work, we develop a BEV feature pyramid decoder
(BEV-FPD) to capture the multi-scale BEV features with
less noises from LiDAR data for better semantic map con-
struction. Fig. 3 shows the architecture of the BEV-FPD.
Based on the BEV features FEEV from the LiDAR or cam-
era branch, we firstly perform 7 x 7 convolution on the BEV
features to generate the global features with the large re-
ceptive field. The multi-scale BEV features {FEEV}Y | are
obtained by the six successive layers, and each layer con-
sists of two standard residual block [10] to better transmit
the feature representation. The N-scale features {FPEV}N |
represent the different level of semantic features in the BEV
space. As the feature size decreases, the number of channels
increases. The bilinear interpolation is used to up-sample
the each low-resolution semantic maps and obtain the fea-
ture representations with the same resolution. We then con-
catenate the feature maps at all scales with the same reso-
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Figure 3. Ilustration of BEV Feature Pyramid Decoder (BEV-
FPD). BEV-FPD collects the multi-scale BEV features from six
layers to perform the feature aggregation for semantic map with a
segmentation head.

lution to perform the multi-scale feature aggregation. The
final semantic map is obtained by a segmentation head with
the softmax function to account for the probability distri-
bution of each category. As the layer number increases, the
corresponding BEV features FPEV can better capture the ro-
bust spatial features with accurate responses. It plays an es-
sential role in improving our proposed LiDAR-based model
(see Sec. 4.3).

3.3. Online Camera-to-LiDAR Distillation

To enhance the semantic representation for our LiDAR-
based model, we introduce an effective online Camera-to-
LiDAR distillation scheme in BEV space, which enables the
LiDAR-based branch to learn the semantic cues from the
images. It consists of three components, including Position-
Guided Feature Fusion Module (PGF?M), Feature-level
Distillation (FD) and Logit-level Distillation (LD).
Position-Guided Feature Fusion Module. PGF?M is in-
troduced to better fuse the features from camera and LiDAR
in BEV space, as shown in Fig. 4. Firstly, we concatenate
the BEV features along the channel dimension between two
modalities, i.e. LIDAR point cloud feature FEEY, . and cam-
era image feature FEEY . Then, we perform the prelimi-
nary fusion through a 3 x 3 convolutional layer to obtain

BEV
Friion as below,
BEV _ BEV BEV
FFusion,sl = Conv 3 x 3 ([FCamerm FLiDAR]) . (1)

Secondly, we calculate the relative coordinates of z-axis
and y-axis FBEV with the same size. Then, we concate-
nate it with the fusion result FEEY at the previous stage
along the channel dimension to encode the spatial informa-

tion, and perform 3 x 3 convolution:

BEV BEV BEV
FFUSiOILSZ = Conv 3 x 3 ([FFusion,sl’ FPos ]) . (2)
FBEY , is further fed into an attention layer that is com-

posed of a 2D adaptive average pooling, two-layer MLP and
a sigmoid function to build the global pixel affinity. Thus,

its result FEEY . is obtained by

FIEEs\i;n,SS =0 (MLP (AVg(FIEES\i;an))) © Flgl}fs\ii)n,sr (3)
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Figure 4. Illustration of Position-Guided Feature Fusion Mod-
ule (PGF?M). In PGF?M, the camera image features and LiDAR
features in BEV space are in integration with the relative position
information.
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Feature-level Distillation. To facilitate the LIDAR branch
to absorb the rich semantic features from the images, we
take advantage of the multi-scale BEV features {FPEV}N |
from BEV-FPD for the feature-level distillation. Generally,
it is challenging to directly distill high-dimensional fea-
tures between camera and LiDAR modalities, which lack
the global affinity of BEV representation. The straightfor-
ward feature distillation on these dense feature often fails to
achieve the desired results. To address this issue, we employ
the tree filter [23,40] as the transform function F to model
the long-range dependencies of dense BEV features in each
modality by minimal spanning tree. Specifically, the shal-
low pillar/voxel features FEEV from LiDAR backbone and
multi-scale BEV features {FBEV} Y | are treated as the low-
level and high-level input guidance of tree filter. With these
low-level and high-level guidance, the feature transform is
performed by tree filter in the cascade manner to obtain the
global affinity map MPEV for the corresponding i-th scale

BEV features FBEV as following,

MY = F(F (B RRY) BY) ()
We compute the affinity similarity between each MEE)\;RJ
from the LiDAR branch and MFBES}QM of the Camera-
LiDAR fusion branch to achieve the feature-level distilla-
tion. More specifically, a simple L; distance is used to ac-
cumulate them at all the scales as below,

N
Lteature = Z H Mglllis\ii)n,i - MEE)Y\RJ Hl : (©)
i=1
We employ Lteature as one of the loss terms to enable the
LiDAR-based branch to benefit from the image feature im-
plicitly through the network optimization.
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Figure 5. Illustration of Feature-level Distillation. Multi-scale
BEV features are fed into two successive tree filters to generates
the affinity map with the low-level and high-level guidance. The
feature-level distillation is performed on generated affinity maps
between LiDAR and fusion branch.

Logit-level Distillation. The semantic map predictions of
segmentation head represent the probability distribution of
each modality. We further suggest the logit-level distillation
to make the LiDAR-based “Student” prediction learn from
the soft labels generated by Camera-LiDAR fusion model
as a “Teacher”.

Through BEV-FPD with the segmentation head, the cor-
responding semantic map predictions PP\, and PREY
can be obtained. As in [16], we adopt KL divergence to
measure the similarity on the probability distribution, which
makes the PPEY . of LiDAR closer to PEEY ~of fusion
“Teacher” as below,

Liogit = Dxr1, (Phiaion|PLibAR) - (7

Fusion
3.4. Training and Inference

Overall Loss Function for Training. In this work, we treat
the semantic map construction task as a pixel-level classifi-
cation problem with segmentation loss in network optimiza-
tion. Overall, the total training loss of our proposed frame-
work consists of three terms:

L= [fseg + £fusion5eg + £distilla (8)

where Lgeg and Leusion seg are the segmentation losses of
LiDAR-branch and Camera-LiDAR fusion branch, respec-
tively. Lagistinn consists of Leeature and Liogit for online
Camera-to-LiDAR distillation.

The segmentation loss for semantic map construction is
composed of two items including L. and L) as following,

Eseg = Ece + Elsa (9)

where Lce is the cross-entropy loss. Ljs is employed to
maximize the Intersection-over-Union (IoU) score as below,

1 _
Lis = @l > Aj (m(c)), (10)

ceC

where |C| is the total number of classes. m(c) denotes the
vector of pixel errors on class ¢ € C. Ay, is the Lovész
extension [2] for m(c) as the surrogate loss. The calculation
of Ltusion_seg 18 the same as Lgeg.

Inference. The LiDAR-based branch is fully optimized
during training, which not only captures the spatial geomet-
ric features but also absorbs the enriched semantic informa-
tion from the camera images. It is worthy of noting that we
only preserve the LiDAR-branch for the predictions. The
inference process is direct and efficient without incurring
the computational cost on distillation and the camera-based
branch.

4. Experiments
4.1. Implementation Details

Dataset. To evaluate the efficacy on semantic map
construction, we conduct comprehensive experiments on
nuScenes benchmark [4] that is a general and authorita-
tive dataset. It contains 1,000 driving scenes collected in
Boston and Singapore. The vehicle used for data collec-
tion is equipped with a 32-beam LiDAR, five long range
RADARSs and six cameras. There are 700 and 150 complete
scenes for training and validation, respectively.
Evaluation. In this paper, we evaluate the performance
on map and vehicle segmentation under different evaluation
settings. For map segmentation, we adopt the same setting
as HDMapNet [20], which uses a 60m x 30m area around
the ego vehicle and samples a map at a 15cm resolution with
three classes, including Divider (Div.), Ped Crossing (P. C.)
and Boundary (Bound.). For vehicle segmentation, we uti-
lize two commonly used settings proposed in PON [34] and
Lift-Splat [32]. Setting 1 for vehicle segmentation employs
a 100m x 50m map around the ego vehicle and samples
at a 25cm resolution. Setting 2 adopts a 100m x 100m
map at 25cm resolution. The mean Intersection-over-Union
(mloU) is used for the performance evaluation.

Training. For camera-branch, we choose Swin-Tiny [27]
pre-trained on ImageNet [36] as the image backbone. For
LiDAR-branch, PointPillars [19] and VoxelNet [58] are
used to extract the point cloud feature. We train the whole
network with 30 epochs using Adam optimizer [!8] having
a weight decay of 1e~7 on 4 NVIDIA Tesla V100 GPUs.
The learning rate is 2¢~3 for PointPillars and 1e~* for Vox-
elNet, which decreases with a factor of 10 at the 20th epoch.
The image size is set to 352 x 128 for PointPillars and
704 x 256 for VoxelNet during training. More training de-
tails under different settings are given in our supplementary
material.

4.2. Main Results

Map Segmentation. For quantitative evaluation, we com-
pare our method with the state-of-the-art camera-based



Table 1. Performance comparison on the validation set of nuScenes with the 60m x 30m setting for map segmentation. “*” means the

results reported from HDMapNet [20]. “t” denotes the results reported from UniFusion [33].
Method Image Size Modality Backbone Divider Ped Crossing Boundary mloU
VPN* [30] 352x128 Camera EfficientNet-BO [4 1] 36.5 15.8 35.6 29.3
Lift-Splat* [32] 352x128 Camera EfficientNet-BO 38.3 149 39.3 30.8
HDMapNet-Camera [20]  352x128 Camera EfficientNet-BO 40.6 18.7 39.5 32.9
BEVSegFormer [31] 800x448 Camera ResNet-101 51.1 32.6 50.0 44.6
BEVFormer' [21] 1600900 Camera ResNet-50 53.0 36.6 54.1 47.9
BEVerse [53] 1408 %512 Camera Swin-Tiny 56.1 44.9 58.7 53.2
UniFusion [33] 1600900 Camera Swin-Tiny 58.6 43.3 59.0 53.6
HDMapNet-Fusion [20] 352x128  Camera & LiDAR  EfficientNet-BO & PointPillars 46.1 314 56.0 44.5
HDMapNet-LiDAR [20] - LiDAR PointPillars 26.7 17.3 44.6 29.5
LiDAR2Map - LiDAR PointPillars 60.4 45.5 66.4 57.4
LiDAR2Map - LiDAR VoxelNet 61.5 46.3 68.1 58.6

Table 2. Performance comparison on the validation set of nuScenes with two commonly used settings for vehicle segmentation without
masking invisible vehicles. Setting 1 is with the 100m X 50m at 25cm resolution. Setting 2 is with the 100m X 100m at 50cm resolution.

Method Image Size Modality Backbone Setting 1 Setting 2 #Params(M) FPS
VED [29] 800x 600 Camera ResNet-50 8.8 - - -
PON [34] 800x600 Camera ResNet-50 24.7 - 38 30
VPN [30] 800x 600 Camera ResNet-50 25.5 - 18 -
STA [37] 1280%720 Camera ResNet-50 36.0 - - -
Lift-Splat [32] 352x128 Camera EfficientNet-BO - 32.1 14 25
FIERY Static [15] 448 %224 Camera EfficientNet-B4 37.7 35.8 7.4 8
PolarBEV [26] 960x448 Camera EfficientNet-B4 454 41.2 7.4 10
SimpleBEV [9] 800x448 Camera ResNet-101 - 47.4 37 7.3
TransFuseGrid [38] 352x128 Camera & LiDAR EfficientNet-B0O & PointPillars - 35.9 - 18.4
Pillar feature Net [38] - LiDAR PointPillars - 23.4 - -
LiDAR2Map - LiDAR PointPillars 58.9 52.1 8.8 35

models, including BEVSegFormer [31], BEVFormer [21],
BEVerse [53] and UniFusion [33], as shown in Tab. 1.
LiDAR2Map outperforms all the existing methods signif-
icantly and boosts the performance of the LiDAR-based
models from 29.5% mloU to 57.4% mloU. Our model with
PointPillars [19] outperforms the state-of-the-art camera-
based methods by 3.8% mloU. With the stronger backbones
like VoxelNet [58], LIDAR2Map even achieves a segmen-
tation accuracy of 58.6% mloU. It is worthy of noting that
LiDAR2Map achieves the promising results in the case of
Boundary class. It indicates that the accurate height infor-
mation from LiDAR is important for map segmentation.
Furthermore, we visualize the results of LiDAR2Map in
some typical driving scenarios including cloudy and rainy
conditions as shown in Fig. 6. More visualization results
are included into the supplementary material.

Vehicle Segmentation. Vehicle segmentation is one of the
most important task among the moving elements in au-
tonomous driving. In order to examine the scalability of
our method, we evaluate LIDAR2Map under two different
settings for vehicle segmentation. We only adopt PointPil-
lars as the LiDAR backbone and report the inference speed
of LiDAR2Map on single NVIDIA RTX 2080Ti GPU for a

fair comparison. As shown in Tab. 2, our method not only
outperforms the state-of-the-art camera-based models by a
large margin in accuracy, but also has the small model pa-
rameters with 35 FPS speed in inference. These promising
results indicate the efficacy of our proposed LiDAR2Map
approach and defend the strength of LiDAR on semantic
map construction. We provide visual results on vehicle seg-
mentation in the supplementary material.

4.3. Ablation Studies

BEV Feature Pyramid Decoder. In our experiments,
we find that the layer number to obtain multi-scale fea-
tures in the BEV-FPD has the substantial impact on the
performance of LiDAR2Map for map segmentation. As
shown in Tab. 3, the results of Camera-LiDAR fusion model
and LiDAR2Map using PointPillars have been greatly im-
proved with the increasing number of layers. With the 2-
layer model in BEV-FPD, our LIDAR2Map achieves 43.8%
mloU. For the 4-layer model in BEV-FPD, a large perfor-
mance improvement with +10.5% mloU is obtained, where
LiDAR2Map achieves the comparable results against the re-
cent camera-based methods like BEVerse [53] and UniFu-
sion [33]. As the number of layers is increased to 6, the ac-
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Figure 6. Visualization of LIDAR2Map on the validation set of nuScenes with cloudy and rainy condition scenes. The left shows the
surrounding views from cameras with the six views, which are just used for visualization. The middle is the input LiDAR data for
inference. The right is the predicted semantic map and the corresponding ground truth.

curacy is boosted to 57.4% mloU and achieves the best per-
formance. We further visualize the feature maps to analyze
our LiDAR2Map with different layer number in BEV-FPD.
As shown in Fig. 7, the model with 6-layer BEV-FPD holds
the distinct response map in the region, where the target el-
ement appears with little noise for semantic map construc-
tion. Furthermore, Tab. 3 reports the performance of fusion
model as the “Teacher” in our LIDAR2Map. Notably, Li-
DAR2Map with 6-layer BEV-FPD as a “Student” network
has achieved the 98.8% performance of fusion model with
2x faster inference speed.

Layer Num. | Div. P.C. Bound. | mloU | FPS
’ 493 341 58.4 473 | 8.2

454 305 55.6 43.8 | 233

4 569 45.1 64.0 553 | 72
55.7 439 63.2 543 | 16.3

6 60.8 47.2 66.3 58.1 6.3

604 455 66.4 574 | 12.6

Table 3. Accuracy and speed performance with different layer
number of BEV-FPD. At each row, the upper one is the results
of the Camera-LiDAR fusion model (“Teacher”), and the lower
one corresponds to the result of LIDAR2Map (“Student”) in gray.

Online Camera-to-LiDAR Distillation Scheme. To ex-
amine the effect of each module in the online Camera-to-
LiDAR distillation, we conduct the ablation experiments on
nuScenes, including map and vehicle segmentation. For
vehicle segmentation, we adopt Setting 2 for performance
evaluation. As shown in Tab. 4, our baseline model achieves
52.2% mloU on map segmentation by the design on 4-layer
BEV-FPD. The proposed Position-Guided Feature Fusion

-

Without BEV-FPD
mloU: 40.5

2-layer BEV-FPD
mloU: 48.2

4-layer BEV-FPD
mloU: 74.6

6-layer BEV-FPD
mloU: 80.6

\

Figure 7. Visualization comparisons of LIDAR2Map with differ-
ent BEV-FPDs and the corresponding semantic map predictions.
The mloU value means the evaluation score of the single frame.
Besides the baseline model without BEV-FPD, we provide the re-
sults of the second layer’s output with 2-, 4- and 6-layer BEV-FPD
based models, respectively. LIDAR2Map with 6-layer BEV-FPD
obtains the best segmentation performance and its feature map has
more accurate responses with less noises.

Module (PGF?>M) improves the baseline around 0.4% mloU
and 1.5% mloU on map and vehicle, respectively. This
demonstrates that multi-modality fusion is effective with
both spatial features from LiDAR and semantic features
from camera. Moreover, Feature-level Distillation (FD) and
Logit-level Distillation (LD) achieve over 0.9/1.2% mloU
and 1.1/0.7% mloU performance gains on map/vehicle seg-
mentation, respectively. These encouraging results demon-
strate that our proposed online distillation scheme can ef-
fectively improve the model accuracy.



Baseline | PGF°M FD LD | Map | Vehicle
4 522 49.1
4 v 52.6 50.6
4 v 4 53.5 51.8
4 v v | 53.7 51.3
v v v v | 543 52.1

Table 4. The effectiveness of our online Camera-to-LiDAR distil-
lation scheme with different settings on the nuScenes dataset.

Method Div. P.C. Bound. | mloU
Baseline 539 412 61.6 52.2
MonoDistill [6] 472 314 55.1 44.6
MGD [47] 52.0 38.7 59.6 50.1
xMUDA [16] 547 426 62.5 53.3
2DPASS [45] 553 43.0 62.4 53.6
LiDAR2Map (Ours) | 55.7 439 63.2 54.3

Table 5. Performance comparison with different knowledge distil-
lation strategies on the nuScenes dataset.

Cam. Num. Div. P.C. Bound. mloU
0 53.9 41.2 61.6 52.2
1 55.4 43.1 63.3 53.9
2 56.3 43.7 63.4 54.5
4 56.0 43.1 63.0 54.0
6 55.7 43.9 63.2 54.3

Table 6. Performance comparison with different camera number
during training on the nuScenes dataset.

Comparison with Other Distillation Schemes. To fur-
ther investigate the effectiveness of our online distillation
scheme, we compare it with current knowledge distillation
strategies. We have re-implemented these methods in the
BEV feature space under the same setting to facilitate a fair
comparison. Tab. 5 shows the comparison results. Among
these methods, MonoDistill [6] and MGD [47] are feature-
based distillation methods. Their results are even worse
than the baseline model, which indicates the difficulty of
the cross-modal knowledge distillation on high-dimensional
BEV features. xXMUDA [16] and 2DPASS [45] are the logit-
level distillation methods, which obtain better results over
the baseline. Our Camera-to-LiDAR distillation scheme
provides a more effective way compared against other dis-
tillation schemes and achieves the best performance.

Different Number of Cameras. Tab. 6 reports the re-
sults to compare the performance with the camera branch
using the different number of cameras. The performance
is not linearly related to the number of camera like those
camera-based methods [56]. The LiDAR2Map model with
two cameras of front and rear performs the best with 54.5%
mloU while the models with all six cameras achieves 54.3%
mloU. These results show that it is unnecessary to use so
many cameras when the LiDAR is adopted.

Figure 8. Scene-level semantic map obtained by accumulating 20s
single frame maps with Bayesian filtering. The red dots indicate
the trajectory of the ego vehicle.

4.4. Scene-Level Semantic Map Construction

Semantic map construction in a single frame is limited
for self-driving. It is necessary to fuse the keyframes in
a whole scene for scene-level map construction. We con-
struct the scene-level semantic map on nuScenes [4], which
is a typical dataset collected in driving scenes. Each scene
lasts for 20s, and around 40 keyframes are sampled at 2Hz.
We introduce a temporal accumulation method to build the
scene-level semantic map. More precisely, the local seman-
tic maps are warped to the global coordinate system with
the extrinsic matrix. Then, the coincident regions are op-
timized by Bayesian filtering [34, 42] to obtain a smooth
global map. The visual examples shown in Fig. 8§ demon-
strate that our LIDAR2Map approach is able to generate the
consistent maps and provide more information for down-
stream tasks such as navigation and planning.

5. Conclusion

In this work, an efficient semantic map construction
framework named LiDAR2Map, is presented with an effec-
tive BEV feature pyramid decoder and an online Camera-to-
LiDAR distillation scheme. Unlike previous camera-based
methods that have achieved excellent performance on this
task, we mainly use LiDAR data and only extract image
features as auxiliary network during training. The designed
distillation strategy can make the LiDAR-based network
well benefit from the semantic features of the camera image.
Eventually, our method achieves the state-of-the-art perfor-
mance on semantic map construction including map and ve-
hicle segmentation under several competitive settings. The
distillation scheme in LIDAR2Map is a general and flexible
cross-modal distillation method. In the future, we will ex-
plore its application in more BEV perception tasks such as
3D object detection and motion prediction.
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Appendix
A. Training for Vehicle Segmentation

The training details for vehicle segmentation in Setting 1
and Setting 2 are slightly different from map segmentation.
Also, we adopt Swin-Tiny [27] and PointPillars [19] as the
feature extractors for image and LiDAR point cloud, respec-
tively. The BEV feature pyramid decoder (BEV-FPD) uses
a three-layer model with a trade-off between the accuracy
and inference speed. We train the whole network for 15
epochs with 2 NVIDIA RTX 2080Ti GPUs. The learning
rate is 1.5¢~3, which decreases by a factor of 10 at the 10th
epoch. The image size is set to 352 x 128 during training.

B. Additional Results
B.1. Map Segmentation

More Visual Results for BEV-FPD. We provide more vi-
sual results from the output of LiDAR2Map with different
BEV-FPDs. In Fig. Al, the predicted semantic maps are
gradually refined and become more accurate with the deep-
ening of the number of layers, which further indicates the
effectiveness of BEV-FPD on promoting our LIDAR2Map.

Comparison Under Different Weather and Light Condi-
tions. As illustrated in Tab. A1, we compare LiIDAR2Map
with the state-of-the-art methods including HDMapNet-
Fusion [20] and BEVerse [53] in different conditions. We
employ PointPillars [19] as LiDAR backbone and 6-layer
BEV-FPD for LiDAR2Map. Our method achieves the sta-
ble segmentation accuracy and outperforms other methods
under different weather and light conditions. Fig. A2 pro-
vides the qualitative comparison in several typical scenar-
ios. LIDAR2Map presents the superior capability in sunny,
rainy and nighttime compared to HDMapNet-Fusion [20]
and BEVerse [53]. Fig. A3 further reports more map pre-
dictions of our LIDAR2Map.

Method Modality Rainy Night All
HDMapNet-Fusion [20] | Camera & LiDAR | 38.7 393 445
BEVerse* [53] Camera 48.8 4.4 517
LiDAR2Map (Ours) LiDAR 49.6 492 574

Table Al. Map segmentation results under different weather and

light conditions on the nuScenes dataset. “x”” means the results are
obtained from its official public model.

B.2. Vehicle Segmentation

For vehicle segmentation, we provide the qualitative re-
sults on the nuScenes dataset with Setting 2 in Fig. A4. It
obviously indicates that our method obtains the accurate ve-
hicle predictions in different scenes.

11

C. Limitations and Future Work

The online Camera-to-LiDAR distillation scheme in our
method incurs a certain amount of computation during the
training, which increases the overall training time. Besides,
the semantic map construction task relies on high-definition
map annotations for the network training, which are only
available in few datasets [4]. This limits the application of
semantic map to more general autonomous driving scenar-
ios. In the future, we will try to speed up the training pro-
cess and explore the potential of LIDAR2Map with weakly-
supervised forms, such as open street map [&].
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