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Abstract
Vision transformers have recently shown strong global

context modeling capabilities in camouflaged object detec-
tion. However, they suffer from two major limitations: less
effective locality modeling and insufficient feature aggre-
gation in decoders, which are not conducive to camou-
flaged object detection that explores subtle cues from in-
distinguishable backgrounds. To address these issues, in
this paper, we propose a novel transformer-based Feature
Shrinkage Pyramid Network (FSPNet), which aims to hi-
erarchically decode locality-enhanced neighboring trans-
former features through progressive shrinking for camou-
flaged object detection. Specifically, we propose a non-
local token enhancement module (NL-TEM) that employs
the non-local mechanism to interact neighboring tokens and
explore graph-based high-order relations within tokens to
enhance local representations of transformers. Moreover,
we design a feature shrinkage decoder (FSD) with adja-
cent interaction modules (AIM), which progressively ag-
gregates adjacent transformer features through a layer-by-
layer shrinkage pyramid to accumulate imperceptible but
effective cues as much as possible for object information
decoding. Extensive quantitative and qualitative experi-
ments demonstrate that the proposed model significantly
outperforms the existing 24 competitors on three challeng-
ing COD benchmark datasets under six widely-used evalu-
ation metrics. Our code is publicly available at https:
//github.com/ZhouHuang23/FSPNet.

1. Introduction
Camouflage is a common defense or tactic in organ-

isms that “perfectly” blend in with their surroundings to
deceive predators (prey) or sneak up on prey (hunters).
Camouflaged object detection (COD) [11] aims to segment
camouflaged objects in the scene and has been widely ap-
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Figure 1. Visual comparison of COD in different challeng-
ing scenarios, including small, large, multiple, occluded and
boundary-uncertain camouflaged objects. Compared with the re-
cently proposed ZoomNet [30] and SINet-v2 [10], our method pro-
vides superior performance with more accurate object localization
and more complete object segmentation, mainly due to the pro-
posed locality-enhanced global context exploration and progres-
sive shrinkage decoder.

plied in species conservation [29], medical image segmen-
tation [5, 20], and industrial defect detection [3], etc.

Due to the high similarities between camouflaged objects
and their backgrounds, camouflaged objects are usually in-
conspicuous and indistinguishable, which brings great chal-
lenges to accurate detection. Recently, the development
of deep learning and the availability of large-scale COD
datasets (e.g., COD10K [11]) have significantly advanced
camouflaged object detection. Numerous deep learning-
based methods have been proposed, which can be roughly
divided into three categories: targeted design of feature ex-
ploration modules, multi-task joint learning frameworks,



and bio-inspired methods. Although these methods have
made remarkable progress, they mainly rely heavily on con-
volutional neural networks (CNNs), which cannot capture
long-range dependencies due to the limited receptive fields,
resulting in inferior performance for COD. As shown in
Fig. 1, recently proposed state-of-the-art CNN-based meth-
ods (e.g., ZoomNet [30] and SINet-v2 [10]) fail to explore
global feature relations and thus often provide predictions
of incomplete object regions, especially for multiple ob-
jects, large objects and occlusion cases. Although larger
convolution kernels or simply stacking multiple convolu-
tion layers with small kernels can enlarge receptive fields
and thus alleviate this issue to some extent, it also dramat-
ically increases the computational cost and the number of
network parameters. Furthermore, studies [34] have shown
that simply network deepening is ineffective for long-range
dependency modeling.

Compared to CNNs, vision transformers (ViT) [7],
which have recently been introduced into computer vision
and demonstrated significant breakthroughs in various vi-
sion applications [17], can efficiently model long-range de-
pendencies with the self-attention operations and thus over-
come the above drawbacks of CNNs-based models. Re-
cently, the works of [47] and [24] have attempted to accom-
modate transformers for COD and shown promising per-
formance. These methods either employ transformer as a
network component for feature decoding or utilize the off-
the-shelf vision transformers as backbones for feature en-
coding. Through a thorough analysis of these methods for
COD, we observe two major issues within existing tech-
niques: 1) Less effective local feature modeling for trans-
former backbones. We argue that both global context and
local features play essential roles in COD tasks. However,
we observe that most transformer-based methods lack a lo-
cality mechanism for information exchange within local re-
gions. 2) Limitations of feature aggregation in decoders.
Existing decoders (shown in Fig. 2 (a)-(d)) usually directly
aggregate the features with significant information differ-
ences (e.g., low-level features with rich details and high-
level features with semantics), which tends to discard some
inconspicuous but valuable cues or introduce noise, result-
ing in inaccurate predictions. This is a big blow for the task
of identifying camouflaged objects from faint clues.

To this end, in this paper, we propose a novel
transformer-based Feature Shrinkage Pyramid Network,
named FSPNet, which aims to hierarchically decode neigh-
boring transformer features which are locality-enhanced
global representations for camouflaged objects through pro-
gressive shrinking, thereby excavating and accumulating
rich local cues and global context of camouflaged objects in
our encoder and decoder for accurate and complete camou-
flaged object segmentation. Specifically, to complement lo-
cal feature modeling in the transformer encoder, we propose

a non-local token enhancement module (NL-TEM) which
employs the non-local mechanism to interact neighboring
similar tokens and explore graph-based high-level relations
within tokens to enhance local representations. Further-
more, we design a feature shrinkage decoder (FSD) with
adjacent interaction modules (AIMs) which progressively
aggregates adjacent transformer features in pairs through a
layer-by-layer shrinkage pyramid architecture to accumu-
late subtle but effective details and semantics as much as
possible for object information decoding. Owing to the
global context modeling of transformers, locality explo-
ration within tokens and progressive feature shrinkage de-
coder, our proposed model achieves state-of-the-art perfor-
mance and provides an accurate and complete camouflaged
object segmentation. Our main contributions are summa-
rized as follows:

• We propose a non-local token enhancement module
(NL-TEM) for feature interaction and exploration be-
tween and within tokens to compensate for locality
modeling of transformers.

• We design a feature shrinkage decoder (FSD) with the
adjacent interaction module (AIM) to better aggregate
camouflaged object cues between neighboring trans-
former features through progressive shrinking for cam-
ouflaged object prediction.

• Comprehensive experiments show that our proposed
FSPNet achieves superior performance on three
widely-used COD benchmark datasets compared to 24
existing state-of-the-art methods.

2. Related Work
2.1. CNN-based Camouflaged Object Detection

Recently, CNN-based approaches have made impres-
sive progress on the COD task by releasing large-scale
datasets. Some works attempt to mine inconspicuous fea-
tures of camouflage objects from the background through
meticulously designed feature exploration modules, e.g.,
contextual feature learning [28, 36], texture-aware learn-
ing [60], and frequency-domain learning [57]. There are
also some models [19, 21, 47] which propose to model un-
certainty in data labeling or camouflaged data itself for
COD. Besides, the multi-task learning framework is com-
monly used for COD. These methods generally introduce
auxiliary tasks such as classification [18], edge/boundary
detection [37,48,59], and object ranking [25]. Furthermore,
some methods detect camouflaged objects by mimicking
behavior patterns or visual mechanics of predators such as
the search and identification process [10], and zooming in
and out [16, 30]. In addition to image-based COD, more
recently, [6] proposed to discover camouflaged objects in
videos using motion information. Although CNN-based
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Figure 2. Different types of decoding structures for object seg-
mentation. (a) U-shaped decoding structure [30, 35, 58]. (b)
Dense integration strategy [31, 52, 53]. (c) Feedback refinement
strategy [48, 55, 59]. (d) Separate decoding of low-level and high-
level features [11, 12, 15]. (e) Our decoding structure.

models have achieved promising performance, these meth-
ods do not explore long-range dependencies due to limited
receptive fields, which is critical for COD in images con-
taining diverse objects.

2.2. Decoding Strategy

By reviewing vision tasks related to COD (e.g., salient
object detection and medical image segmentation), the de-
coder design can be summarized into four typical feature
decoding strategies: (a) U-shaped decoding structure, (b)
dense integration strategy, (c) feedback refinement strategy,
and (d) separate decoding of low-level and high-level fea-
tures, as shown in Fig. 2. Specifically, as the most prevalent
feature decoding strategy, the U-shaped decoders [30, 35,
58] integrate lateral output multi-scale backbone features
and recover object details gradually in a bottom-up man-
ner. To weaken the interference of large resolution differ-
ences on the compatibility of feature fusion, some meth-
ods [31,52,53] use a dense integration strategy to aggregate
multi-level features. Some methods treat the high-level out-
put features separately (usually the last layer of backbone
features) and then integrate them with other lateral outputs
to improve localization and segmentation results. Some
other methods [11, 12, 15] deal with low-level and high-
level features differently to explore and integrate local cues
and global semantics for object segmentation. Unlike the
mainstream decoding strategy mentioned above, we adopt a
pyramidal shrinkage decoding strategy, as shown in Fig. 2
(e), which aggregates adjacent features and recovers the ob-
ject information layer by layer in a progressive manner.

2.3. Vision Transformer

Transformers, which are initially designed for natural
language processing [41], have been widely applied in
computer vision in recent years and achieved significant
progress in numerous visual applications, such as image
classification [7], object detection [4], and semantic seg-
mentation [56]. Benefiting from the self-attention mech-
anism, transformers are better at capturing long-range de-
pendencies when compared to CNN-based models [38,43].

To our knowledge, ViT [7] is the first transformer model in
computer vision community, which directly takes sequences
of image patches as input to explore long-range spatial cor-
relations for the classification task. Then a series of im-
proved versions sprung up, such as data-efficient image
transformers (DeiT) [40], pyramid vision transformer [42],
and Swin transformer [23]. For camouflaged object de-
tection, [32] propose a one-stage transformer framework
for camouflaged instance segmentation. [47], [24], and [14]
have made some attempts to detect camouflaged objects us-
ing transformers and achieved good performance. How-
ever, these methods remain limitations in the exploration
of locality modeling and feature aggregation of decoders
inherited from the CNN design paradigm, i.e., information
loss caused by large-span aggregation. In this paper, we
design a feature shrinkage decoder with the adjacent inter-
action module to progressively aggregate adjacent features
through the shrinkage pyramid for accurate decoding.

3. Proposed Method

3.1. Overview

Fig. 3 illustrates the overall architecture of our proposed
FSPNet model. The main components include a vision
transformer encoder, a non-local token enhancement mod-
ule (NL-TEM), and a feature shrinkage decoder (FSD).
Specifically, the input image is first serialized into tokens as
input to a transformer encoder to model global contexts us-
ing the self-attentive mechanism. After that, to strengthen
the local feature representation within tokens, a non-local
token enhancement module (NL-TEM) is designed to per-
form feature interaction and exploration between and within
tokens and convert the enhanced tokens from the encoder
space to the decoder space for decoding. In the decoder, to
merge and retain subtle but critical cues as much as possi-
ble, we design a feature shrinkage decoder (FSD) to pro-
gressively aggregates adjacent features through layer-by-
layer shrinkage to decode object information.

3.2. Transformer Encoder

Unlike previous works on COD, we utilize a vanilla vi-
sion transformer (ViT) as the encoder to model the global
context of camouflaged objects, mainly consisting of image
serialization and transformer layers. a) Serialization. In or-
der to satisfy the self-attention requirement on the input and
reduce the computational complexity, inspired by [7], the
given image I ∈ RC×H×W is first split into a sequence of
non-overlapping image patches with patch size (s, s), where
C, H and W denote channel size, height and width of im-
age I , respectively, and s = 16 in our experiments. Then
the image patches are linearly projected into a 1D sequence
of token embeddings T 0 ∈ Rl×d, where l = HW/s2 is the
sequence length and d = s2 ·C is the embedding dimension.
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Figure 3. Overall architecture of the proposed FSPNet. It consists of three key components: a ViT-based encoder, a non-local token
enhancement module (NL-TEM) and a feature shrinkage decoder (FSD) with adjacent interaction modules (AIM).

b) Transformer layer. To preserve positional information,
an additional learnable position embedding Ep is added to
the tokens, forming the new tokens T p = T 0 + Ep. All
the tokens are then input into a transformer encoder with n
transformer layers, where each layer contains a multi-head
self-attention (MSA) and a multi-layer perceptron (MLP)
block. It can be formulated as:

T = MLP(MSA(T p)), (1)

where T ∈ Rl×c, c is the token dimension. Note that layer
normalization [2] is applied before each block and residual
connections after each block. Thus, we obtain the output
tokens from the encoder.

3.3. Non-local Token Enhancement Module

Transformers bring powerful global context modeling
capabilities but lack a locality mechanism for information
exchange within a local region. Besides, it is well known
that camouflaged targets always share very similar appear-
ance information with noise objects and background, where
the slight differences are difficult to be distinguished by
low-order relations. Inspired by [39, 43], we design a non-
local token enhancement module (NL-TEM) which is ap-
plied on neighboring tokens (local region) to strengthen the
local feature representation. A non-local operation is first
adopted to interact adjacent similar tokens for aggregation

of adjacent camouflage clues. Then a graph convolution
network (GCN) operation is employed to explore higher-
order semantic relations between different pixels within to-
kens to spot subtle discriminative features. Specifically,
as shown in Fig. 3 (A), given two adjacent tokens T1 and
T2 from the transformer encoder, they are first normalized.
Taking T1 as an example, it is passed through two linear
projection functions (i.e., ωv and ωk), respectively, to ob-
tain the dimension-reduced feature sequences Tv and Tk

(∈ Rl× c
2 ), which can be denoted as Tv = ωv(T1) and

Tk = ωk(T1).
Besides, T1 and T2 are concatenated to obtain an inte-

grated token Tq , which aggregates the features of both to-
kens, and is then exploited to interact with respective input
tokens for feature enhancement. Specifically, another lin-
ear projection function wq is performed on this token with
a dimension reduction of c/2, and then a softmax function
is adopted to produce a weight map Tw

q . Next, the map is
employed to weight Tk by element-wise multiplication, fol-
lowed by an adaptive averaging pooling operation (P(·)) to
reduce the computational costs. The above set of operations
F1(·) can be denoted as:

T ′
q = F1(Tk,Tq) = P(Tk ⊙ softmax(wq(Tq))), (2)

Then, the matrix product is applied to Tk and T ′
q to explore

correlations between the two, and a softmax operation is
used to generate an attention map Ta, which is denoted as



Ta = softmax(T ′
q ⊗ T⊤

k ).
After that, similar to [39], we feed the interactive token

Ta and the token Tv into the graph fusion module (GFM).
In GFM, Tv is projected into the graph domain by the at-
tention mapping Ta, denoted as Tg = Tv ⊗ T⊤

a . In this
process, a collection of pixels (“regions”) with similar fea-
tures are projected to one vertex, and a single-layer GCN is
adopted to learn high-level semantic relations between re-
gions and reason over non-local regions to capture global
representations within tokens, by cross-vertex information
propagation on the graph. Specifically, the vertex features
Tg are fed into the first-order approximation of the spectral
graph convolution, and we can obtain the output T̂g:

T̂g = ReLU((I −A)Tgwg), (3)

where A is the adjacency matrix of the encoded graph con-
nectivity and wg ∈ R16×16 is the weight of the GCN.

Finally, a skip connection is used to combine the input
token T1 with the graph-based enhanced representation, and
then a deserialization (D(·)) operation is utilized to convert
the token sequences to 2D image features with the same
dimension as the original features for decoding, shown as:

TO1 = F2(T̂g,Ta,T1) = D(T̂g ⊗ T⊤
a + T1), (4)

where TO1 ∈ RC×H
s ×W

s is the output local enhancement
features from tokens. Similarly, we can also get TO2.

3.4. Feature Shrinkage Decoder

Common decoders, as shown in Fig. 2 (a)-(d), usually
directly aggregate features with significant inconsistencies,
e.g., low-level features with rich details and high-level fea-
tures with semantics, which easily introduces noise and
loses subtle but valuable cues [26]. This is very unfriendly
for the task of identifying camouflaged objects from incon-
spicuous cues. To this end, we design a feature shrink-
age decoder (FSD) that progressively aggregates adjacent
features in pairs using a hierarchical shrinkage pyramid ar-
chitecture to accumulate more imperceptible effective cues.
Furthermore, in our FSD decoder, we propose an adjacent
interaction module (AIM) that interacts and merges the cur-
rent adjacent feature pair and the aggregated features output
by the previous AIM, and passes the current aggregated fea-
tures to the next layer and the next AIM. It can be seen that
AIM is served as a bridge for adjacent feature fusion and
information passing (at the same layer and cross layer) in
the decoder. As shown in Fig. 3, we can see that our de-
coder builds both bottom-up and left-to-right feature flows
to retain more useful features. The proposed decoder can
smoothly flow and accumulate the camouflaged object cues
and avoid interference caused by large feature differences.

Specifically, suppose that Fi and Fi−1 are the adjacent
feature pair of the current layer, and Fp is the output aggre-

gated feature from the previous AIM, AIM can be formu-
lated as:

Fp = CBR(Cat(CBR(Cat(Fp−1,Fi)),Fi−1))

F ′
i = Up(CBR(Fp)),

(5)

where Fp is the feature passed to next AIM, and F ′
i is the

output feature of current AIM for next layer. CBR(·) is
composed of convolution, batch normalization, and ReLU
operations. Cat(·) and Up(·) are the concatenation and 2×
upsampling operations, respectively.

Note that FSD contains a total of 4 layers of shrink-
age pyramid and 12 AIMs. The whole FSD process is
summarized in Algorithm 1 in the Supplementary Material.
The output feature from the last AIM is supervised by the
ground truth (G) after sigmoid and upsampling operations
for camouflaged object prediction. We also supervise the
output prediction (Pi) at each layer of the FSD using a bi-
nary cross-entropy loss (Lbce) and assign smaller weights
to shallow outputs with lower detection precision. Finally,
the overall loss function is:

Ltotal =

2∑
i=0

2(i−4) Lbce(Pi,G) + Lbce(P3,G), (6)

where i denotes the i-th layer of FSD and P3 means the last
layer of output prediction.

It should be noted that, unlike [26], the proposed FSD
not only adopts the cross-layer feature interaction, but also
adopts the feature interaction within the same layer, to bet-
ter flow and accumulate effective features in the pyramid
structure, thereby minimizing the loss of subtle but crucial
features in the decoder process. Furthermore, we apply lat-
eral supervision to each layer to force each decoder layer to
mine and aggregate effective camouflaged object features.
Besides, to alleviate the decoder structure, the proposed de-
coder only integrates adjacent features without overlapping,
thus reducing aggregation operations. Tab. 3 shows the per-
formance superiority of the proposed decoder.

4. Experiments and Results
4.1. Experiment Settings

Datasets. We evaluate the proposed method on three widely
used COD datasets i.e., CAMO [18], COD10K [11], and
NC4K [25]. CAMO is the first COD dataset, contain-
ing 1,250 camouflaged images and 1,250 non-camouflaged
images. COD10K is currently the largest COD dataset,
which contains 5,066 camouflaged, 3,000 background, and
1,934 non-camouflaged images. NC4K is another recently
released large-scale COD testing dataset which contains
4,121 images.
Evaluation Metrics. We adopt six well-known evaluation
metrics, including S-measure [8] (Sm), weighted F-measure



Table 1. Quantitative comparison with 24 SOTA methods on three benchmark datasets. Notes ↑ / ↓ denote the larger/smaller is better,
respectively. “–” is not available. The best and second best are bolded and underlined for highlighting, respectively.

Methods CAMO (250) COD10K (2,026) NC4K (4,121)

Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓ Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓ Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓

Salient Object Detection

BASNet19 .618 .413 .475 .661 .708 .159 .634 .365 .417 .678 .735 .105 .695 .546 .610 .762 .786 .095
CPD19 .716 .556 .618 .723 .796 .113 .750 .531 .595 .776 .853 .053 .717 .551 .597 .724 .793 .092
EGNet19 .662 .495 .567 .683 .780 .125 .733 .519 .583 .761 .836 .055 .767 .626 .689 .793 .850 .077
SCRN19 .779 .643 .705 .797 .850 .090 .789 .575 .651 .817 .880 .047 .830 .698 .757 .854 .897 .059
F3Net20 .711 .564 .616 .741 .780 .109 .739 .544 .593 .795 .819 .051 .780 .656 .705 .824 .848 .070
CSNet20 .771 .642 .705 .795 .849 .092 .778 .569 .635 .810 .871 .047 .750 .603 .655 .773 .793 .088
SSAL20 .644 .493 .579 .721 .780 .126 .668 .454 .527 .768 .789 .066 .699 .561 .644 .780 .812 .093
ITSD20 .750 .610 .663 .780 .830 .102 .767 .557 .615 .808 .861 .051 .811 .680 .729 .845 .883 .064
UCNet20 .739 .640 .700 .787 .820 .094 .776 .633 .681 .857 .867 .042 .811 .729 .775 .871 .886 .055
VST21 .787 .691 .738 .838 .866 .076 .781 .604 .653 .837 .877 .042 .831 .732 .771 .877 .901 .050

Camouflaged Object Detection

SINet20 .751 .606 .675 .771 .831 .100 .771 .551 .634 .806 .868 .051 .808 .723 .769 .871 .883 .058
SLSR21 .787 .696 .744 .838 .854 .080 .804 .673 .715 .880 .892 .037 .840 .766 .804 .895 .907 .048
PFNet21 .782 .695 .746 .842 .855 .085 .800 .660 .701 .877 .890 .040 .829 .745 .784 .888 .898 .053
MGL-R21 .775 .673 .726 .812 .842 .088 .814 .666 .711 .852 .890 .035 .833 .740 .782 .867 .893 .052
UJSC21 .800 .728 .772 .859 .873 .073 .809 .684 .721 .884 .891 .035 .842 .771 .806 .898 .907 .047
C2FNet21 .796 .719 .762 .854 .864 .080 .813 .686 .723 .890 .900 .036 .838 .762 .795 .897 .904 .049
UGTR21 .784 .684 .735 .822 .851 .086 .817 .666 .712 .853 .890 .036 .839 .747 .787 .875 .899 .052
PreyNet22 .790 .708 .757 .842 .857 .077 .813 .697 .736 .881 .891 .034 – – – – – –
BSA-Net22 .794 .717 .763 .851 .867 .079 .818 .699 .738 .891 .901 .034 .841 .771 .808 .897 .907 .048
OCE-Net22 .802 .723 .766 .852 .865 .080 .827 .707 .741 .894 .905 .033 .853 .785 .818 .903 .913 .045
BGNet22 .812 .749 .789 .870 .882 .073 .831 .722 .753 .901 .911 .033 .851 .788 .820 .907 .916 .044
SegMaR22 .815 .753 .795 .874 .884 .071 .833 .724 .757 .899 .906 .034 .841 .781 .820 .896 .907 .046
ZoomNet22 .820 .752 .794 .878 .892 .066 .838 .729 .766 .888 .911 .029 .853 .784 .818 .896 .912 .043
SINet-v222 .820 .743 .782 .882 .895 .070 .815 .680 .718 .887 .906 .037 .847 .770 .805 .903 .914 .048

Ours .856 .799 .830 .899 .928 .050 .851 .735 .769 .895 .930 .026 .879 .816 .843 .915 .937 .035
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Figure 4. Visual comparison with some representative SOTA models in challenging scenarios. Please zoom in for details. More visual
results are provided in the Supplementary Material.
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Figure 5. Visual comparison of the lateral output of FSD. From
LO1 to LO4 (final output) denote the layers of FSD.

[27] (Fω
β ), mean F-measure [1] (Fm

β ), mean E-measure [9]
(Em

ϕ ), max E-measure (Ex
ϕ), and mean absolute error (M).

Implementation Details. The proposed model is imple-
mented by PyTorch. The base version of ViT [7], pre-
trained by the DeiT strategy [40], is adopted as the trans-
former encoder. Other modules are randomly initialized.
We follow the training set settings in [10,30] and adopt ran-
dom flipping to augment the training data. All the input
images are resized to 384×384. Adam is used as the opti-
mizer, and the learning rate is initialized to 1e-4 and then
scaled down by 10 every 50 epochs. The complete training
process for 200 epochs with a batch size of 2 takes ∼8 hours
on a workstation with 8 NVIDIA Tesla V100 GPUs.

4.2. Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of the proposed
method, we compare it with 24 state-of-the-art methods,
including 10 salient object detection methods (i.e., BAS-
Net [33], CPD-R [45], EGNet [54], SCRN [46], F3Net [44],
CSNet [13], SSAL [50], ITSD [58], UCNet [49], and VST
[22]), and 14 COD methods (i.e., SINet [11], SLSR [25],
PFNet [28], MGL-R [48], UJSC [19], PreyNet [51], BSA-
Net [59], C2FNet [36], UGTR [47], OCE-Net [21], BGNet
[37], SegMaR [16], ZoomNet [30], and SINet-v2 [10]). All
the predictions of competitors are either provided by the au-
thors or generated by models retrained based on the open-
source codes. More experimental results are provided in the
Supplementary Material.
Quantitative Comparison. Tab. 1 summarizes the quanti-
tative results of our proposed method against 24 competitors
on three challenging COD benchmark datasets under six
evaluation metrics. It can be seen that the specially designed
COD methods generally outperform the SOD models. Fur-
thermore, our proposed method consistently surpasses all
other models on these datasets. Compared to the re-
cently proposed state-of-the-art ZoomNet [30], our method
achieves average performance gains of 3.0%, 3.7%, 2.7%,
1.8%, 3.0%, and 17.7% in terms of Sα, Fw

β , Fm
β , Em

ϕ , Ex
ϕ ,

and M on these three datasets, respectively. Compared to

the recently proposed SINet-v2 [10], the average gains are
4.2%, 7.2%, 6.0%, 1.4%, 3.0%, and 28.5%, respectively.
Besides, compared to the transformer-based methods (i.e.,
VST [22] and UGTR [47]), our method shows significant
performance improvements of 7.8%, 16.3%, 13.2%, 6.2%,
5.7%, and 34.1% over VST and 6.0%, 12.1%, 9.3%, 6.3%,
5.9%, and 34.1% over UTGR on average for Sα, Fw

β , Fm
β ,

Em
ϕ , Ex

ϕ , and M, respectively. The superiority in perfor-
mance benefits from the compensation of the local feature
modeling for the transformer backbones, and the smooth
and progressive feature decoding to accumulate more sub-
tle clues of the camouflage objects.
Visual Comparison. Fig. 4 shows the visual comparisons
of our proposed method with some representative competi-
tors in several typical scenarios, including small, large, mul-
tiple, occluded objects, and uncertain boundaries. It can be
seen that the compared methods are prone to provide in-
accurate object localization, incomplete object regions, or
missing objects, resulting in inferior segmentation of cam-
ouflaged objects. Our proposed method shows superior vi-
sual performance for more accurate and complete predic-
tions. Experiments also demonstrates the robustness of the
proposed method to different challenging scenarios.

4.3. Ablation Study

To validate the effectiveness of the proposed modules for
COD, we perform the following ablation studies on these
COD benchmark datasets.
Dense Integration Strategy. Integrating multiple back-
bone features to improve prediction is widely used in seg-
mentation tasks. Therefore, we test combinations of dif-
ferent lateral features of the base ViT (denoted as B) for
decoding. The baseline decoder contains concatenation, re-
shape, and upsampling operations. The results are shown in
the first four rows of Tab. 2, where i in Bi denotes the num-
ber of feature layers adopted for decoding. We can see that
aggregating different feature layers benefit merging more
clues, thereby improving the detection performance. In our
experiments, aggregating all the transformer feature layers
(i.e., B12) provided the best performance.
Feature Shrinkage Decoder. Tab. 2 (5th∼7th) shows the
results of our proposed decoder FSD (denoted as D) un-
der different backbone feature combinations. Note that the
number of pyramid layers is 2, 3, and 4 for “(B4+D)”,
“(B8+D)”, and “(B12+D)”, respectively. We can see that
FSD effectively improves the performance, showing the de-
signed FSD well aggregates and retains critical features of
different layers for accurate predictions. Moreover, Fig. 5
provides the outputs of different pyramidal decoder layers
in FSD (from LO1 to LO4 by depth), validating the ability
of FSD to recover object details and generate clear predic-
tions gradually.

Besides, we conducted five experiments to verify the ef-



Table 2. Ablation studies of FSPNet on benchmark datasets. “B” is backbone, “D” is FSD and “T” is NL-TEM.

Settings CAMO (250) COD10K (2,026) NC4K (4,121)

Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓ Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓ Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓

B1 .774 .685 .732 .813 .839 .089 .791 .659 .709 .855 .882 .042 .828 .747 .795 .881 .901 .051
B4 .781 .693 .738 .818 .845 .086 .801 .668 .713 .861 .889 .040 .835 .755 .802 .885 .909 .049
B8 .795 .715 .746 .827 .856 .081 .807 .679 .725 .867 .897 .039 .841 .766 .807 .887 .913 .048
B12 .798 .726 .755 .837 .868 .079 .812 .697 .732 .871 .901 .038 .853 .781 .813 .901 .918 .046

B4 +D .786 .716 .743 .831 .857 .082 .830 .696 .735 .873 .894 .038 .854 .773 .810 .902 .921 .048
B8 +D .807 .731 .759 .839 .871 .076 .831 .711 .740 .882 .912 .036 .866 .787 .823 .905 .922 .043
B12 +D .817 .755 .786 .858 .891 .062 .844 .728 .759 .888 .918 .033 .870 .808 .836 .912 .929 .040

B4 +D+T .809 .731 .762 .837 .877 .078 .836 .707 .742 .883 .913 .036 .864 .786 .824 .906 .927 .038
B8 +D+T .827 .762 .788 .862 .912 .066 .842 .724 .757 .887 .922 .029 .868 .803 .832 .907 .932 .037
B12 + D + T .856 .799 .830 .899 .928 .050 .851 .735 .769 .895 .930 .026 .879 .816 .843 .915 .937 .035

Table 3. More ablation studies on COD10K and NC4K.

No. COD10K NC4K

Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓ Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓

① .825 .710 .739 .875 .908 .037 .859 .786 .820 .904 .920 .044
② .848 .731 .764 .891 .923 .027 .875 .811 .837 .910 .924 .037
③ .840 .722 .753 .882 .916 .034 .867 .798 .832 .906 .921 .039
④ .849 .732 .761 .887 .922 .029 .872 .804 .832 .901 .927 .038

Ours .851 .735 .769 .895 .930 .026 .879 .816 .843 .915 .937 .035

⑤ .844 .728 .759 .888 .918 .033 .870 .808 .836 .912 .929 .040
+GFM .846 .732 .764 .889 .924 .028 .874 .810 .838 .913 .925 .037
+NL .847 .731 .765 .892 .926 .028 .873 .811 .839 .913 .926 .036

fectiveness of the decoder components and structures, in-
cluding ① replacing FSD with an U-shaped decoding struc-
ture (similar to Fig. 2 (a)), ② replacing AIM with a simpler
combination of operations (i.e., concatenation and 1×1 con-
volution), ③ extending AIM to aggregate three adjacent fea-
ture layers, ④ adjusting our decoder to pairwise feature ag-
gregation with overlap and removing lateral supervision and
feature interaction within the same layer (similar to [26]).
Note that we retain other modules in experiments. The re-
sults are shown in Tab. 3 (1st∼5th rows).

Our decoder and ④ outperforms the U-shaped decoding
structure (①) by a large margin, this is because this type
of decoder usually directly aggregates features (in the same
fusion layer) with large feature differences, and tends to dis-
card some subtle but valuable cues, resulting in inaccurate
predictions, especially for the task of identifying camou-
flaged objects from faint clues. Our decoder and ④ both
progressively aggregates adjacent features through a layer-
by-layer shrinkage pyramid (multiple fusion layers) to accu-
mulate valuable cues as much as possible for object predic-
tion. However, our decoder introduces lateral supervision
and feature flow within the same layer, which force the de-
coder to accumulate more critical camouflaged object cues,
thus achieving a large performance improvement, especially
on NC4K dataset, compared to ④. Besides, by comparing
with ② and ③, the proposed AIM component provides bet-
ter performance for camouflaged object prediction.
Non-local Token Enhancement Module. Tab. 2
(8th∼10th rows) shows the results of NL-TEM (denoted

as T ). The NL-TEM complements the local feature explo-
ration for transformers, which contributes to the recovery of
objects’ local details, and further improves the performance.

Besides, we perform two additional experiments to ver-
ify the effectiveness of non-local operations and graph con-
volutions. The results are shown in Tab. 3 (6th∼8th rows).
⑤ denotes “B12+D”. Based on model ⑤, we add the GFM
module (“+GFM”), that is, the two inputs of NL-TEM are
directly fed into the GFM after reshape, concatenation and
softmax operations. The “+NL” denotes removing the GFM
directly from NL-TEM to test the non-local operations be-
cause the size of the input and output of the GFM are the
same. It can be seen that the addition of non-local op-
erations and GFM both contribute to camouflaged object
detection and promote the improvement of detection per-
formance. When combining these two components (i.e.,
“B12+D+T” in Tab. 2), the proposed model significantly im-
proves the performance for camouflaged object detection.

5. Conclusion

Considering the existing COD methods suffer from
two issues, that is, less effective locality modeling for
transformer-based models and limitations of feature ag-
gregation in decoders, in this paper, we propose a
novel transformer-based feature shrinkage pyramid net-
work (FSPNet), which contains a non-local token enhance-
ment module (NL-TEM) and a feature shrinkage decoder
(FSD) with adjacent interaction modules (AIM). The pro-
posed model can hierarchically aggregate locality-enhanced
neighboring features through progressive shrinking, thereby
integrating subtle but effective local and global cues as
much as possible for accurate and complete camouflaged
object detection. Extensive comparison experiments and
ablation studies show that the proposed FSPNet achieves
superior performance over 24 cutting-edge approaches on
three widely-used COD benchmark datasets.

Acknowledgments. We thank Deng-Ping Fan for insightful
feedback.



References
[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada,

and Sabine Susstrunk. Frequency-tuned salient region detec-
tion. In CVPR, pages 1597–1604. IEEE, 2009. 7

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[3] Nagappa U Bhajantri and P Nagabhushan. Camouflage de-
fect identification: a novel approach. In International Con-
ference on Information Technology (ICIT), pages 145–148,
2006. 1

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 3

[5] Geng Chen, Si-Jie Liu, Yu-Jia Sun, Ge-Peng Ji, Ya-Feng Wu,
and Tao Zhou. Camouflaged object detection via context-
aware cross-level fusion. IEEE Transactions on Circuits and
Systems for Video Technology, 2022. 1

[6] Xuelian Cheng, Huan Xiong, Deng-Ping Fan, Yiran Zhong,
Mehrtash Harandi, Tom Drummond, and Zongyuan Ge. Im-
plicit motion handling for video camouflaged object detec-
tion. In CVPR, pages 13864–13873, 2022. 2

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 2, 3,
7

[8] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali
Borji. Structure-measure: A new way to evaluate foreground
maps. In ICCV, pages 4548–4557, 2017. 5

[9] Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-
Ming Cheng, and Ali Borji. Enhanced-alignment measure
for binary foreground map evaluation. In IJCAI, 2018. 7

[10] Deng-Ping Fan, Ge-Peng Ji, Ming-Ming Cheng, and Ling
Shao. Concealed object detection. IEEE TPAMI, 2022. 1, 2,
7

[11] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng,
Jianbing Shen, and Ling Shao. Camouflaged object detec-
tion. In CVPR, 2020. 1, 3, 5, 7

[12] Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu
Fu, Jianbing Shen, and Ling Shao. Pranet: Parallel reverse
attention network for polyp segmentation. In MICCAI, pages
263–273. Springer, 2020. 3

[13] Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng,
Chengze Lu, Yunpeng Chen, and Shuicheng Yan. Highly
efficient salient object detection with 100k parameters. In
ECCV, pages 702–721. Springer, 2020. 7

[14] Xiaobin Hu, Deng-Ping Fan, Xuebin Qin, Hang Dai, Wenqi
Ren, Ying Tai, Chengjie Wang, and Ling Shao. High-
resolution iterative feedback network for camouflaged object
detection. arXiv preprint arXiv:2203.11624, 2022. 3

[15] Zhou Huang, Huaixin Chen, Biyuan Liu, and Zhixi Wang.
Semantic-guided attention refinement network for salient ob-
ject detection in optical remote sensing images. Remote
Sensing, 13(11):2163, 2021. 3

[16] Qi Jia, Shuilian Yao, Yu Liu, Xin Fan, Risheng Liu, and
Zhongxuan Luo. Segment, magnify and reiterate: Detecting
camouflaged objects the hard way. In CVPR, pages 4713–
4722, 2022. 2, 7

[17] Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM Computing
Surveys (CSUR), 2021. 2

[18] Trung-Nghia Le, Tam V Nguyen, Zhongliang Nie, Minh-
Triet Tran, and Akihiro Sugimoto. Anabranch network for
camouflaged object segmentation. CVIU, 184:45–56, 2019.
2, 5

[19] Aixuan Li, Jing Zhang, Yunqiu Lv, Bowen Liu, Tong Zhang,
and Yuchao Dai. Uncertainty-aware joint salient object
and camouflaged object detection. In CVPR, pages 10071–
10081, 2021. 2, 7

[20] Lin Li, Jingyi Liu, Shuo Wang, Xunkun Wang, and Tian-Zhu
Xiang. Trichomonas vaginalis segmentation in microscope
images. In MICCAI, pages 68–78. Springer Nature Switzer-
land, 2022. 1

[21] Jiawei Liu, Jing Zhang, and Nick Barnes. Modeling aleatoric
uncertainty for camouflaged object detection. In WACV,
pages 1445–1454, 2022. 2, 7

[22] Nian Liu, Ni Zhang, Kaiyuan Wan, Ling Shao, and Junwei
Han. Visual saliency transformer. In ICCV, pages 4722–
4732, 2021. 7

[23] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012–10022, 2021. 3

[24] Zhengyi Liu, Zhili Zhang, Wei Wu, et al. Boosting cam-
ouflaged object detection with dual-task interactive trans-
former. In ICPR, pages 1–7, 2022. 2, 3

[25] Yunqiu Lv, Jing Zhang, Yuchao Dai, Aixuan Li, Bowen Liu,
Nick Barnes, and Deng-Ping Fan. Simultaneously localize,
segment and rank the camouflaged objects. In CVPR, pages
11591–11601, 2021. 2, 5, 7

[26] Mingcan Ma, Changqun Xia, Jia Li, et al. Pyramidal feature
shrinking for salient object detection. In AAAI, volume 35,
pages 2311–2318, 2021. 5, 8

[27] Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. How to
evaluate foreground maps? In CVPR, pages 248–255, 2014.
7

[28] Haiyang Mei, Ge-Peng Ji, Ziqi Wei, Xin Yang, Xiaopeng
Wei, and Deng-Ping Fan. Camouflaged object segmentation
with distraction mining. In CVPR, pages 8772–8781, 2021.
2, 7

[29] Melia G Nafus, Jennifer M Germano, Jeanette A Perry,
Brian D Todd, Allyson Walsh, and Ronald R Swaisgood.
Hiding in plain sight: a study on camouflage and habitat se-
lection in a slow-moving desert herbivore. Behavioral Ecol-
ogy, 26(5):1389–1394, 2015. 1

[30] Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang,
and Huchuan Lu. Zoom in and out: A mixed-scale triplet
network for camouflaged object detection. In CVPR, 2022.
1, 2, 3, 7



[31] Youwei Pang, Xiaoqi Zhao, Lihe Zhang, and Huchuan Lu.
Multi-scale interactive network for salient object detection.
In CVPR, pages 9413–9422, 2020. 3

[32] Jialun Pei, Tianyang Cheng, Deng-Ping Fan, He Tang,
Chuanbo Chen, and Luc Van Gool. Osformer: One-stage
camouflaged instance segmentation with transformers. In
ECCV, 2022. 3

[33] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,
Masood Dehghan, and Martin Jagersand. Basnet: Boundary-
aware salient object detection. In CVPR, pages 7479–7489,
2019. 7

[34] Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, and
Ming-Hsuan Yang. Video frame interpolation transformer.
In CVPR, 2022. 2

[35] Avishek Siris, Jianbo Jiao, Gary KL Tam, Xianghua Xie, and
Rynson WH Lau. Scene context-aware salient object detec-
tion. In ICCV, pages 4156–4166, 2021. 3

[36] Yujia Sun, Geng Chen, Tao Zhou, Yi Zhang, and Nian Liu.
Context-aware cross-level fusion network for camouflaged
object detection. In IJCAI, pages 1025–1031, 2021. 2, 7

[37] Yujia Sun, Shuo Wang, Chenglizhao Chen, and Tian-Zhu Xi-
ang. Boundary-guided camouflaged object detection. In IJ-
CAI, 2022. 2, 7

[38] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe
Zhao, and Che Zheng. Synthesizer: Rethinking self-attention
for transformer models. In ICML, pages 10183–10192.
PMLR, 2021. 3

[39] Gusi Te, Yinglu Liu, Wei Hu, Hailin Shi, and Tao Mei. Edge-
aware graph representation learning and reasoning for face
parsing. In ECCV, pages 258–274. Springer, 2020. 4, 5

[40] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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