
SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow

Itai Lang1,2* Dror Aiger2 Forrester Cole2 Shai Avidan1 Michael Rubinstein2

1Tel Aviv University 2Google Research
{itailang@mail, avidan@eng}.tau.ac.il {aigerd, fcole, mrub}@google.com

Abstract

Scene flow estimation is a long-standing problem in com-
puter vision, where the goal is to find the 3D motion of
a scene from its consecutive observations. Recently, there
have been efforts to compute the scene flow from 3D point
clouds. A common approach is to train a regression model
that consumes source and target point clouds and outputs
the per-point translation vector. An alternative is to learn
point matches between the point clouds concurrently with
regressing a refinement of the initial correspondence flow.
In both cases, the learning task is very challenging since the
flow regression is done in the free 3D space, and a typical
solution is to resort to a large annotated synthetic dataset.

We introduce SCOOP, a new method for scene flow esti-
mation that can be learned on a small amount of data with-
out employing ground-truth flow supervision. In contrast to
previous work, we train a pure correspondence model fo-
cused on learning point feature representation and initial-
ize the flow as the difference between a source point and
its softly corresponding target point. Then, in the run-time
phase, we directly optimize a flow refinement component
with a self-supervised objective, which leads to a coherent
and accurate flow field between the point clouds. Experi-
ments on widespread datasets demonstrate the performance
gains achieved by our method compared to existing leading
techniques while using a fraction of the training data. Our
code is publicly available1.

1. Introduction
Scene flow estimation [33] is a fundamental problem

in computer vision with various use-cases, such as au-
tonomous driving, scene parsing, pose estimation, and ob-
ject tracking, to name a few. Given two consecutive obser-
vations of a 3D scene, the aim is to compute the dynamics
of the scene between the observations. Scene flow predic-
tion based on 2D images has been thoroughly investigated
in the literature [21, 23, 34, 38, 39]. However, in light of the
1https://github.com/itailang/SCOOP
*The work was done during an internship at Google Research.

100 1,000 10,000
Train set size (#, in a log10 scale)

0
10
20
30
40
50
60
70
80
90

100

St
ric

t a
cc

ur
ac

y
(%

)

FlowNet3D

FLOT
FESTA

3DFlow
BiPFN

SCOOP (ours)
SCOOP+ (ours)

RigidFlow

Just Go with the Flow
Self-Point-Flow

SCOOP (ours)

SCOOP+ (ours)

Full supervision, synthetic train data (FlyingThings3D)
Self supervision, synthetic train data (FlyingThings3D)
Self supervision, real train data (KITTI)

Figure 1. Flow accuracy on the KITTI benchmark vs. the train
set size. Our method is trained on one or two orders of magnitude
less data while surpassing the performance of the competing tech-
niques [4, 17, 18, 20, 25, 29, 36, 37] by a large margin. Please see
Table 1 for the complete details of the evaluation settings.

recent proliferation of 3D sensors, such as LiDAR, there is a
surge of interest in scene flow methods that operate directly
on the 3D data [11, 17, 20, 25, 41].

Liu et al. [20] were among the first to pursue this
research avenue. They proposed FlowNet3D, a fully-
supervised neural network that learned to regress the flow
between 3D point clouds and showed remarkable perfor-
mance improvement over image-based techniques [1, 23,
35]. Since their method required ground-truth flow anno-
tations, which are scarce for real-world data, they turned to
training on a large synthetic dataset that compromised the
generalization capability to real-world LiDAR data.

Follow-up works devised self-supervised learning
schemes [17, 25] and narrowed the domain gap by training
on unannotated LiDAR point cloud pairs. However, similar
to Liu et al. [20], they used a regression approach in which
the model should learn to compute the flow in the free 3D
space. This task is extremely challenging, given the irreg-
ular nature of point clouds, and requires a large amount of
training data for the network to converge.

In another line of work [8, 13, 29], researchers leveraged
point cloud correspondence for scene flow prediction. In
this approach, the flow is computed as the translation of
a point in the first point cloud (source) to its softly corre-

1

ar
X

iv
:2

21
1.

14
02

0v
2

 [
cs

.C
V

]
 1

4
A

pr
 2

02
3

https://github.com/itailang/SCOOP

Correspondence
Learning

Regression
Learning

Refinement
Learning

Point
clouds
 Flow

Point
clouds
 Flow

Point
clouds
 Flow

Point
clouds
 Flow
 Flow

Point
clouds

Train

Test

Correspondence

Model

Refinement

Model

Regression

Model

Correspondence
Learning

Refinement
Optimization

Initial
Flow

Flow

Point
clouds

Point
clouds
 Optimize

Freeze

Correspondence
Model

Flow
Optimization

No

Training

aaaaaaaFlowNet3D [20] aaaaaaaaaaFLOT [29] aaaaaaaaaaaNeural Prior [19] aSCOOP (ours)

Figure 2. Comparison of scene flow approaches. Given a pair of point clouds, FlowNet3D [20] learns to regress the flow in the free
3D space, and the trained model is frozen for testing. FLOT [29] concurrently trains two network components: one that computes point
correspondence and another that regresses a correction to the resulting correspondence flow. Neural Prior [19] optimizes the flow between
the point clouds from scratch without learning. In contrast to previous work, we take a hybrid approach. We train a pure correspondence
model without flow regression, which serves for flow initialization. Then, we directly optimize only the flow refinement at the test-time.

sponding point in the second one (target). The softly cor-
responding point is a weighted sum of target points based
on point similarity in a learned latent space. Thus, rather
than the challenging regression problem in the 3D ambi-
ent space, the flow estimation task boils down to point
feature learning and is reduced to the convex combination
space [31] of existing target points. However, to relax this
constraint, another network component is trained to regress
flow corrections. The joint training of point representation
and flow refinement burdens the learning process and re-
tains the reliance on large datasets with flow supervision.

Another emerging approach is an optimization-only flow
computation [19, 28]. In this case, no training data is in-
volved, and the flow is optimized at run-time for each scene
separately. Despite the high accuracy such a dedicated op-
timization achieves, it requires a long processing time.

We present SCOOP, a hybrid flow estimation method
that can be learned from a small amount of training data.
SCOOP consists of two parts: a self-supervised neural net-
work for point cloud correspondence and a direct flow re-
finement optimization module. During the training phase,
the network learns to extract point features for soft point
matches, which initialize the flow between the point clouds.
In contrast to previous work, our network is focused on
learning just the point embeddings, allowing its training on
a very small dataset, as shown in Figure 1. Additionally,
we consider the confidence of the network in the computed
correspondences to guide the learning process better.

Then, instead of training another network for regress-
ing flow updates, we define an optimization problem and
directly optimize residual flow refinement vectors at run-
time. The optimization objective encourages a coherent
flow field while retaining the translated source points close
to the target point cloud. Our design choices improve the
accuracy compared to learning-based methods and reduce
the processing time with respect to the optimization-only
approach [19, 28]. For both correspondence learning and
refinement optimization, we use a self-supervised distance
objective and a smoothness prior instead of ground-truth

flow labels. Figure 2 presents the difference between our
approach and leading previous ones.

In summary, we propose a hybrid flow prediction ap-
proach for point clouds based on self-supervised correspon-
dence learning and direct run-time residual flow optimiza-
tion. Using well-established datasets in the scene flow liter-
ature, we show that our approach yields clear performance
improvement over existing state-of-the-art methods while
using a fraction of the training data and without employing
any ground-truth flow supervision.

2. Related Work

Flow regression. A common approach for scene flow
estimation on point clouds is to train a flow regression
model [4,11,20,37,41]. It is a neural network that computes
the flow vectors between the point clouds in the ambient
3D space. Liu et al. [20] proposed FlowNet3D, which en-
coded the point clouds into a latent space, mixed point fea-
tures with a flow embedding layer, and regressed the scene
flow by decoding the mixed point features. FlowNet3D was
trained in a fully-supervised manner, using an l2 loss with
respect to ground-truth flow annotations.

Liu et al. [20] inspired a line of follow-up works [4,
17, 25, 36, 37]. Wang et al. [37] added spatial and tem-
poral attention layers to FlowNet3D’s architecture. In Bi-
PointFlowNet [4], the authors propagated features from
each point cloud bidirectionally, augmenting the point fea-
ture representation. Mittal et al. [25] discarded flow su-
pervision by utilizing a self-supervised nearest neighbor
loss and cycle consistency between the forward and reveres
scene flows, and Li et al. [17, 18] extracted flow labels for
training from the data itself. Similar to the latter methods,
we also refrain from ground-truth flow supervision in our
training scheme. However, rather than flow regression, we
base our technique on soft point matches in the scene, which
simplifies the flow estimation problem.

Point cloud correspondence. Finding correspondences
is widely applied to various vision tasks [14, 29, 42, 44].

2

Several methods have been proposed for dense mapping be-
tween non-rigid point cloud shapes [7, 9, 14, 43]. Recently,
Lang et al. [14] suggested constructing one point cloud by
the other using latent space similarity and the point coor-
dinates themselves rather than regressing the correspond-
ing point cloud [9, 43]. Inspired by Lang’s work, we do
not use flow regression in our model and concentrate the
learning process on point feature representation. However,
while Lang et al. operated on complete shapes with one-
to-one correspondence, our method accommodates scenes
with partial objects where a perfect match may not exist.

Researchers have taken the correspondence approach to
the scene flow problem as well [8,13,29]. FLOT [29] com-
puted an optimal transport plan that served for an initial flow
between the point clouds and further regressed flow refine-
ment with a series of learned convolutions. Our work builds
on FLOT but differs from it in three main aspects. First, we
exclude flow regression from our training scheme and in-
stead apply direct run-time optimization to refine the initial
correspondence-based flow. Second, we use the model’s
confidence in the computed point matches to improve the
point feature learning. Third, we do not use any ground-
truth flow annotations, neither for the correspondence train-
ing nor for the refinement optimization, whereas FLOT re-
lies on fully-supervised scene flow data.

Optimization-based scene flow. Pontes et al. [28] sug-
gested a scene flow estimation technique that does not in-
volve learning. Instead, the flow was optimized completely
at run-time, such that the warped source is close to the tar-
get point cloud while demanding the flow to be “as-rigid-
as-possible”. Pontes et al. encoded this prior by minimiz-
ing the graph Laplacian defined over the source points. In
follow-up work [19], the explicit graph was replaced by
a neural prior, which implicitly regularized the optimized
flow field. In contrast to these papers, we initialize the flow
with a learned correspondence model and optimize only the
residual flow refinement at run-time.

3. Method

A point cloud is a set of unordered 3D points X ∈ Rn×3,
where n is the number of points. Given a pair of point
clouds of a scene, denoted as X,Y ∈ Rn×3 and referred
to as source and target, respectively, our goal is to estimate
a flow field F ∗ ∈ Rn×3 describing the per-point motion
from X to Y .

We tackle this problem via self-supervised soft corre-
spondence learning between the two point clouds and a
direct flow refinement optimization. An overview of the
method is shown in Figure 3. First, a deep neural net-
work is used to extract point features. Then, we calcu-
late a matching cost between points in the learned feature
space. Based on this cost, we solve an optimal transport

problem to compute a softly matched target point for each
source point, where the difference between the two is re-
garded as the correspondence-based flow. Finally, we refine
the flow field by demanding its consistency across neigh-
boring source points and obtain our estimated scene flow.
In both correspondence learning and flow refinement, no
ground-truth flow labels are employed.

3.1. Matching Cost

The cost of matching a point xi ∈ X to a point yj ∈ Y
is determined based on the point representation learned by a
deep neural network. The network consumes the raw point
clouds X , Y and computes point features ΦX ,ΦY ∈ Rn×d,
where d is the per-point feature dimension. The network’s
architecture is based on PointNet++ [30]. Its details are
given in the supplemental material.

Inspired by previous work [14, 17, 29], we first compute
the cosine similarity in the learned feature space:

Sij =
Φi

X · (Φ
j
Y)

⊤

||Φi
X ||2||Φ

j
Y ||2

, (1)

where Φi
X ,Φj

Y ∈ Rd are the i’th and j’th rows of ΦX and
ΦY , respectively. Then, the cost is set to

Cij = 1− Sij (2)

for points with a Euclidean distance less than 10 meters and
to∞ otherwise to avoid flow between points too far apart.

3.2. Soft Correspondence

Finding correspondence between the source and target
point clouds can be modeled as an optimal transport prob-
lem, where each source point is assigned with a mass 1

n
that is transported to the target points [17, 29]. Similar to
FLOT [29], we use the relaxed transport problem:

T ∗ =argmin
T∈Rn×n

+

∑
ij

(CijTij + ϵTij(log Tij − 1))

+ λ(KL(T1n,
1

n
1n) + KL(T⊤1n,

1

n
1n)),

(3)

where Cij ≥ 0 is the matching cost from Equation 2 and
Tij ≥ 0 is the amount of mass transported between points.
The parameters ϵ, λ ≥ 0 control the relaxation of the prob-
lem. 1n ∈ Rn is a vector with all entries equal 1. KL is
the Kullback-Leibler divergence used for soft preservation
of the transported mass between the point clouds.

The second term in the summation operation in Equa-
tion 3 is an entropic regularization, which enables solving
the problem efficiently by the Sinkhorn algorithm [5,6]. We
use this algorithm to estimate the optimal transport matrix
T ∗ from C to represent the soft correspondence between
the point clouds. The complete derivation of the transport
problem and the Sinkhorn algorithm’s details are given in
the supplementary material.

3

3.3. Correspondence-Based Flow

We leverage the optimal transport plan T ∗ to compute
correspondence weights for the source and target points
for an initial estimate of the scene flow. Different from
FLOT [29], which includes all the target points as candi-
dates for each source point, we consider only target points
with maximal transport amount from the source point. This
design choice focuses our flow estimation pipeline on the
most relevant target candidates and improves the method’s
results.

For a point xi ∈ X , the matching weights are calculated
as follows:

wij =
eT

∗
ij∑

l∈NY (xi)
eT

∗
il
, (4)

where NY (xi) is a neighborhood containing the ks indices
of the {yj} points with the top mass transport {T ∗

ij}. The
softly corresponding point ŷxi

to xi is:

ŷxi
=

∑
j∈NY (xi)

wijyj , (5)

and the initial estimated flow for the point xi is:

fi = ŷxi
− xi. (6)

Note that if we define T̂ ∗
ij = wij for j ∈ NY (xi) and 0

otherwise, we get the initial flow field as:

F = T̂ ∗Y −X = Ŷ −X, (7)

where Ŷ ∈ Rn×3 contains the points {ŷxi
}.

3.4. Training Objective

To learn point representation suitable for scene flow
without ground-truth supervision, we apply the flowing loss
terms. First, for a tractable flow estimation, we would like
each softly corresponding point ŷxi

to have a nearby target
point yj . It may be achieved by the nearest-neighbor dis-
tance term, as done by Mittal et al. [25]:

D =
1

|X|
∑
xi∈X

min
yj∈Y

||ŷxi − yj ||22. (8)

However, the correspondence quality for the source points
can vary. For example, points on a flat region will have
less distinctive correspondences than points with geometri-
cally unique features. Thus, we augment the distance term
in Equation 8 with the matching confidence of each point.

The confidence measure is based on the correspondence
similarity that we define as:

sxi
=

∑
j∈NY (xi)

wijSij . (9)

Deep

Feature

Embedding

Deep

Feature

Embedding

Matching
Cost

Soft
Correspondence

Source

Shared weights

Target

Cost Corr.

Frozen Trained
Correspondence Model

Refinement
Optimization

Initial flow
 Estimated flow

Correspondence
flow

Target

Source

Train

Test

Feature

Feature

Correspondence Learning

Figure 3. The proposed method. SCOOP includes two com-
ponents: a learned point cloud correspondence model and a flow
refinement module. The model learns deep point embeddings
ΦX ,ΦY to establish soft point matches based on a matching cost
C in the latent space. The initial flow F from the training phase is
the difference between the softly corresponding point cloud Ŷ and
the source point cloud X . At the test-time, we freeze the trained
model and optimize a residual flow refinement R∗ to produce a
smooth and consistent scene flow F ∗ between the point clouds.

The value of sxi is in the range [−1, 1]. To get a confidence
value between 0 and 1, we trim the negative values, set the
matching confidence of xi to be pxi

= max(sxi
, 0), and

use pxi
to define our confidence-aware distance loss:

Ldist =
1

|X|
∑
xi∈X

pxi min
yj∈Y

||ŷxi − yj ||22. (10)

The loss term Ldist can be minimized by either minimiz-
ing pxi or the distance between ŷxi and its nearest neighbor
yj ∈ Y . To avoid the degenerate solution of pxi

= 0 for all
xi ∈ X , we add a confidence loss term:

Lconf =
1

|X|
∑
xi∈X

1− pxi
, (11)

which penalizes the degenerate solution.
Additionally, to preserve the geometric structure of the

source point cloud, we would like the flow field to be
smooth. That is, neighboring source points should have a
similar flow prediction. Thus, we regularize the learning
process with a flow smoothness loss [13]:

Lflow =
1

|X|kf

∑
xi∈X

∑
l∈NX(xi)

||fi − fl||1, (12)

where NX(xi) is the Euclidean neighborhood of xi in X\xi

of size kf . The overall training objective is:

Ltotal = Ldist + αconfLconf + αflowLflow, (13)

where αconf and αflow are hyperparameters, balancing the
contribution of the different loss terms.

4

3.5. Flow Refinement Optimization

The advantage of the correspondence-based flow, pre-
sented in Equation 7, is that the softly matching points are
in the vicinity of the surface of objects in the target scene.
However, it limits the flow to the convex hull [31] of points
in the target point cloud. We enable the flow to deviate from
this constraint by a flow refinement optimization step at run-
time.

Instead of training an additional neural network part to
regress flow corrections, as done by Puy et al. [29], we di-
rectly optimize a flow refinement component R∗ ∈ Rn×3

using the self-supervised distance and smoothness losses
defined in Equations 10 and 12, respectively. An illustra-
tion of these losses is depicted in Figure 4.

The optimization problem for the flow refinement takes
the form:

R∗ = argmin
R∈Rn×3

1

|X|
∑
xi∈X

min
yj∈Y

pxi
||xi + (fi + ri)− yj ||22

+λflow
1

|X|kf

∑
xi∈X

∑
l∈NX(xi)

||(fi + ri)− (fl + rl)||1,

(14)

where ri ∈ R is the flow refinement for point xi, and the
refined scene flow is F ∗ = F + R∗. Our flow refinement
module further preserves the structure of the source point
cloud, where the target points {yj} are used as anchors to
guide the refined flow and keep the proximity to the under-
lying target surface.

4. Experiments
In this section, we evaluate SCOOP’s performance us-

ing widely spread datasets and compare it with recent state-
of-the-art (SOTA) works on scene flow estimation. Addi-
tionally, we demonstrate the influence of the flow refine-
ment module, analyze the performance and run-time dura-
tion, and verify our design choices with an ablation study.

4.1. Experimental Setup

Datasets. We adopt two common datasets in the scene
flow literature, FlyingThings3D [22] and KITTI [23, 24].
Originally, these benchmarks did not include point cloud
data. They were processed to a point cloud format by Liu et
al. [20] and denoted as FT3Do and KITTIo, respectively.

FT3Do is a large-scale synthetic dataset with
18,000/2,000 train/validation scene examples of ran-
domly moving objects from the ShapeNet collection [3].
Each example contains a pair of point clouds and ground-
truth flow vectors. Since the objects’ motion is randomized,
they may appear or disappear from the view of the scene
and create occlusions. The dataset also includes a mask for
points whose flow is invalid due to occlusions.

Flow before refinement Distance loss Smoothness loss Flow after refinement

Source Target Soft correspondence

Figure 4. Illustration of the flow refinement objective. The ini-
tial flow {fi} stems from the translation of the source points {xi}
(red) to their softly corresponding ones {ŷxi} (magenta). The flow
is refined with a distance loss that keeps the proximity of the trans-
lated points to the target points {yj} (green) and a smoothness loss
that encourages similar flow vectors (dashed purple) for neighbor-
ing points. The optimization process results in a flow field {f∗

i }
(blue) that preserves the structure of the source point cloud and
warps it close to the implicit surface of the target point cloud.

The KITTIo dataset contains 150 real-world LiDAR
scenes. Every scene includes source and target point clouds
with flow annotations for the source points. Ground points
are removed, and the source points are considered to have
a valid flow [20]. KITTIo was further split by Mittal et
al. [25] into sets of 100 and 50 examples, marked as KITTIv
and KITTIt, respectively, for fine-tuning experiments. Li et
al. [17] also built a large unlabeled LiDAR dataset for self-
supervised learning on real-world data. They took raw Li-
DAR scans from the KITTI scenes [23,24], disjoint from the
KITTIo data, and created a training set of 6,068 instances
denoted as KITTIr.

Evaluation metrics. We use well-established evalua-
tion metrics from previous works [20, 25, 29]: End-Point-
Error EPE [m], Strict Accuracy AS [%], Relaxed Accuracy
AR [%], and Outliers Out. [%]. These metrics are based on
the point error ei and the relative error ereli :

ei = ||f∗
i − fgt

i ||2, ereli =
||f∗

i − fgt
i ||2

||fgt
i ||2

, (15)

where f∗
i and fgt

i are the predicted and ground-truth flow
for point xi, respectively. The EPE is the average point
error, measured in meters; AS is the percentage of points
whose ei < 0.05 [m] or ereli < 5%; AR is the percentage of
points for which ei < 0.1 [m] or ereli < 10%; and Out. is
the percentage of points with ei > 0.3 [m] or ereli > 10%.

Implementation details. SCOOP is implemented in Py-
Torch [27], where the publicly available PointNet++ [30]
implementation is adapted for our point feature embed-
ding. The model is trained on n = 2,048 points, sam-
pled at random from the source and target point clouds of
the scene examples. Only the 3D coordinates of the points
are used as input to the model. The parameters ϵ and λ
from Equation 3 are defined as learnable variables and op-
timized as part of the learning process. The point feature

5

Method Supervision Train data Test dataa EPE ↓ AS ↑ AR↑ Out.↓

FlowNet3D [20] Full FT3Do (18,000) KITTIo 0.173 27.6 60.9 64.9
FLOT [29] Full FT3Do (18,000) KITTIo 0.107 45.1 74.0 46.3
FESTA [37] Full FT3Do (18,000) KITTIo 0.094 44.9 83.4 -
3DFlow [36] Full FT3Do (18,000) KITTIo 0.073 81.9 89.0 26.1
BiPFN [4] Full FT3Do (18,000) KITTIo 0.065 76.9 90.6 26.4
SCOOP (ours) Self FT3Do (1,800) KITTIo 0.063 79.7 91.0 24.4
SCOOP+ (ours) Self FT3Do (1,800) KITTIo 0.047 91.3 95.0 18.6

JGF [25] Full + Self + Self FT3Do (18,000) + nuScenes (700) + KITTIv (100) KITTIt 0.105 46.5 79.4 -
SPF [17] Self + Self KITTIr (6,068) + KITTIv (100) KITTIt 0.089 41.7 75.0 -
RigidFlow [18] Self KITTIr (6,068) KITTIt 0.117 38.8 69.7 -
SCOOP (ours) Self KITTIv (100) KITTIt 0.052 80.6 92.9 19.7

Graph Prior [28] Self N/A (optimization-only) KITTIt 0.082 84.0 88.5 -
Neural Prior [19] Self N/A (optimization-only) KITTIt 0.036 92.3 96.2 -
SCOOP+ (ours) Self KITTIv (100) KITTIt 0.039 93.6 96.5 15.2

Table 1. Quantitative comparison. We compare scene flow evaluation metrics for different supervision settings, train data, and test
data. The number of training examples is indicated in parentheses. EPE, AS, AR, and Out. stand for End-Point-Error, Strict Accuracy,
Relaxed Accuracy, and Outliers, respectively. The symbol + indicates an evaluation using all the points in the test point clouds, as done
for the optimization-only methods [19, 28]. While other baselines apply fully-supervised training, our method yields better performance
without employing ground-truth flow labels. Besides, SCOOP can be trained only on KITTIv, with as few as 100 training instances. In
contrast, alternative learning-based methods use additional training data, such as nuScenes, or a large dataset, such as KITTIr. Please see
further details in subsections 4.1 and 4.2.

dimension is d = 128. For the neighborhood sizes we use
ks = 64, kf = 32, and the losses’ hyperparameters are set
to αconf = 0.1, αflow = 10.

As in previous work [18,20,25,29], we evaluate SCOOP
on point clouds of 2,048 points randomly sampled from the
source and target. However, the full point clouds of KITTIo
and KITTIt are an order of magnitude larger and have differ-
ent cardinality. Thus, for a complete evaluation of the entire
scene flow, we also utilize our method (denoted as SCOOP+

for this case) to exploit the whole point cloud information
and test the performance for the original resolution. Addi-
tional implementation details appear in the supplementary.

Baseline methods. Our method is contrasted with the re-
cent methods FlowNet3D [20], FLOT [29], FESTA [37],
3DFlow [36], and BiPFN [4]. These methods require
ground-truth flow supervision. Additionally, we compare
our results with the recent self-supervised flow models of
Mittal et al. [25] and Li et al. [17,18], and the optimization-
based techniques Graph Prior [28] and Neural Prior [19].

4.2. Scene Flow Results

Cross-dataset evaluation. We demonstrate the general-
ization power of SCOOP by training it on the FT3Do and
testing its performance on KITTIo. Table 1 summarises
the results. The alternative methods [4, 20, 29, 36, 37] are
trained on FT3Do in a fully-supervised fashion: their mod-
els are learned with the ground-truth flow information, and
the points with an occluded flow are excluded from the

training objective using the mask provided in the dataset.
In contrast, our model is trained in a completely self-

supervised manner. We assume no knowledge of the flow
annotations nor the occlusion mask and do not use them
in our losses. Additionally, we use only 1,800 randomly
selected examples from FT3Do, while the competitors em-
ploy all 18,000 scene instances. Still, SCOOP improves
over the SOTA method BiPFN [4] in all the evaluation met-
rics. Moreover, utilizing the entire point cloud data further
increases our performance.

FlowNet3D [20], FESTA [37], 3DFlow [36], and
BiPFN [4] are regression-based networks that predict the
flow in the 3D ambient space. The models adapt to the char-
acteristics of the synthetic training set, and the generaliza-
tion to the real-world test data is limited. FLOT [29] lever-
ages point cloud correspondence based on learned point fea-
tures, which eases the flow prediction problem. However, it
also jointly learns to regress a flow correction component
that burdens the point representation training process.

SCOOP, on the other hand, is focused only on learning
point embeddings suitable for scene flow estimation, guided
by our self-supervised losses. It extracts discriminative fea-
tures, which transfer well across the FT3Do and KITTIo
datasets, and enables to compute the correspondence-based
flow between the point clouds. In contrast to FLOT, we del-
egate the flow refinement process to the test phase, directly
optimize it in a self-supervised fashion, and surpass their
flow estimation performance.

Figure 5 shows a visual comparison between the results

6

SCOOP (ours) FLOT

Figure 5. Visual comparison of scene flow results for a KITTIo example scene. The training was done on the FT3Do dataset. The source
and target point clouds are shown in red and green, respectively. The warped source point cloud by FLOT [29] (left) and by our method
(right) is presented in blue. While the result of FLOT deviates from the surface of the target, SCOOP preserves the source point cloud’s
structure and computes its accurate flow.

of FLOT and our method. The warped source point cloud
by FLOT is noisy, and the structure of objects in the scene
is compromised. On the contrary, SCOOP produces a co-
herent flow field across neighboring points, preserves their
local geometry, and accurately predicts the scene flow. Ad-
ditional visualizations are presented in the supplementary.

Training on a small dataset. Since our model does not
include a flow regression component and has to learn only
point features, it can be trained on a very limited amount of
data. To demonstrate this ability, we train it from scratch on
the 100 point cloud pairs of KITTIv and use KITTIt for test-
ing. The results of this experiment are presented in Table 1.

Different from our work, the competing methods of Mit-
tal et al. [25] and Li et al. [17,18] are based on flow regres-
sion and require a large amount of training data. Mittal et
al. utilize a fully-supervised pre-training on FT3Do, and the
additional outdoor flow dataset nuScenes [2], before fine-
tuning on KITTIv. Li et al. [17, 18] train their model on
the large KITTIr dataset. Our SCOOP outperforms these
other methods while being trained only on KITTIv, which
is almost two orders of magnitudes smaller than KITTIr.

The pure optimization methods [19,28] find the solution
per scene separately, which might lead to sub-optimal local
minima. In contrast, we leverage the correspondence statis-
tics learned from the data and adapt the initial flow to the
scene at hand by our residual run-time optimization. The
initial correspondence flow serves as a good starting point
for the optimization phase, yielding a similar or better final
result compared to the optimization-only alternatives.

The influence of flow refinement. Our flow results be-
fore and after refinement are presented in Figure 6. Posing
the learning part of SCOOP as a correspondence problem
enables its effective training on a small dataset. However,
the flow predictions from the training phase are confined to
a linear combination of existing target points, which may
not represent the exact flow of the scene. Moreover, wrong
matches for the source points can occur and cause flow er-
rors. In such cases, our refinement module comes into play.

Given the output flow from the trained correspondence
model, the refinement module optimizes correction vectors
subject to two objectives: a warped source point should be
close to a target point; neighboring source points should
have a similar flow. These objectives help fixing inconsis-
tencies in the flow field and increase the flow accuracy. As
seen in Figure 6, our refinement step improves the initial
flow estimation and results in an accurate flow field, which
is similar to the ground-truth scene flow.

4.3. Performance and Time Analysis

We analyze the performance-time trade-off in Figure 7
by recording the EPE and inference time for different
methods. The measurements were done on an Nvidia Titan
Xp GPU for computing the flow for complete point clouds
of the KITTIt dataset.

Network-only methods [17, 18, 25] tend to be fast but
with limited accuracy. Optimizing the flow prediction sepa-
rately for each scene [19] results in a low EPE. However,
it takes a long time. Our hybrid method bridges the trade-off
gap between these two approaches. SCOOP+ offers a work-

7

Before refinement
 After refinement
 Ground-truth flow

Figure 6. The flow refinement effect. We demonstrate the ef-
fect on data from KITTIt. The source point cloud is in red, and
the target is in green. Our correspondence model was trained on
the KITTIv dataset, and its flow estimation before refinement is
shown in magenta (left). The optimized refined flow is presented
in blue (center). We also show the ground-truth scene flow in pur-
ple for reference (right). The refined flow better covers the target
point cloud (top center ellipse). It also breaches the convex hull of
the given target points and enables computing the correct flow for
source points whose target is missing (bottom center ellipse).

ing point with more than 50% error reduction over the feed-
forward models and about 8× faster inference time than the
optimization-only Neural Prior work. SCOOP+ also enables
a different balance between time and performance, as seen
in Figure 7. By reducing the number of run-time optimiza-
tion steps, the user can shorten the inference time, achieving
a working point closer to that of the network-only models.

4.4. Ablation Study

The design choices in our method are verified by abla-
tion experiments presented in Table 2. We change one ele-
ment each time and keep all the others the same. The fol-
lowing ablative settings were examined: (a) use all target
points for soft correspondence instead of the ones with the
highest transport amount (Equation 5); (b) ignore the point
matching confidence by setting pxi

= 1 in Equation 10 and
αconf = 0 in Equation 13; (c) exclude the smoothness flow
loss Lflow from Equation 13; and (d) turn off the flow re-
finement module.

The ablation study validates the contribution of the pro-
posed components to the method’s performance. Consider-
ing a subset of target points for correspondence enables the
model to concentrate on the most relevant candidates for
flow estimation. The matching confidence emphasizes the
influence of the more confident points in our confidence-
aware distance loss Ldist. The smoothness loss term is im-
portant for regularizing the point representation learning to
obtain similar features across neighboring points. Lastly,
our flow refinement optimization improves the consistency

0.5 5 50 500
Inference time (seconds, in a log10 scale)

0.02

0.04

0.06

0.08

0.10

0.12

En
d

Po
in

t E
rr

or
 (m

et
er

s)

RigidFlow

Just Go with the Flow

Self-Point-Flow
Graph Prior

Neural Prior
SCOOP+ (ours)

Network-only
Optimization-only
Network + Optimization

Figure 7. Flow estimation error vs. inference time for the
KITTIt dataset. SCOOP+ has a lower error than the network-
only models and a shorter inference time than the optimization-
only methods. It also allows different balances along the error and
time trade-off, as presented by the blue curve.

Setting EPE ↓ AS ↑

(a) All target points as candidates (ks = n) 0.047 91.1
(b) W/O confidence (pxi = 1, αconf = 0) 0.044 90.3
(c) W/O smoothness loss term (αflow = 0) 0.056 86.6
(d) W/O flow refinement (R∗ = 0) 0.115 43.8
Our complete method 0.039 93.6

Table 2. Component ablative settings. SCOOP was trained on
KITTIv and evaluated on KITTIt. The results show that the best
performance is obtained with our complete method. Additional
details about the ablation experiments are given in subsection 4.4.

of the flow field and reduces the EPE substantially. In the
supplementary material, we provide an ablation study on
the FT3Do train set size and find that a 10% fraction of the
data suffices for our method to realize its potential.

5. Conclusions
This paper presented SCOOP, a novel self-supervised

scene flow estimation method for 3D point clouds based on
correspondence learning and flow refinement optimization.
Previous works suggested learning a flow regression model,
training a neural network that jointly learned point cloud
correspondence and flow refinement, or optimizing the flow
completely at run-time without learning.

In contrast, we split the flow prediction process into two
simpler problems. Our correspondence model is focused
only on learning point features to initialize the flow from
soft matches between the point clouds. Then, we directly
optimize a residual flow refinement at run-time. This ap-
proach enables SCOOP to be trained on a small set of point
cloud scenes without utilizing ground-truth supervision
while outperforming state-of-the-art fully-supervised and
self-supervised learning methods, as well as optimization-
based alternative techniques.

8

References
[1] Thomas Brox and Jitendra Malik. Large Displacement Op-

tical Flow: Descriptor Matching in Variational Motion Esti-
mation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(3):500–513, 2011. 1

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuScenes: A Multi-
modal Dataset for Autonomous Driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11621–11631, 2020. 7

[3] Angel X. Chang, Thomas Funkhouser, Leonidas J. Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. arXiv preprint arXiv:1512.03012, 2015. 5

[4] Wencan Cheng and Jong Hwan Ko. Bi-PointFlowNet: Bidi-
rectional Learning for Point Cloud Based Scene Flow Esti-
mation. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 108–124, 2022. 1, 2, 6, 14

[5] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and
François-Xavier Vialard. Scaling Algorithms for Unbal-
anced Transport Problems. Mathematics of Computation,
87:2563–2609, 2018. 3, 11

[6] Marco Cuturi. Sinkhorn Distances: Lightspeed Computation
of Optimal Transport. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2292–2300, 2013. 3,
11

[7] Theo Deprelle, Thibault Groueix, Matthew Fisher,
Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry.
Learning Elementary Structures for 3D Shape Genera-
tion and Matching. In Advances in Neural Information
Processing Systems (NeurIPS), pages 7433–7443, 2019. 3

[8] Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J. Guibas,
and Tolga Birdal. Weakly Supervised Learning of Rigid 3D
Scene Flow. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5692–5703, 2021. 1, 3, 14

[9] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. 3D-CODED: 3D Cor-
respondences by Deep Deformation. In Proceedings of Eu-
ropean Conference on Computer Vision (ECCV), pages 230–
246, 2018. 3

[10] Xiaodong Gu, Chengzhou Tang, Weihao Yuan, Zuozhuo
Dai, Siyu Zhu, and Ping Tan. RCP: Recurrent Closest Point
for Scene Flow Estimation on 3D Point Clouds. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8216–8226, 2022. 14

[11] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. HPLFlowNet: Hierarchical Permutohedral
Lattice FlowNet for Scene Flow Estimation on Large-Scale
Point Clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3254–3263, 2019. 1, 2, 12, 13, 14, 16

[12] Pan He, Patrick Emami, Sanjay Ranka, and Anand Rangara-
jan. Self-Supervised Robust Scene Flow Estimation via the
Alignment of Probability Density Functions. In Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI),
pages 861–869, 2022. 14

[13] Yair Kittenplon, Yonina C. Eldar, and Dan Raviv. Flow-
Step3D: Model Unrolling for Self-Supervised Scene Flow
Estimation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4114–
4123, 2021. 1, 3, 4, 13, 14

[14] Itai Lang, Dvir Ginzburg, Shai Avidan, and Dan Raviv. DPC:
Unsupervised Deep Point Correspondence via Cross and Self
Construction. In Proceedings of the International Confer-
ence on 3D Vision (3DV), pages 1442–1451, 2021. 2, 3, 13

[15] Bing Li, Cheng Zheng, Silvio Giancola, and Bernard
Ghanem. SCTN: Sparse Convolution-Transformer Network
for Scene Flow Estimation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), pages 1254–1262,
2022. 14

[16] Ruibo Li, Guosheng Lin, Tong He, Fayao Liu, and Chun-
hua Shen. HCRF-Flow: Scene Flow from Point Clouds
with Continuous High-order CRFs and Position-aware Flow
Embedding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
364–373, 2021. 14

[17] Ruibo Li, Guosheng Lin, and Lihua Xie. Self-Point-Flow:
Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15577–15586, 2021. 1, 2, 3, 5,
6, 7, 14, 16

[18] Ruibo Li, Chi Zhang, Guosheng Lin, Zhe Wang, and Chun-
hua Shen. RigidFlow: Self-Supervised Scene Flow Learning
on Point Clouds by Local Rigidity Prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16959–16968, 2022. 1, 2, 6, 7,
14, 15, 16

[19] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural Scene Flow Prior. In Advances in Neural Information
Processing Systems (NeurIPS), pages 7838–7851, 2021. 2,
3, 6, 7, 16

[20] Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas.
FlowNet3D: Learning Scene Flow in 3D Point Clouds. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 529–537, 2019.
1, 2, 5, 6, 14, 15, 16

[21] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and
Raquel Urtasun. Deep Rigid Instance Scene Flow. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3614–3622, 2019. 1

[22] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
Large Dataset to Train Convolutional Networks for Dispar-
ity, Optical Flow, and Scene Flow Estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4040–4048, 2016. 5

[23] Moritz Menze and Andreas Geiger. Object Scene Flow for
Autonomous Vehicles. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3061–3070, 2015. 1, 5

9

[24] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint
3d estimation of vehicles and scene flow. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2:427–434, 2015. 5

[25] Himangi Mittal, Brian Okorn, and David Held. Just Go with
the Flow: Self-Supervised Scene Flow Estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11177–11185, 2020.
1, 2, 4, 5, 6, 7, 15, 16

[26] Bojun Ouyang and Dan Raviv. Occlusion Guided Self-
supervised Scene Flow Estimation on 3D Point Clouds. In
Proceedings of the International Conference on 3D Vision
(3DV), pages 782–791, 2021. 14

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
Differentiation in PyTorch. 2017. 5

[28] Jhony Kaesemodel Pontes, James Hays, and Simon Lucey.
Scene Flow from Point Clouds with or without Learning. In
Proceedings of the International Conference on 3D Vision
(3DV), pages 261–270, 2020. 2, 3, 6, 7

[29] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:
Scene Flow on Point Clouds Guided by Optimal Transport.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 527–544, 2020. 1, 2, 3, 4, 5, 6, 7, 11,
12, 13, 14, 15, 16

[30] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 5099–5108, 2017. 3, 5, 14

[31] R. Tyrrell Rockafellar. Convex Analysis, volume 28. Prince-
ton University Press, 1970. 2, 5

[32] Ivan Tishchenko, Sandro Lombardi, Martin R. Oswald, and
Marc Pollefeys. Self-Supervised Learning of Non-Rigid
Residual Flow and Ego-Motion. In Proceedings of the In-
ternational Conference on 3D Vision (3DV), pages 150–159,
2020. 14

[33] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,
and Takeo Kanade. Three-Dimensional Scene Flow. In Pro-
ceedings of the Seventh IEEE International Conference on
Computer Vision (ICCV), volume 2, pages 722–729, 1999. 1

[34] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-
wise Rigid Scene Flow. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1377–
1384, 2013. 1

[35] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3D
Scene Flow Estimation with a Piecewise Rigid Scene Model.
International Journal of Computer Vision, 115(1):1–28,
2015. 1

[36] Guangming Wang, Yunzhe Hu, Zhe Liu, Yiyang Zhou,
Masayoshi Tomizuka, Wei Zhan, and Hesheng Wang. What
Matters for 3D Scene Flow Network. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
38–55, 2022. 1, 2, 6, 14

[37] Haiyan Wang, Jiahao Pang, Muhammad A. Lodhi, Yingli
Tian, and Dong Tian. FESTA: Flow Estimation via Spatial-
Temporal Attention for Scene Point Clouds. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 14173–14182, 2021. 1, 2,
6

[38] Andreas Wedel, Thomas Brox, Tobi Vaudrey, Clemens Rabe,
Uwe Franke, and Daniel Cremers. Stereoscopic Scene Flow
Computation for 3D Motion Understanding. International
Journal of Computer Vision, 95:29–51, 2011. 1

[39] Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox,
Uwe Franke, and Daniel Cremers. Efficient Dense Scene
Flow from Sparse or Dense Stereo Data. In David Forsyth,
Philip Torr, and Andrew Zisserman, editors, Proceedings
of the Seventh IEEE International Conference on Computer
Vision (ECCV), pages 739–751, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. 1

[40] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou.
PV-RAFT: Point-Voxel Correlation Fields for Scene Flow
Estimation of Point Clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6954–6963, 2021. 14

[41] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. PointPWC-Net: Cost Volume on Point Clouds for
(Self-) Supervised Scene Flow Estimation. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 88–107, 2020. 1, 2, 13, 14

[42] Xin Wu, Hao Zhao, Shunkai Li, Yingdian Cao, and Hongbin
Zha. SC-wLS: Towards Interpretable Feed-forward Camera
Re-localization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 585–601, 2022. 2

[43] Yiming Zeng, Yue Qian, Zhiyu Zhu, Junhui Hou, Hui Yuan,
and Ying He. CorrNet3D: Unsupervised End-to-end Learn-
ing of Dense Correspondence for 3D Point Clouds. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6052–6061, 2021. 3

[44] Chengliang Zhong, Peixing You, Xiaoxue Chen, Hao Zhao,
Fuchun Sun, Guyue Zhou, Xiaodong Mu, Chuang Gan, and
Wenbing Huang. SNAKE: Shape-aware Neural 3D Keypoint
Field. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2022. 2

10

Supplementary Material
We provide more information regarding our flow estima-

tion method SCOOP. Section A presents the derivation of
point cloud correspondence as an optimal transport prob-
lem and the solution by the Sinkhorn algorithm. Section B
includes additional results for the experiments presented in
the paper. In Section C, we report the results of an addi-
tional experiment on a non-occluded data version. Finally,
section D elaborates on our implementation details, includ-
ing network architecture, training and inference procedure,
and the optimization settings of SCOOP.

A. Correspondence as Optimal Transport
As mentioned in the paper, our correspondence-based

flow between the point clouds X,Y ∈ Rn×3 builds on the
optimal transport formulation presented in FLOT [29]. For
completeness, we briefly review the optimal transport prob-
lem and the Sinkhorn algorithm for solving it.

We begin with a hypothetical perfect case, where each
source point xi ∈ X has an exact matching target point
yj ∈ Y . Thus, the flow field holds:

X + F ∗ = ΠY, (16)

where Π ∈ {0, 1}n×n is a permutation matrix representing
the correspondence between the point clouds, with Πij = 1
if xi matches yj and Πij = 0 otherwise.

In this case, estimating the point correspondences can be
modeled as an optimal transport problem [29]. Assuming
that each point in X has a mass 1

n and each point in Y re-
ceives a mass 1

n , the optimal mass transport is given by:

T ∗ =argmin
T∈Rn×n

+

∑
ij

CijTij

such that T1n =
1

n
1n, T⊤1n =

1

n
1n,

(17)

where 1n ∈ Rn is a vector with all entries equal 1, Cij ≥ 0
is the transport cost from point xi to point yj , and Tij ≥ 0 is
the amount of mass transported between these points. The
two terms on the second row of Equation 17 are mass con-
straints, demanding that the total mass delivered from each
source point and received by each target point is exactly 1

n .
T ∗ is optimal in the sense that the mass is transported from
X to Y with minimal cost.

In practice, usually, there is no perfect match between
the point clouds due to objects appearing in or disappearing
from the scene or different points sampled on the scene’s
surface, and the mass constraints in Equation 17 do not
hold. Thus, instead of Equation 17, we used the relaxed
version of the transport problem presented in Equation 3 in
the paper. The relaxed transport problem is solved by the
Sinkhorn algorithm [5, 6], which estimates T ∗ from C. We

1 2 3 4 5
Optimization time (seconds)

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Lo
ss

es
 v

al
ue

 (d
as

he
d

lin
es

)

0.04

0.06

0.08

0.10

0.12

0.14

En
d-

Po
in

t-E
rr

or
 v

al
ue

 (s
ol

id
 li

ne
)

Flow smoothness loss
Warp distance loss
End-Point-Error

Figure 8. Refinement evolution. SCOOP was trained on FT3Do

and evaluated on KITTIo. We present the refinement loss values
and the corresponding End-Point-Error (EPE) during the opti-
mization process. The losses are effectively minimized and result
in a substantial reduction of the flow estimation error.

Method Refinement EPE ↓ AS ↑ AR↑ Out.↓

FLOT [29] ✗ 0.142 30.6 61.9 57.6
FLOT [29] ✓ 0.048 89.0 93.5 20.4

SCOOP+ (ours) ✗ 0.139 36.1 63.6 54.9
SCOOP+ (ours) ✓ 0.047 91.3 95.0 18.6

Table 3. Our refinement optimization for another method.
FLOT and SCOOP were trained on 1,800 examples from FT3Do

and tested on KITTIo, without or with our flow refinement compo-
nent. The proposed refinement module considerably improves the
flow estimation performance for both methods.

provide the algorithm’s details in Algorithm 1. In our im-
plementation, the number of iterations M is set to 1.

B. Additional Results

B.1. Refinement Evolution

We examine the relationship between our self-supervised
losses in the flow refinement process, given in Equation 14,
and the resulting End-Point-Error metric (EPE), defined in
subsection 4.1. Figure 8 shows the results (for better visu-
alization, we multiply the smoothness loss value by a factor
of 4 · 10−2). During run-time, we minimize our smooth-
ness and distance losses without using ground-truth flow la-
bels. As a byproduct, the EPE is reduced as well. This
experiment implies that our refinement objective in Equa-
tion 14 correlates with the flow estimation error and serves
as a good proxy for its minimization.

B.2. Refinement Optimization for Another Method

A natural question is whether a flow estimation method
other than ours can benefit from the proposed refinement
optimization module. To address this question, we trained

11

Algorithm 1: The Sinkhorn Algorithm.
Data: cost matrix C, parameters ϵ, λ ≥ 0, M > 0.
Result: optimal transport matrix T ∗.
T ← exp(−C/ϵ);
a← 1

n1n;
for m = 1, . . . ,M do

b← (1n1n/(T
⊤a))λ/(λ+ϵ);

a← (1n1n/(Tb))
λ/(λ+ϵ);

end
T ∗ ← diag(a) T diag(b);

FLOT [29] on 1,800 examples from the FT3Do train set,
as done for our method. Then, we evaluated FLOT’s per-
formance on the KITTIo data without or with our run-time
refinement (with correspondence confidence equal to 1 for
all the source points). Table 3 summarizes the results.

Training on a 10% fraction of FT3Do data degrades
FLOT’s performance in comparison to using the complete
dataset, as reported in Table 1 in the main body. However,
our refinement optimization substantially contributes to the
flow precision of FLOT and even yields better results com-
pared to using the whole training set. This experiment hints
that our proposed run-time refinement is not tailor-made for
SCOOP and can benefit another method as well.

B.3. Qualitative Results

In Figure 9, we present additional results of SCOOP for
KITTIo data for various challenging cases. For example,
our method can gracefully handle different point densities,
as cars with varying distances from the LiDAR sensor ex-
hibit. In addition, since we require consistency of the flow
field over the point cloud, SCOOP can correctly estimate
the flow for an object with a repetitive structure, such as a
fence. At the same time, our flow estimation method is ver-
satile. It copes with shapes of different geometry and size,
such as the pole and the facade. SCOOP can also predict
translation vectors of different directions and magnitudes,
as for the car and pole.

B.4. Ablation Runs

In Table 4, we report results of our method for different
train set sizes of FT3Do. The table shows that a 10% frac-
tion of the FT3Do data is sufficient for SCOOP to converge
to its optimal performance.

Table 5 presents additional ablation experiments. In this
round, we examined the following settings (one configura-
tion change at a time). (a) Turn off the Sinkhorn normaliza-
tion. In this case, we used T = exp(−C/ϵ) instead of T ∗

from Algorithm 1, and the correspondence construction in
Equations 4 and 5 was done with target points with minimal
matching cost C rather than maximal transport T ∗. (b) Ap-

FT3Do number of training examples 180 1,800 18,000

KITTIo EPE ↓ 0.057 0.047 0.047

Table 4. Train set size ablation. We trained SCOOP on the
FT3Do dataset using a different number of instances and measured
the EPE on the KITTIo dataset. A subset of only 1,800 training
examples is sufficient for our technique.

Setting EPE ↓ AS ↑ AR↑ Out.↓

(a) W/O Sinkhorn 0.042 91.6 95.9 16.1
(b) 3 Sinkhorn iterations 0.040 92.9 96.4 15.3
(c) Linear pxi normalization 0.040 93.5 96.4 15.5
The proposed method 0.039 93.6 96.5 15.2

Table 5. Additional ablations. We trained SCOOP with differ-
ent configurations on KITTIv and evaluated its performance on
KITTIt. The table shows that our method is robust to these con-
figuration variations. Details about the ablative settings appear in
subsection B.4.

ply a higher number of iterations in the Sinkhorn algorithm
by setting M = 3 instead of M = 1. (c) Linear normaliza-
tion for the correspondence confidence pxi

= (sxi
+ 1)/2

instead of the non-linear truncation pxi
= max(sxi

, 0).
In all these settings, the difference in the method’s perfor-
mance was small, implying its robustness to such configu-
ration changes.

B.5. Limitation

A failure case of SCOOP is presented in Figure 11.
When a part of the source scene is completely missing from
the target, the correspondence to existing target points is
inaccurate, and the flow predicted by our method does not
represent the motion of that part. In future work, we plan to
detect such wrong matches by remaining inconsistencies in
the flow field and leverage the global motion of the scene to
deduce the flow for completely occluded regions.

C. An Additional Experiment

In addition to FT3Do and KITTIo, Gu et al. [11] pre-
pared another point cloud version of the FlyingThings3D
and KITTI datasets, denoted as FT3Ds and KITTIs, respec-
tively. In their version, all occluded points are removed, and
each source point has a matched target point. This version
of the datasets is also popular in the scene flow literature,
and for a comprehensive evaluation, we report our method’s
results for this case as well. Additional details about the
datasets appear in subsection D.2.

Since the point clouds produced by Gu et al. have no
occlusions, we adapt our method to the nature of this data.
Instead of the distance loss from Equation 10, we use the

12

Input point clouds
 SCOOP's result

Figure 9. Visual results. We applied SCOOP to different LiDAR scenes. The source and target input point clouds are presented in red
and green, respectively, and the warped source is shown in blue. Our method is able to predict the scene flow in a variety of challenging
scenarios, such as varied point cloud density (top), repetitive structures (middle), and objects with different sizes and motions (bottom).

bidirectional Chamfer Distance loss [14, 41]:

Lcd = CD(Ŷ , Y) =

1

|Ŷ |

∑
ŷ∈Ŷ

min
y∈Y
||ŷ − y||22 +

1

|Y |
∑
y∈Y

min
ŷ∈Ŷ
||y − ŷ||22,

(18)

where Ŷ is the softy corresponding point cloud to the source
point cloud X (from Equation 7), and Y is the target point
cloud. The Chamfer Distance is also used in the refinement

process and replaces the first term in the optimization objec-
tive in Equation 14. If we define Ŷr = Ŷ + R, the updated
distance loss term for the flow refinement optimization is
CD(Ŷr, Y). The rest of our method’s formulation remains
the same.

Following the evaluation protocol of previous work [11,
13, 29], we train SCOOP on FT3Ds and evaluate the per-
formance on the test set of FT3Ds and on the KITTIs data.
Different from prior work, we use only 10% of the FT3Ds
training data, which suffices for our correspondence model

13

Method Sup. EPE ↓ AS ↑ AR↑ Out.↓

FlowNet3D [20] Full 0.114 41.3 77.1 60.2
HPLFlowNet [11] Full 0.080 61.4 85.6 42.9
PointPWC-Net [41] Full 0.059 73.8 92.8 34.2
FLOT [29] Full 0.052 73.2 92.7 35.7
PV-RAFT [40] Full 0.046 81.7 95.7 29.4
FlowStep3D [13] Full 0.046 81.6 96.1 21.7
HCRF-Flow [16] Full 0.049 83.4 95.1 26.1
RCP [10] Full 0.040 85.7 96.4 19.8
Rigid3DSceneFlow [8] Full 0.052 74.6 93.6 36.1
3D-OGFlow [26] Full 0.036 87.9 - 19.7
SCTN [15] Full 0.038 84.7 96.8 26.8
3DFlow [36] Full 0.028 92.9 98.2 14.6
Bi-PointFlowNet [4] Full 0.028 91.8 97.8 14.3

Ego-motion [32] Self 0.170 25.3 55.0 80.5
PointPWC-Net [41] Self 0.121 32.4 67.4 68.8
Self-Point-Flow [17] Self 0.101 42.3 77.5 60.6
FlowStep3D [13] Self 0.085 53.6 82.6 42.0
RSFNet [12] Self 0.075 58.9 86.2 47.0
RCP [10] Self 0.077 58.6 86.0 41.4
RigidFlow [18] Self 0.069 59.6 87.1 46.4
SCOOP (ours) Self 0.084 56.7 85.1 48.5

Table 6. Quantitative comparison on the FT3Ds test set. All the
methods were trained on the train split of FT3Ds. Our method is
on par with other self-supervised methods.

to coverage. The evaluation metrics are the same as those in
the main body, detailed in subsection 4.1. For both training
and testing, we use point clouds with n = 8192 points.

Tables 6 and 7 present our test results for FT3Ds and
KITTIs, respectively, compared to abundant recent alter-
native methods. While trained only on a 10% fraction of
the data, SCOOP achieves competitive results compared to
other self-supervised methods on FT3Ds. On the KITTIs
dataset, we surpass the performance of both self and fully-
supervised methods for all the evaluation metrics. For ex-
ample, SCOOP improves the EPE metric by 37% over the
very recent Bi-PointFlowNet work [4], reducing the flow
estimation error from 0.030 to 0.019 meters. These re-
sults suggest that our method is highly effective for the real-
world KITTIs data.

D. Implementation Details

D.1. Network Architecture

The point feature extraction is done by a neural network
based on the PointNet++ architecture [30]. The network in-
cludes 3 set-convolution layers, which increase the feature
channels per point. Each layer contains a multi-layer per-
ceptron, interleaved with instance normalization and a leaky
ReLU activation with a negative slope of −0.1. After each
convolutional layer, the point features are aggregated by a

Method Sup. EPE ↓ AS ↑ AR↑ Out.↓

FlowNet3D [20] Full 0.177 37.4 66.8 52.7
HPLFlowNet [11] Full 0.117 47.8 77.8 41.0
PointPWC-Net [41] Full 0.069 72.8 88.8 26.5
FLOT [29] Full 0.056 75.5 90.8 24.2
PV-RAFT [40] Full 0.056 82.3 93.7 21.6
FlowStep3D [13] Full 0.055 80.5 92.5 14.9
HCRF-Flow [16] Full 0.053 86.3 94.4 18.0
RCP [10] Full 0.048 84.9 94.5 12.3
Rigid3DSceneFlow [8] Full 0.042 84.9 95.9 20.8
3D-OGFlow [26] Full 0.039 88.2 - 17.5
SCTN [15] Full 0.037 87.3 95.9 17.9
3DFlow [36] Full 0.031 90.5 95.8 16.1
Bi-PointFlowNet [4] Full 0.030 92.0 96.0 14.1

Ego-motion [32] Self 0.415 22.1 37.2 81.0
PointPWC-Net [41] Self 0.255 23.8 49.6 68.6
Self-Point-Flow [17] Self 0.112 52.8 79.4 40.9
FlowStep3D [13] Self 0.102 70.8 83.9 24.6
RSFNet [12] Self 0.092 74.7 87.0 28.3
RCP [10] Self 0.076 78.6 89.2 18.5
RigidFlow [18] Self 0.062 72.4 89.2 26.2
SCOOP (ours) Self 0.019 97.1 98.5 10.7

Table 7. Quantitative comparison on the KITTIs data. All the
methods were trained on the train split of FT3Ds. SCOOP outper-
forms all the compared alternatives, both the self-supervised and
the fully-supervised ones.

FT3Do / FT3Ds (~18,000)

KITTIr (6,068)

KITTIv (100)

1,800

Figure 10. Visual illustration of the training datasets’ size. We
use a small amount of data for training (stripe pattern) compared
to the amount used by others (solid pattern).

max pooling operation from 32 Euclidean nearest neighbor
points. The coordinate difference between the point and its
neighbors is concatenated to the input features of every set-
convolution layer. Table 8 details the feature dimensions of
the network’s layers.

D.2. Training and Inference

Training dataset size. We illustrate the size of the train-
ing datasets in Figure 10. As explained in the paper (subsec-
tion 4.2), SCOOP is a data-light method that requires much
less training data than other learning-based methods.

14

Input point clouds
 Warp by the estimated flow
 Warp by the ground-truth flow

Figure 11. A failure example. We show the source point cloud in red, the target in green (left), the translated source by SCOOP in blue
(middle), and the translated source by the ground-truth flow in purple (right). A set of source points whose target is completely occluded
is marked with a gray ellipse. Its warp by the estimated and the ground-truth flow is delineated by a blue ellipse and a purple ellipse,
respectively. Our method struggles to predict the correct flow in such a case.

Network architecture

concat(coordinates (3), neighbors’ coordinate difference (3))
SetConv(32, 32, 32)

neighbors max pooling (32)
concat(features (32), neighbors’ coordinate difference (3))

SetConv(64, 64, 64)
neighbors max pooling (64)

concat(features (64), neighbors’ coordinate difference (3))
SetConv(128, 128, 128)

neighbors max pooling (128)

Table 8. The architecture of the feature extraction model. The
values in parentheses indicate the per-point feature dimension at
each network stage. concat represents a concatenation opera-
tion. The coordinate difference and max pooling operation are
computed with a neighborhood of 32 nearest points in the Eu-
clidean space. SetConv is the set convolution described in sub-
section D.1, where the numbers in its parentheses refer to the filter
sizes of the multi-layer perceptron.

Occluded data version. The FT3Do dataset contains
point clouds of 8,192 points, where the z-axis coincides
with the depth axis, and the maximal z-value is limited to
35 meters [20]. In the KITTIo dataset, there are several tens
of thousands of points per scene, with a different number
of points for the source and target point clouds, denoted as
Ns and Nt, respectively. We align the z-axis of KITTIo to
the depth axis and trim the maximal z-value to 35 meters,
as done for the FT3Do data [29].

For memory-efficient training, SCOOP is trained on
point sets with the same number of n = 2,048 points sam-
pled at random from the original point clouds. Following
previous work [18,20,25,29], we evaluate SCOOP on small
test point clouds of randomly sampled 2,048 points. How-

Train/Test data (#points) kf λflow
Gradient Update

steps rate

FT3Do/KITTIo (2,048) 32 1.0 1000 0.05
KITTIv/KITTIt (2,048) 32 1.0 1000 0.05
FT3Do/KITTIo (29,951) 32 1.0 150 0.2
KITTIv/KITTIt (30,814) 32 1.0 150 0.2
FT3Ds/FT3Ds (8,192) 16 1.0 1000 0.1
FT3Ds/KITTIs (8,192) 32 1.0 1000 0.05

Table 9. Refinement hyperparameters. The table details the val-
ues we used for our flow refinement optimization process for dif-
ferent dataset settings. For each setting, we indicate the train/test
datasets and the average number of points in the test point clouds.

ever, we also employ our method to infer the flow for all the
points Ns in the source point cloud, as explained next.

At the test-time, we randomly shuffle the source points
and the target points, divide them into disjoint chunks of
n = 2,048 points, and compute the point features ΦX and
ΦY for each chunk, as done in the training stage. If the
number of points is not divided by n, we pad with ran-
domly selected points from within the point cloud to the
closest multiple of n. Then, for each source chuck, we cal-
culate the matching cost with respect to all the points in the
target, obtain a cost matrix Cchunk ∈ Rn×Nt , and com-
pute the correspondence-based flow Fchunk ∈ Rn×3. Af-
terward, we collect the flow from the different chunks, re-
move the padded points (if any), and get the per-point flow
F ∈ RNs×3.

Our inference process for the complete point clouds has
several advantages. First, it can be used for source and tar-
get point clouds with different cardinality since each point
cloud is padded to a multiple of n. Second, as we extract

15

point features in chunks of n points, the process remains
memory-efficient and emulates inputs to the network simi-
lar to the training phase. Third, it utilizes the complete point
information from the target by computing the cost matrix
and correspondence flow at the original target point cloud
resolution.

Similarly, we perform the flow refinement optimization
at the full source and target point cloud resolution. Namely,
the distance loss for flow refinement is computed between
the complete warped source and the complete target, and
the flow smoothness loss is calculated at the original source
point cloud resolution. This way, the whole scene data is
exploited.

For network-only baselines [17, 18, 25], inferring the
scene flow directly for the high point cloud resolution is
computationally infeasible, let alone training the models
on the complete large point clouds. Thus, following their
training scheme on small point clouds with 2,048 points,
we divided the original point clouds into chunks of 2,048
points, applied the models, and averaged the results across
the chunks to obtain the evaluation for all the points in the
dataset.

We note that our results for Neural Prior [19] are differ-
ent from those reported in their paper. In their work, they
did not limit the depth value of the point clouds. However,
in our work, we used points with a maximal depth of 35 me-
ters to align with previous learning-based methods [20,29].

Non-occluded data version. The FT3Ds dataset has
19,640 and 3,824 point cloud pairs for the train and test
sets, respectively. Each point cloud has 8,192 points. We
keep aside 2,000 examples from the training set for valida-
tion during training. The KITTIs data include 200 pairs of
source and target point clouds, where 142 of which are used
for evaluation. Ground points are removed by a threshold
on the height. In both datasets, points with a depth larger
than 35 meters are excluded, as done by Gu et al. [11]. For
testing, we randomly sample 8,192 points from the source
and target point clouds each. Our inference time for FT3Ds
and KITTIs is about 3.7 seconds.

D.3. Optimization

We trained our point embedding model with an ADAM
optimizer with an initial learning rate of 0.001 and a mo-
mentum of 0.9. On the FT3Do dataset, we trained the model
for 30, 100, and 200 epochs when using 180, 1,800, and
18,000 training examples, respectively. For training on the
KITTIv dataset, we used 400 epochs, and the learning rate
was reduced by a factor of 10 after 340 epochs. In all these
cases, the batch size was 4. For the FT3Ds dataset, we se-
lected 1,800 examples at random and trained our model for
60 epochs with a batch size of 1. The learning rate was
multiplied by 0.1 after 50 epochs.

As mentioned in the paper, we optimized ϵ and λ from
the regularized transport problem (Equation 3 in the main
body) during the training process. Their log value was
learned to ensure their non-negativity. In addition, we added
a constant of 0.03 to the learned value of ϵ for the numerical
stability of the learning process.

The refinement component R∗ in Equation 14 in the pa-
per was defined as an optimizable variable and initialized to
a matrix of zeros. We optimized its value using an ADAM
optimizer with a momentum of 0.9. Further hyperparame-
ters are given in Table 9. All our experiments were done on
an NVIDIA Titan Xp GPU.

16

	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . Matching Cost
	3.2 . Soft Correspondence
	3.3 . Correspondence-Based Flow
	3.4 . Training Objective
	3.5 . Flow Refinement Optimization

	4 . Experiments
	4.1 . Experimental Setup
	4.2 . Scene Flow Results
	4.3 . Performance and Time Analysis
	4.4 . Ablation Study

	5 . Conclusions
	A . Correspondence as Optimal Transport
	B . Additional Results
	B.1 . Refinement Evolution
	B.2 . Refinement Optimization for Another Method
	B.3 . Qualitative Results
	B.4 . Ablation Runs
	B.5 . Limitation

	C . An Additional Experiment
	D . Implementation Details
	D.1 . Network Architecture
	D.2 . Training and Inference
	D.3 . Optimization

