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Abstract

In this paper, we propose binary sparse convolutional
networks called BSC-Net for efficient point cloud analysis.
We empirically observe that sparse convolution operation
causes larger quantization errors than standard convolu-
tion. However, conventional network quantization methods
directly binarize the weights and activations in sparse con-
volution, resulting in performance drop due to the signif-
icant quantization loss. On the contrary, we search the
optimal subset of convolution operation that activates the
sparse convolution at various locations for quantization
error alleviation, and the performance gap between real-
valued and binary sparse convolutional networks is closed
without complexity overhead. Specifically, we first present
the shifted sparse convolution that fuses the information in
the receptive field for the active sites that match the pre-
defined positions. Then we employ the differentiable search
strategies to discover the optimal opsitions for active site
matching in the shifted sparse convolution, and the quanti-
zation errors are significantly alleviated for efficient point
cloud analysis. For fair evaluation of the proposed method,
we empirically select the recently advances that are bene-
ficial for sparse convolution network binarization to con-
struct a strong baseline. The experimental results on Scan-
Net and NYU Depth v2 show that our BSC-Net achieves sig-
nificant improvement upon our srtong baseline and outper-
forms the state-of-the-art network binarization methods by
a remarkable margin without additional computation over-
head for binarizing sparse convolutional networks.

1. Introduction

3D deep learning on point clouds [6,12,25,27] has been
widely adopted in a wide variety of downstream applica-
tions including autonomous driving, AR/VR and robotics
due to its strong discriminative power and generalization
ability. In these applications, real-time interaction and fast
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Figure 1. Demonstration of sparse convolution and the proposed
shifted sparse convolution. (a) Sparse convolution only operates
when the center of kernel slides over the active sites. (b) Our
shifted sparse convolution performs different operations for each
group of output channels, which brings more information from the
neighbor active sites.

response are required to guarantee safety and practicality.
Submanifold sparse convolution (we call it ”sparse con-

volution” for short in the rest of this paper) [12] is one of
the most popular and basic operator for point cloud analy-
sis, which first voxelizes the point clouds and then applies
3D convolution on the voxels while keeping the same spar-
sity pattern throughout the layers of the network. Sparse
convolution is widely adopted in most state-of-the-art ar-
chitectures for point cloud analysis and so it is desirable
to further improve its efficiency for more practical applica-
tion. We opt for architecture-agnostic methods such as em-
ploying network binarization to achieve this goal. Binarized
neural networks [19,36] restrict the bitwidth of weights and
activations to only one bit and substitute the multiplication-
addition by xnor-bitcount operations, which decreases the
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storage and computational cost by 32× and 64× respec-
tively. We empirically find sparse convolution operation
brings larger quantization errors compared to standard con-
volution, which leads to significant performance degrada-
tion when directly applying existing network binarization
methods due to the large quantization errors.

In this paper, we present BSC-Net to learn binary sparse
convolutional networks for efficient point cloud analysis in
resource-exhaustive scenarios. Instead of directly binariz-
ing the weights and activations in sparse convolutional net-
works, we search the optimal subset of convolution oper-
ation that activates the sparse convolution at various loca-
tions for binarization. The acquired convolution patterns
significantly reduces the quantization errors in deployment,
and achieves remarkable performance enhancement with-
out extra computational cost. More specifically, we propose
the shifted sparse convolutional networks whose convolu-
tion operations are activated for active sites consistent with
the pre-defied locations, and the optimal positions for ac-
tive site matching across various channels are obtained via
differentiable search strategies. Therefore, the quantization
errors in the fixed convoltion operations are significantly al-
leviated by leveraging the shifted sparse convolution with
the searched active site matching locations. Moreover, we
empirically select the recently advances that are beneficial
for sparse convolution network binarization to construct a
strong baseline. Extensive experimental results on Scan-
Net and NYU Depth v2 for semantic segmentation of point
clouds show that our BSC-Net reduces the operations per
second (OPs) by 92.4% with only 3% mIOU degradation.

2. Related Work
Network quantization: Network quantiztaion has been

widely studied in computer vision due to the significant
enhancement in storage and computation efficiency. Con-
ventional methods can be divided into two categories in-
cluding networks in one bit and multiple bits. For the first
regard, weights and activations in networks are binarized
with extremely high compression ratio. Hubara et al. [15]
and Courbariaux et al. [8] substituted the add-multiplication
(MAC) of real-valued models by xnor-bitcount operations,
and emplyed the straight-through estimators (STE) to up-
date the network parameters with back-propagation. Raste-
gari et al. [29] further presented scaling factors for weights
and activations quantization error minimization. To recover
the capacity degradation caused by aggressive quantization,
Liu et al. [20] added extra shortcut connections between
consecutive layers to diversify the feature maps. Bulat et
al. [1] modified the search space and strategy with stabil-
ity regularization for the optimal architecture acquisition of
binary networks. Qin et al. [28] maximized the informa-
tion entropy in binary features and leveraged learnable scal-
ing factors for information retention in point cloud analy-

sis. Since increasing the weight and activation bitwidths
can significantly enhance the model capability, networks in
multiple bits are proposed for better performance. Choi et
al. [5] optimized the activation clipping threshold to find the
right quantization scale. Zhang et al. [38] further searches
the optimal quantizer basis and encoding for accurate quan-
tization. Lee et al. [16] adaptively scaled the gradient ele-
ment in STE to calibrate the direction of parameter update
with minimal discretization errors. However, multi-bit net-
works still suffers from heavy computational and storage
cost. Directly applying existing network binarization meth-
ods to submanifold sparse convolution destructs the geo-
metric structure in the scene and degrades the feature infor-
mativeness significantly.

Sparse convolution networks: Increased attention has
been paid to 3D deep learning on point cloud in recent
years, which is important for autonomous driving, AR/VR
and robotics. Due to the unordered property of point cloud
data, voxelizing the points and applying convolution on 3D
grids is a natural solution [4, 26, 40]. However, as point
cloud only covers the surfaces of objects/scenes and the
most space in 3D scans is empty, the dense volumetric rep-
resentation is inherently inefficient. Moreover, the compu-
tational cost and memory requirement both increase cubi-
cally with voxel resolution, thus making it infeasible to train
a voxel-based model with high-resolution inputs. To handle
this problem, sparse convolution [10, 11] were proposed to
restricts computation and storage to “active” sites (i.e. vox-
els which are not empty). However, as convolutional opera-
tor will increase the number of active sites with each layer,
the feature sparsity is reduced accordingly. To further im-
prove the efficiency of sparse CNNs, Graham et al. [12] in-
troduced submanifold sparse convolution, which only con-
ducts convolution when the center of kernel slides over ac-
tive sites and keeps the same level of sparsity throughout
the network. This made it practical to train networks with
more convolution layers, such as UNet [30], FCN [21] and
ResNets [14]. Choy et al. [6] proposed Minkowski Engine,
which extended submanifold sparse convolution to higher
dimensions. Tang et al. [33] further combined point-based
model and sparse CNN to achieve both accurate and effi-
cient 3D perception for large scale scenes. In particular,
sparse convolutional networks are able to adopt common
deep architectures from 2D vision, which can help stan-
dardize deep learning for point cloud, and they are widely
utilized in state-of-the-art models for various tasks, such as
semantic segmentation [24], object detection [31, 35] and
instance segmentation [17, 32, 34].

Differentiable search: In order to reduce the search com-
plexity during the exploration process, differentiable search
has been widely used in network architecture search [18],
mixed-precision quantization [3, 37] and continual learn-
ing [39]. During differentiable search, the superstruc-
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ture containing all choices as different components is con-
structed, where the importance weights for each branch is
optimized with gradient descent for optimal solution acqui-
sition. Liu et al. [18] relaxed the space of network archi-
tectures to be continuous, and jointly optimized the branch
importance weights and parameters of the hypernet for net-
work architecture search. Cai et al. [3] assigned different
bitwidths to various branches in the supernet for mixed-
precision quantization, and chose the bitwidth in the com-
ponent with the largest importance weight to be the quan-
tization strategy during inference to achieve the optimal
accuracy-complexity trade-off. Guan et al. [13] updated the
feature weights through the presented bridge loss which en-
hanced the knowledge distillation between the students and
teachers. In this paper, we extend differentiable search for
the discovery of optimal position for active site matching in
shifted sparse convolution, where the search cost is signifi-
cantly reduced for exploration in large space.

3. Approach
In this section, we first briefly introduce the prelimi-

nary concept of sparse convolution and network binariza-
tion. Then we conduct experiments to show the quantiza-
tion errors of network binarization methods in different con-
volution patterns, and introduce the shifted sparse convolu-
tion (SFSC) operation which is activated for sites in various
locations of the receptive field. Finally, we demonstrate the
differentiable search to discover the optimal position for ac-
tive site matching in SFSC, and construct the BSC-Net with
alleviated quantization errors and enhanced performance.

3.1. Preliminaries

Let xu be an input feature vector of an active site, located
at 3-dimensional coordinates u ∈ RD. As shown in Figure
1(a), the general sparse convolution [6, 12] F0 by a kernel
for xu is formulated as:

F0(W ,xu) =
∑

i∈ND(u)

Wixu+i (1)

where ND(u) denotes the list of offsets in the 3-
dimensional cube centered at origin u. The convolution
kernel can be break down and assigned to each offset pa-
rameterized by Wi.

Sparse convolution is a practical substitution for vanilla
3D convolution, and skips the non-active regions that only
operates when the center of convolutional kernel covers ac-
tive voxels. Specifically, active voxels are stored as sparse
tensors for the fixed convolution operations, where all ac-
tive synapes between input and output voxels are found to
perform convolution. Therefore, the memory requirement
and computational cost are significantly reduced in sparse
convolutional networks. To further reduce the complexity
during inference, network binarization can be leveraged for
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Figure 2. Sign correspondence of activations for the first binary
layer when binarizing convolutional network, sparse convolutional
network and shifted sparse convolutional network for point cloud
segmentation on ScanNet dataset. All networks share the same
kernel weights. We sort x-axis (different patterns of sparse convo-
lution) by their sign correspondence for better visualization.

weight and activation quantization. In a 1-bit sparse convo-
lutional layer, both convolutional kernels and activations are
binarized to −1 and +1. In this way, the time-consuming
floating-point matrix multiplication can be replaced by bit-
wise XNOR and popcount operations:

Al
b = sign(popcount(XNOR(W l

b,A
l−1
b ))) (2)

where Al
b and W l

b represent the binarized activations and
weights in the lth layer respectively, and W l

b is defined as
the binarzed version of the real-valued latent weights W l

r

via W l
b = sign(W l

r).

3.2. Shifted Sparse Convolution

Since the fixed operation in sparse convolution is only
activated when the central input in the receptive field is ac-
tive, the constrained exploration of the neighbor active sites
makes sparse convolutional networks less robust to bina-
rization. To show this, we calculate the sign correspon-
dence (the proportion of activations in binary network that
own same signs with the corresponding real-valued activa-
tions, which can measure the quantization error as proved
in [29]) for convolutional network and sparse convolutional
network with inputs from the ScanNet dataset. We choose
the activations of the first binary layer to avoid the accu-
mulation of quantization errors and adopt the same kernel
weights for both networks. As shown in Figure 2, the sign
correspondences for convolutional layer and sparse convo-
lutional layer are 63.1% and 58.4% respectively, which con-
firms that sparse convolution will bring larger quantization
errors than standard convolution.

However, it is infeasible to adopt convolutional layers in
point cloud analysis networks for reducing quantization er-
rors due to the large computational cost from growing active
sites. As an alternative, we try to explore the subset of con-
volution. For a single active site, a 3 × 3 × 3 convolution
kernel will operate 27 times while sparse convolution kernel
only operates at the center. What if we keep the same num-
ber of operations with sparse convolution but operates at
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other location? To answer it, we extend sparse convolution
to enable it to active at different locations. Here we propose
the shifted sparse convolution(SFSC) shown in Figure 1(b),
which is defined as:

Fk(W ,xu) =
∑

i∈ND(u+sk)

Wixu+i (3)

sk ∈ R3, k ∈ {1, 2, ..., ns}
where u + sk is the center of shifted cube instead of u.
ND(u + sk) is then comprised of the offsets in the shifted
cube w.r.t. u. ns is the number of all unique shifts. For
example, for a 3×3×3 sparse convolution operation, there
are up to 33 − 1 = 26 possible shifts.

For a general sparse convolution operation, it conducts
convolution only when the kernel center overlaps with ac-
tive sites. While in our SFSC operation, the kernel cen-
ter can shift to any other locations of the kernel. We use
Fns

= {F0, F1, F2, ..., Fns
} to represent the set of all SFSC

operations. Note that we consider the general sparse convo-
lution as a special case of SFSC (F0). In a SFSC layer,
instead of applying the same sparse convolution operation
for all output channels as in a general sparse convolutional
layer, we uniformly divide the output channels into several
groups (namely channel group), each with a specific SFSC
operation. It can be formulated as:

y = concat(f1(W1, x), ..., fng (Wng , x)), fi ∈ Fns (4)

where x and y are the input and output of this layer. ng
indicates the number of channel groups. Wi refers to the
weights for the i-th SFSC operation. The outputs of all
SFSC operations are concatenated along the channel dimen-
sion, resulting in a tensor with the same shape as the output
of a general sparse convolutional layer.

We randomly sample 50 shift configurations for SFSC
layers and compute the sign correspondence, which is
shown in Figure 2. It can be seen that different SFSC layers
vary a lot in quantization errors and a proportion of them
are more robust to binarization compared to sparse convo-
lutional layer. In another word, if we can find out the (near)
optimal configurations for all SFSC layers in a network, the
quantization error can be reduced without additional com-
putational cost.

3.3. Efficient Search for Shift Operation

Due to the huge design space of shift operation, it is in-
feasible to decide an optimal configuration for the whole
network: the shifted channels and shift directions may be
different in each layer, and the total number of possible
architectures will be (84)13 = 9.1 × 1046 for a network
with 13 SFSC layers, each layer with 4 channel groups and
8 available shift directions. Although manually designed
BSC-Net, which shares the same shift strategy in all SFSC
layers, is able to reduce the impact of binarization on the
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Figure 3. Demonstration of our efficient search method for shift
operation. For each SFSC layer and each channel group, we com-
bine all the shift operations in the search space into a 5 × 5 × 5
sparse convolution and assign each direction with a soft selector
indicating the importance of the corresponding shift operation,
which enables us to directly search the best shift operations via
end-to-end gradient descent. ⊕ stand for summation.

network performance, we resort to automatic architecture
search for a better performance. In this section, without fur-
ther explanation, the default kernel size for original sparse
convolution and SFSC is 3× 3× 3.

In our BSC-Net, the optimal shift direction for each
channel group and each layer may differ. Thus the prob-
lem is to search the optimal shift direction for each channel
group in the SFSC layer. We formulate this by searching
the optimal fi in (4.4):

fi =

ns∑
j=1

oaijFj , i ∈ {1, 2, ..., ng} (5)

s.t.
∑
j

oaij = 1, oa ∈ {0, 1}.

where oa is a binary selector of the shift direction. As
searching in a discrete space makes it hard to optimize the
choices, we reformulate the discrete search space as a con-
tinuous one by switching fi to a composite function f∗i :

f∗i =

ns∑
j=1

πaijFj , i ∈ {1, 2, ..., ng} (6)

s.t. πa ∈ [0, 1], πaij =
1

1 + exp(−αij)
where the constraints on weight πa are eliminated by intro-
ducing a set of real architecture parameters {αij}. This sig-
moid relaxation [7] will not introduce competition among
different SFSC operations as in softmax relaxation [3],
which we find to be a better way to search for BSC-Net. In
this way, the composition of SFSC operations are learned by
gradient descent in the space of continuous real parameters
{αij}, which can be optimized end-to-end efficiently.
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However, according to (6), the computation and memory
increase linearly with the size of search space. All available
SFSC operations need to be conducted in weighted summa-
tion f∗i =

∑ns

j=1 π
a
ijFj . Moreover, each SFSC layer owns

different parameters, increasing the difficulty of network
optimization. To this end, we propose an efficient search
method, which absorb all the operations in search space into
a larger sparse convolution, as shown in Figure 3.

In this way, we convert the SFSC layer into a 5 × 5 × 5
composite sparse convolutional layer, which is used to con-
struct a supernet. This enables us to efficiently search the
optimal architecture parameters by end-to-end optimiza-
tion, regardless of the search space. However, it should be
clarified that although the size of search space will not affect
the computational efficiency of the supernet, a large search
space will make the optimization of architecture parameters
hard to converge, thus deteriorate the final performance.

Once the supernet is converged, the optimal BSC-Net
must be derived by discretizing the soft selector variables
πa of (6) into the binary selectors oa required by (5). In or-
der to make sure the performance of supernet can precisely
reflect the capability of BSC-Net, we constrain πa in each
SFSC layer by a confidence loss:

Lc = −
1

ng · ns

ng∑
i

ns∑
j

|πij − 0.5| (7)

which pushes πa to discrete values.
Optimization approach: In order to decouple the

weights and architecture parameters for robust learning [3],
we adopt an alternating optimization approach: 1) fix the
{αij} and optimize {Wi}; 2) fix {Wi} and update {αij}.

When we derive the BSC-Net from a converged super-
net, both weights and architecture parameters need to be
considered. Here we find the following strategy works best:
we first train the supernet with binary weight and activa-
tion to search for the optimal architecture parameters, from
which we choose the shift directions with the highest archi-
tecture parameters. Then we initialize the searched BSC-
Net with the weights from the supernet and follow the same
training procedure as our baseline (introduced in Section 4).

4. Experiment

To investigate the performance of the proposed method,
we conduct experiments on several indoor scene datasets
including NYU Depth v2 (NYUDv2) [23] and ScanNet [9].
We first introduce the datasets, evaluation metrics and im-
plementation details, which is followed by a strong baseline
designed for binarization of sparse convolution networks.
Then we compare our BSC-Net with the state-of-the-art
network binarization methods on sparse convolutional net-
works. Finally we design ablation studies to show the ef-
fectiveness and efficiency of the presented BSC-Net.

4.1. Experimental Settings

Datasets and metrics: We conduct experiments on two
indoor datasets including NYU Depth v2 (NYUDv2) [23]
and ScanNet [9]. NYUDv2 contains 1,449 RGB-D scene
images, where 795 images are split for training and 654
images for testing. Following [12], we adopt 40-class set-
ting where all pixels are labeled with 40 classes and convert
the RGB-D images into 3D point clouds. As the horizontal
and vertical directions of spatial dimensions in the RGB-
D images are discrete, we voxelize the 3D point clouds to
1cm bins by only discretizing the depth dimension. ScanNet
consists of 1513 reconstructed indoor scenes with 21 cate-
gories, which are split into 1201 and 312 scenes for training
and validation respectively. We adopt two popular settings
of ScanNet containing 2cm voxelization and 5cm voxeliza-
tion as done in [6].

We report the mean intersection of union (mIoU), mean
per-point classification accuracy (mAcc) and overall point-
wise classification accuracy (Acc) for NYUDv2. For Scan-
Net, we report mIoU and mAcc. We use the same calcula-
tion method in [19] to count the binary operations (BOPs)
and floating point operations (FLOPs), where the total op-
erations for model computation complexity evaluation is
counted by OPs = BOPs/64 + FLOPs. The storage cost are
measured by summing the number of real-valued parame-
ters and that of binary numbers divided by 32.
Implementation details: Following [12], we adopt dif-
ferent network architectures for the various datasets. For
NYUDv2, we perform experiments with FCN [21] net-
works in different sizes, namely FCN-S (small) and FCN-H
(huge). For ScanNet, we leverage the U-Net [30] architec-
ture in small and huge sizes represented as UNET-S and
UNET-H. The small and huge models differ in numbers of
filters and sparse convolutional layers per level, which re-
sults in capacity variations of point cloud analysis. We use
Adam with a stepwise scheduler to optimize the network pa-
rameters. The training hyperparamters are introduced in the
supplementary materials in detail. We perform data aug-
mentation by applying random affine transformers to the
point cloud.

For our BSC-Net, the shift distance in SFSC operations
is set to one and the number of channel groups which em-
ploy different shift directions is assigned to 8. The search
space of directions contains shifting to 8 operations repre-
sented by (±1,±1,±1) and staying still without shift. Lim-
iting the search space of shift directions for channel groups
in each layer significantly reduces the search difficulty
while maintains the exploration capability. We also eval-
uated two variations of our BSC-Net called BSC-Baseline
and BSC-Manual to demonstrate the effectiveness of the
presented techniques. BSC-Baseline represents the frame-
work that binarizing the sparse convolutional networks with
all beneficial recently advances combined (refer to Section

5



Table 1. The mIoU of binarzed sparse convolutional networks on ScanNet of different baseline techniques, where the UNET architectures
are leveraged. The methods from left to right indicate (1) removing all the skip connections; (2) replacing PReLU with Hardtanh; (3)
calculating scaling factor for both activations and weights; (4) using STE to approximate the gradient; (5) removing the skip connections
for downsampling/upsampling layers; (6) directly training network with binary weights and activations.

Method Simplify BS Simplify AF Modify SF Simplify GA Simplify DS/US Simplify Init. Full baseline
mIoU (%) 37.4 50.5 46.1 49.9 47.3/48.7 34.1 51.7

4.2), and BSC-Manual stands for the network binarization
for network consisted of SFSC layers with manually defined
shift configurations instead of the searched ones. In BSC-
Manual, We set 1

2 of the channel groups unshifted, 1
4 shift

to (+1,+1, 0) and 1
4 shift to (−1,−1, 0) for NYUDv2, and

1
2 of the channel groups unshifted, 1

4 shift to (+1,+1,+1)
and 1

4 shift to (−1,−1,−1) for ScanNet. BSC-Baseline and
BSC-Manual are trained in the same way, while BSC-Net is
trained with an additional searching stage first.

4.2. Strong Baseline

Since network binarization degrades the performance
sizably, techniques for accuracy improvements have been
studied in recent works of model quantization. To show
the performance improvement comes from our proposed
method rather than other tricks, we build a strong baseline
for binarizing sparse convolutional networks from the re-
cently advances. Through the empirical study shown in Ta-
ble 1, we discover the beneficial techniques for performance
enhancement and list as below.
Block sturcture: We use the same block structure
as ReActNet [19], where the operations are ordered
as Binarization→SparseConv→BatchNorm→Activation in
each basic block.
Activation function: PReLU [14, 19] considers the nega-
tive inputs with better convergence, and we substitute all
ReLU activation layers with PReLU to strengthen the per-
formance.
Scaling factor: We only calculate the layer-wise scaling
factor for weights as demonstrated in [22], which is the
mean absolute value offull-precision weights.
Gradient approximation: A piecewise polynomial func-
tion [20] is used to approximate the sign function, which
acquires more accurate gradient during back propagation.
Downsampling/upsampling: Following [20], the skip con-
nection for downsampling layer is composed of an average
pooling land a real-valued convolutional layer with kernel
size 1. We also verify that an unpooling layer with a full-
precision convolution with kernel size 1 is beneficial in the
skip connection for upsampling layer.
Initialization: We first pretrain the network with full-
precision weights and activations for initialization. Then
the model with binary weights and activations is trained for
binarization.

4.3. Comparison with State-of-the-art

In this section, we compare our method with state-of-
the-art binarization methods, including XNOR-Net [29],
XNOR-Net++ [2], BiPointNet [28], Bi-Real-Net [20] and
ReActNet [19]. We also provide the performance of the real
valued models for reference. Experiments are conducted on
NYUDv2 and ScanNet.

Results on NYUDv2: Table 3 illustrates the compari-
son of storage, operations per second (OPs) and semantic
segmentation results across several popular network bina-
rization methods and our BSC-Net. Bi-Real-Net performs
best among previous methods, which shows the gradient ap-
proximation method and the skip connection structure are
general and effective in sparse convolutional network bi-
narization. Although BiPointNet is designed for 3D point
cloud analysis, it fails to achieve satisfactory performance
because the operations such as maxpooling and point-wise
MLP used in PointNet are not adopted in sparse convolu-
tional networks. BSC-Baseline outperforms the previous
methods by a large margin and its performance is further
boosted by the proposed SFSC module, i.e. BSC-Manual.
When adopting the efficient differentiable search method,
BSC-Net achieves the state-of-the-art performance in both
architectures of FCN, while the extra computataional over-
head is negligible compared to previous methods.Observing
the last low in Table 3, The performance gap between real
valued FCN-H and our BSC-Net has even been narrowed to
less than 3%, which shows the great application potentials
of our method.

Results on ScanNet: Different from NYUDv2 in which
the point clouds are generated from single RGB-D images,
ScanNet provides larger and more complete point cloud
scenes via 3D reconstruction. Therefore, we can evaluate
our BSC-Net on ScanNet with different resolutions of the
input point cloud after voxelization as shown in Table 2.
Following [12], we evaluate all results three times to address
the problem of the number of voxels being greatly smaller
than that of points. Similar to NYUDv2, BSC-Baseline out-
performs the previous state-of-the-art. We found the gap
between BSC-Baseline and previous methods were larger
because the upsampling layer in UNET is implemented
by deconvolution, which is more sensitive to binarization
than the interpolation used in FCN. In each setting, BSC-
Manual gains consistent improvement over BSC-Baseline,
and BSC-Net further achieves state-of-the-art performances
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Table 2. Semantic segmentation results (%), model storage cost (M) and computation cost in OPs of different methods on ScanNet
validation set. Param. means the model storage cost (M). 5cm voxel and 2cm voxel refer to different resolutions of the input point cloud
after voxelization.

Method Param.
5cm voxel 2cm voxel

OPs mIoU mAcc OPs mIoU mAcc
U

N
E

T-
S

Real valued 4.335 1.21× 109 65.2 73.3 5.32× 109 68.7 78.5
XNOR-Net 0.136 8.07× 107 33.3 38.9 3.79× 108 21.0 26.1
XNOR-Net++ 0.136 8.07× 107 12.6 15.9 3.79× 108 11.2 13.7
BiPointNet 0.136 8.07× 107 30.1 36.2 3.79× 108 18.4 20.7
Bi-Real-Net 0.138 8.12× 107 48.3 56.6 3.82× 108 51.2 63.3
ReActNet 0.138 8.12× 107 43.6 50.2 3.82× 108 46.9 52.9
BSC-Baseline 0.139 8.12× 107 51.7 61.8 3.82× 108 54.9 65.3
BSC-Manual 0.139 8.12× 107 53.2 63.7 3.82× 108 57.8 66.6
BSC-Net 0.139 8.12× 107 54.4 65.2 3.82× 108 61.4 70.4

U
N

E
T-

H

Real valued 30.104 7.65× 109 67.6 75.1 3.38× 1010 71.0 79.0
XNOR-Net 0.939 3.61× 108 46.6 53.5 1.75× 109 34.9 40.1
XNOR-Net++ 0.939 3.61× 108 13.3 16.4 1.75× 109 12.8 16.2
BiPointNet 0.939 3.61× 108 45.2 52.4 1.75× 109 34.3 39.8
Bi-Real-Net 0.948 3.63× 108 53.4 63.2 1.76× 109 57.3 66.9
ReActNet 0.949 3.63× 108 52.2 59.0 1.76× 109 57.1 67.0
BSC-Baseline 0.952 3.63× 108 56.0 65.9 1.76× 109 59.3 68.3
BSC-Manual 0.952 3.63× 108 59.3 68.7 1.76× 109 62.2 70.1
BSC-Net 0.952 3.63× 108 62.2 70.5 1.76× 109 63.9 71.6

Table 3. Semantic segmentation results (%), model storage
cost (M) and computation cost in OPs of different methods on
NYUDv2 test set. Param. means the model storage cost (M).

Method Param. OPs mIoU mAcc Acc

FC
N

-S

Real valued 2.496 1.24× 109 33.9 47.7 64.7
XNOR-Net 0.108 1.72× 108 22.1 32.7 57.3
XNOR-Net++ 0.108 1.72× 108 8.5 13.5 43.9
BiPointNet 0.108 1.72× 108 24.9 35.7 59.3
Bi-Real-Net 0.110 1.75× 108 27.3 38.4 60.0
ReActNet 0.110 1.75× 108 25.4 36.6 58.9
BSC-Baseline 0.110 1.75× 108 27.8 39.9 60.1
BSC-Manual 0.110 1.75× 108 28.7 40.9 60.2
BSC-Net 0.110 1.75× 108 29.7 42.1 61.2

FC
N

-H

Real valued 10.025 4.82× 109 36.9 50.4 67.2
XNOR-Net 0.357 3.08× 108 27.1 38.8 59.6
XNOR-Net++ 0.357 3.08× 108 8.4 13.6 43.2
BiPointNet 0.357 3.08× 108 28.1 40.8 60.1
Bi-Real-Net 0.361 3.09× 108 30.4 41.8 61.1
ReActNet 0.361 3.09× 108 27.0 40.1 58.9
BSC-Baseline 0.362 3.09× 108 32.0 44.4 63.3
BSC-Manual 0.362 3.09× 108 32.5 45.1 63.5
BSC-Net 0.362 3.09× 108 33.9 46.2 64.5

which proves the effectiveness of differentiable search strat-
egy. We also noticed that the improvement of BSC-Net over
BSC-Baseline on ScanNet is larger than that on NYUDv2,
that shows our method can exploit richer geometric infor-
mation from 3D point clouds than 2.5D depth map.

4.4. Ablation Study

We conduct ablation studies to show how different hy-
perparamters and strategies influence the performance of
the proposed BSC-Net. We study the effects of the search
space and number of channel group as well as searching
strategy in our differentiable search method on the final per-
formance. The experiments are conducted on ScanNet (5cm
voxelization) using UNET-S.

Performance w.r.t. searching hyperparamters: In or-
der to reduce the search cost as well as the optimization dif-
ficulties, we search the optimal shift strategies for different
layers in BSC-Net from a subset of the whole search space,
and we also partition the channels into groups which share
the same shift strategies. Table 4 demonstrates the perfor-
mance variation for BSC-Net with different search space
and group numbers of SFSC operations, where S and Cdk
represent the convolutions staying still and those shifted to
the direction of the k-th vertex of a cube.

Observing the third, fourth and seventh rows, we con-
clude that the mIoU and mAcc of BSC-Net improves as
the size of the search space increases. The improvement
from search space in size 3 to that in size 5 is much higher
than that from size 5 to size 9, which indicates that large
search space causes optimization difficulties in differen-
tiable search method and a subset of the whole search space
contains the solution near to the optimal one. According to
the last four rows in Table 4, the performance achieves the
optimal for medium numbers of groups in the differentiable
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Table 4. The effects of search space and group number in differ-
entiable search method on the final performance.

Search space Group number mIoU(%) mAcc(%)
Baseline: {S} – 51.7 61.8
{S,C1, C8} 8 53.6 63.9
{S,C1, C4, C6, C7} 8 54.2 64.9

{S,C1, C2, C3,
2 52.9 63.8
4 53.4 64.6

C4, C5, C6, C7, C8}
8 54.4 65.2

16 54.0 64.5

Table 5. The effects of relaxation and derivation strategy in differ-
entiable search method on the final performance. ∗ indicates the
architecture parameters are frozen.

Relaxation Derivation mIoU(%) mAcc(%)
Random D(32, 32)→ D(1, 1) 51.5 61.2

Softmax
S(32, 32)→ S(1, 1)→ D(1, 1) 51.8 62.0
S∗(32, 32)→ S(1, 1)→ D(1, 1) 52.3 63.2
S(1, 1)→ D(32, 32)→ D(1, 1) 53.5 64.5

Sigmoid
S(32, 32)→ S(1, 1)→ D(1, 1) 52.6 64.0
S∗(32, 32)→ S(1, 1)→ D(1, 1) 53.7 64.7
S(1, 1)→ D(32, 32)→ D(1, 1) 54.4 65.2

search. Increasing the numbers causes the optimization dif-
ficulties due to the large search space, and decreasing the
numbers excludes the promising solution due to the chan-
nel correlation.

Performance w.r.t. searching strategy: We further in-
vestigate the effects of searching strategy in Table 5, includ-
ing relaxation method for the binary selector in (5) and strat-
egy for deriving BSC-Net from the supernet. For softmax
relaxation, {παij} are defined as πaij =

exp(αij)∑
k exp(αik)

, and the
confidence constraint in (7) is changed to:

Lc = −
ng∑
i

ns∑
j

Iij logπ
a
ij , Iij =

1, j = argmax
k

πaik

0, otherwise
(8)

which pushes πa to a one-hot tensor for better derivation.
We use S(W,A) and D(W,A) to represent supernet and
derived BSC-Net with W-bit weights and A-bit activations.

We first conduct random assignment on the shift direc-
tions for each layer and channel group. As shown in the
first row, the performance of BSC-Net falls even behind of
the baseline, which shows searching or manually designing
a proper SFSC configuration is essential for realizing the
potential of BSC-Net. The last six rows show that sigmoid
relaxation is better than softmax, which is due to softmax
will bring competition between different SFSC operations
and hurts the performance of supernet. The results also tes-
tify the superiority of our derivation strategy.

Notably, we should emphasize that the SFSC operation
is proposed for reducing quantization error, which does not

Ground-truth BiPointNet

Bi-Real-Net BSC-Net

Figure 4. Visualization results of different methods.

work for real-valued networks. We do not observe an obvi-
ous change in performance when equipping the real-valued
UNET or FCN with SFSC.

4.5. Visualization Results

We viusalize the segmentation prediction for different
methods in Figure 4. Black regions in the ground-truth refer
to undefined categories. The predictions of previous meth-
ods are discontinuous and they misclassify the shelf as wall
or window, while our BSC-Net outputs smooth and accu-
rate predictions. The results in red boxes also provide an
intuitive explanation on our method: when binarized, sparse
convolutional networks fail to fully explore the neighbor ac-
tive sites with increased quantization errors and thus predict
discontinuous results. On the contrary, BSC-Net better ex-
ploits the neighborhood and reduces the quantization error.

5. Conclusion
In this paper, we have presented BSC-Net that learns bi-

nary sparse convolutional networks for efficient point cloud
analysis. We present the shifted sparse convolution that
is activated for receptive field whose pre-defined locations
match active sites. By searching the optimal positions
for active site matching in shifted sparse convolution, the
quantization errors in binarized sparse convolutional net-
works are alleviated significantly without additional com-
putational cost. For fair evaluation, we combine previous
techniques to construct a strong baseline. Extensive exper-
iments on semantic segmentation of point clouds demon-
strate the superiority of BSC-Net.
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Figure 5. The overall frameworks of FCN (a) and UNET (b) which are constructed with the basic blocks in (c).

Supplementary Material

A. Overview

In this supplementary material, we detail the network ar-
chitectures and training hyperparamters used in our exper-
iments. Section B shows how to construct the whole net-
work with basic blocks. Section C details the training hy-
perparamters used in our experiments.

B. Network Architecture

B.1. Overall Framework

We illustrate the architectures of FCN and UNET in Fig-
ure 5. Only two levels of downsampling/upsampling are
shown in the figure for simplicity. Note that for each level
only one SSC block is drawn, while in fact there may be
one or two blocks according to the size of networks.

FCN-S has 16 filters in the input layer, and one SSC
block per level. FCN-H has 24 filters in the input layer, and
two SSC blocks per level. Both networks use eight levels
of downsampling and upsampling. We increase the number
of filters in the networks when downsampling: in particu-
lar, we add 16 (S) or 24 (H) filters every time we reduce
the scale. UNET-S has 16 initial filters and one SSC block
per level. UNET-H has 32 initial filters and two SSC blocks
per level. Both networks use six levels of downsampling
and upsampling. Each downsampling operation adds 16 (S)
or 32 (H) filters, while upsampling operation subtracts the
same numbers of filters correspondingly.

When binarizing the network, the first SSC layer and the

linear layers are kept real-valued following previous meth-
ods [19, 20, 22]. We adopt our SFSC module in the SSC
block for BSC-Manual and BSC-Net, which is detailed in
next subsection.

B.2. Block Detail

We detail the structure of basic blocks contained in the
binary FCN and UNET in Figure 6. For SSC layer, the
projection indicates identity mapping when the input and
output channel are equal, otherwise it is a 1-bit 1 × 1 con-
volution operation. For Conv and DeConv blocks, we keep
the 1×1 convolution operation real-valued, which is proved
to be essential for binarizing performance [20, 22].

C. Training Hyperparamters

There are 2 training stages when training BSC-Baseline
and BSC-Manual while 3 stages when training BSC-Net.
For all stages, we set max epoch as 128, weight decay as 0
and adopt Adam optimizer with a stepwise scheduler which
steps at 60 and 100 epoch (reduce the learning rate by a fac-
tor of 10). The initial learning rates for the first and second
stage when training BSC-Baseline and BSC-Manual are set
to 0.001 and 0.0002. While for training BSC-Net, the initial
learning rates for the three stages are set to 0.001, 0.001 and
0.0002. The weight of the confidence loss is set to 0.1 for
FCN and 0.01 for UNET. Note that for training UNET-H
on 2cm voxel, we double the max epoch and the stepping
epochs as the huge network is hard to converge.
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Figure 6. Details of the basic blocks. (a) SSC layer, (b) SSC block, (c) Conv layer, (d) DeConv layer.
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