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Abstract

Gait is one of the most promising biometrics that aims to
identify pedestrians from their walking patterns. However,
prevailing methods are susceptible to confounders, result-
ing in the networks hardly focusing on the regions that re-
flect effective walking patterns. To address this fundamen-
tal problem in gait recognition, we propose a Generative
Counterfactual Intervention framework, dubbed GaitGCI,
consisting of Counterfactual Intervention Learning (CIL)
and Diversity-Constrained Dynamic Convolution (DCDC).
CIL eliminates the impacts of confounders by maximiz-
ing the likelihood difference between factual/counterfactual
attention while DCDC adaptively generates sample-wise
factual/counterfactual attention to efficiently perceive the
sample-wise properties. With matrix decomposition and di-
versity constraint, DCDC guarantees the model to be effi-
cient and effective. Extensive experiments indicate that pro-
posed GaitGCI: 1) could effectively focus on the discrimi-
native and interpretable regions that reflect gait pattern; 2)
is model-agnostic and could be plugged into existing mod-
els to improve performance with nearly no extra cost; 3) ef-
ficiently achieves state-of-the-art performance on arbitrary
scenarios (in-the-lab and in-the-wild).

1. Introduction
Gait recognition aims to utilize walking patterns to iden-

tify pedestrians without explicit cooperation, thus drawing
rising attention. Current gait recognition research focuses
on in-the-lab [54, 70] and in-the-wild scenarios [74, 77] for
theoretical analysis and practical application, respectively.

The key to addressing gait recognition is to fully cap-
ture the effective visual cues of the gait patterns, i.e., the
regions close to the body boundary [39, 61] for both in-the-
lab scenarios and in-the-wild scenarios. However, the at-
tention analysis [4, 60, 69] on prevailing methods in Fig. 1
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Figure 1. Network attention comparison. From top to down: sil-
houette, existing method, and proposed GaitGCI. The confounders
make the existing model collapse into suboptimal attention re-
gions. By contrast, GaitGCI could effectively focus on the dis-
criminative and interpretable regions (i.e., close to the bound-
ary [39, 61]) that could represent walking patterns.

indicates that the existing methods hardly capture the effec-
tive gait patterns and tend to collapse into the suboptimal
attention regions, which would deteriorate the gait repre-
sentation. We argue that this phenomenon is caused by the
network’s susceptibility to the confounders [21, 32], which
may provide shortcuts [21, 32] for the models rather than
the valid gait-related patterns. For example, the attention
regions of prevailing methods are related to viewpoints [65]
or walking conditions [30]. As shown in Fig. 1, the prevail-
ing network tends to focus on the head under the front view
and the head/feet under the side view. However, the major-
ity of the gait-related information close to the boundary is
neglected. Therefore, how to alleviate the impact of con-
founders is a fundamental problem to model discriminative
and interpretable gait representation.

Motivated by this, we propose a generative counterfac-
tual intervention framework, named GaitGCI, consisting of
Counterfactual Intervention Learning (CIL) and Diversity-
Constrained Dynamic Convolution (DCDC). The core idea
of CIL is to leverage the counterfactual-based causal infer-
ence to alleviate the impact of confounders and mine the
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Figure 2. GaitGCI could achieve state-of-the-art performance un-
der arbitrary scenarios, including in-the-lab scenarios [54, 70] and
in-the-wild scenarios [76, 77].

direct causality link between factual attention and predic-
tion. Specifically, we first construct a causal analysis tool
(i.e., Structural Causal Model [47]) to formulate the causal-
ity links among the input, attention, and prediction. Then,
the training objective is modified from maximizing the orig-
inal likelihood that contains confounders to maximizing the
likelihood difference between the factual/counterfactual at-
tention, which forces the network to focus on the direct
causality between the factual attention and the prediction
instead of collapsing into the confounders.

Further, considering that the previous network to pro-
duce factual attention is static and the mainstream coun-
terfactual is pre-defined distribution [11, 49] (e.g., random
or normal distribution), which limits the ability of the net-
work to perceive the sample-wise properties. Therefore,
we propose a Diversity-Constrained Dynamic Convolution
(DCDC) to efficiently produce the sample-adaptive ker-
nel, which aims to generate factual/counterfactual atten-
tion. Specifically, we first decouple the dynamic convo-
lution [58, 68] into the sample-agnostic convolution and
sample-adaptive convolution. Then, to improve the effi-
ciency, we apply the matrix decomposition to decompose
sample-adaptive convolution into two bases and a gener-
ative affinity matrix, which transforms dense convolution
integration in high-dimensional space into the aggregation
of bases in low-dimensional space. Besides, to guarantee
the representation power, we propose a rank-based diversity
constraint on two bases of the sample-adaptive convolution.

By alleviating the impact of confounders, the proposed
method: (1) could effectively focus on the discriminative
and interpretable regions instead of collapsing into the con-
founders; (2) is model-agnostic and could boost the perfor-
mance of prevailing methods; (3) could efficiently achieve

state-of-the-art performance under arbitrary scenarios (in-
the-lab and in-the-wild) as shown in Fig. 2.

The main contributions are summarized as follows:

• We present counterfactual intervention learning (CIL)
to alleviate the impact of confounders. CIL could ef-
fectively force the model to focus on the regions that
reflect gait patterns by maximizing the likelihood dif-
ference between factual/counterfactual attention.

• We present diversity-constrained dynamic convolution
(DCDC) to generate factual/counterfactual attention in
a sample adaptive manner. Matrix decomposition and
diversity constraint guarantee efficiency and represen-
tation power, respectively.

• Extensive experiments demonstrate that the proposed
framework efficiently achieves state-of-the-art perfor-
mance in arbitrary scenarios. Besides, the proposed
methods could serve as a plug-and-play module to
boost the performance of prevailing models.

2. Related Work
2.1. Gait Recognition

Prior research focuses on the in-the-lab scenario. How-
ever, VersatileGait [74] has pioneered the more challeng-
ing in-the-wild gait recognition via synthetic datasets. This
problem draws increasing attention, resulting in the emer-
gence of real-world datasets for in-the-wild scenarios [76,
77]. And mainstream methods could be grouped as follows:
Silhouette-based Methods. This fashion [17, 31] extracts
gait patterns from the silhouette sequence. GaitSet [12]
deems each sequence as an unordered set, GaitPart [19] pro-
poses part-based modeling, and GaitGL [42] extracts fea-
tures from global/local representation. This paradigm is
sensitive to covariates but is more popular for its efficiency.
Skeleton-based Methods. Many methods [3, 6, 7, 23, 33,
40, 62] utilize pose estimation to model gait patterns. For
example, Teepe et al. [55] model the skeleton as a graph
and utilize GCN [35]. Li et al. [37] propose to jointly utilize
2D/3D keypoints information to model gait representation.
These methods should be more robust to the covariates but
rely on accurate pose estimation.
Methods using Other Modalities. Recently, more gait
modalities have emerged. Several methods [37, 39, 75] ex-
tract features from RGB video. Castro et. al. [9] lever-
age optical flow to obtain abundant motion information.
The depth information [44] and 3D mesh [37, 76] are
also introduced to use extra information. Further, several
works [8, 27, 76] conduct multi-modal learning to achieve
informative representation.

2.2. Vision Causal Inference

Causal inference [20, 48, 64] arouses widespread atten-
tion to endow networks with the ability to analyze the
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Figure 3. Overview of GaitGCI. The factual/counterfactual-aware generator is implemented by the proposed diversity-constrained dynamic
convolution to efficiently generate factual/counterfactual attention based on the sample-wise properties. Then, counterfactual intervention
learning is performed to maximize the likelihood difference between factual/counterfactual attention. The optimization objective is the
combination of triplet loss, counterfactual loss, and diversity constraint.

causal effect. The causal inference has been successfully
used in various areas, including visual explanation [22, 25],
semantic segmentation [16], and few-shot/zero-shot learn-
ing [71, 72]. Previous vision causal inference methods with
counterfactuals [1,34] focus on the analysis of the outcome
intervened by sorts of pre-defined counterfactuals. By con-
trast, we leverage dynamic convolution to adaptively per-
ceive the sample-wise factual/counterfactual attention.

2.3. Dynamic Deep Neural Networks

Dynamic network [24, 53] aims to boost the network ca-
pacity and generalizability via adapting its parameters or
structures based on the input during inference. Dynamic
convolution [58, 68] aggregates multiple candidate convo-
lutions via the SE-style attention mechanism [29]. DRConv
[13] proposes grouped dynamic convolution to adaptively
select channels from groups. Besides, weight adjustment
could be performed by soft attention over the spatial dimen-
sion of the convolutional weights [2, 52, 73]. In this paper,
we propose to leverage matrix decomposition [38] and di-
versity constraint to guarantee the efficiency and represen-
tation power of dynamic convolution, respectively.

3. Method
3.1. Overview

As shown in Fig. 3, the silhouette is first fed to the back-
bone with low-rank 3D CNN. Then, factual/counterfactual
attention is generated by the corresponding kernel gener-
ator (diversity-constrained dynamic convolution). Finally,
GaitGCI is optimized with counterfactual loss, triplet loss,
and diversity constraint. The feature aggregation (temporal
pooling/separate FC [12]) is omitted for simplicity.

3.2. Counterfactual Intervention Learning

We propose Counterfactual Intervention Learning (CIL)
to alleviate the impact of confounders. First, we formu-
late the learning process with the causality analysis tool,
i.e., the Structural Causal Model (SCM) [45, 47]. Then, the
counterfactual intervention is introduced to analyze the di-
rect causality link between factual attention and prediction.
Structural Causal Model Formulation. To represent the
causality links among input X, attention A, and prediction
Y, we formulate them with the SCM G = {N,E}, where
N and E represent the variable nodes and causality links,
respectively. The causality links denotes: cause→ effect.
Therefore, the causality could be formulated as X → Y:
the conventional model. X → A: the model produces the
corresponding attention. X→ Y ← A: the final prediction
Y is determined by (X,A) jointly. With SCM, The causal-
ity links between the variables can be directly analyzed via
variable intervention, which means manipulating the value
of specific variables and then observing the effect.
Counterfactual Intervention. Ideally, A decides to pre-
dict Y entirely by sensing the effective properties of X.
However, there are confounders in X, which confuses the
network’s learning process and makes the network col-
lapse into the suboptimal attention regions. Therefore, we
propose to leverage the counterfactual intervention Do(·),
which could cut off the causality link between the con-
founders and the factual attention.

The counterfactual intervention Do(·) could remove the
impact of specific variables. Note that counterfactual [36,
59] means “counter to the facts,” and the intervention is
impossible to occur in the real world. Thus the process
of Do(·) is called counterfactual intervention, which is



achieved by an imaginary intervention to replace the vari-
ables’ state. For example, the value of the counterfactual
intervention Do(A = C) means that the counterfactual C
is assigned to A and breaks the causality link between A
and its all parent nodes, which forces the variable to no
longer be affected by the confounders. Therefore, the di-
rect causality link between the factual attention A and the
prediction Y could be analyzed. Specifically, the value A
and C of factual attention A and counterfactual attention C
is produced by the process A(·) and C(·), respectively.

A = A(X) = {A0,A1, ...,AM−1}, (1)

C = C(X) = {C0,C1, ...,CM−1}, (2)

where M is the channel number of A and C to control the
capacity to perceive the sample-wise properties. In prevail-
ing implementations, A(·) is a static network, and C(·) is
a manually pre-defined distribution (e.g., random or normal
distribution). Then, the likelihood of counterfactual inter-
vention P(Y|Do(A = C)) could be leveraged to analyze
the direct causality link between A and Y excluding the
confounders. The likelihood of factual attention Yf and
counterfactual intervention Ycf could be formulated as:

Yf = P(Y|A = A) = EA∼A(X)(X ∗A), (3)

Ycf = P(Y|Do(A = C)) = EC∼C(X)(X ∗ C). (4)

The former Yf is the key to model discriminative and in-
terpretable gait representation with gait-related properties,
and the latter Ycf denotes the context-specific confounders,
which is expected to be removed from the likelihood predic-
tion. Then, we calculate the likelihood difference [46] be-
tween the factual attention and the counterfactual attention
to obtain the direct causality effect Ye between the factual
attention A and the corresponding prediction Y:

Ye = Yf −Ycf . (5)

Maximizing the likelihood difference Ye could force the
network to focus on factual attention learning instead of col-
lapsing into the confounders represented by the counterfac-
tuals. Thus, counterfactuals can be regarded as additional
supervision to alleviate the impact of confounders.

Note that CIL is model-agnostic and could be a plug-
and-play module. Besides, the impact of confounders is a
fundamental problem, thus CIL could theoretically be ap-
plied to arbitrary scenarios. Further, CIL is only used during
training and is discarded at the inference stage.

3.3. Diversity-Constrained Dynamic Convolution

We propose Diversity-Constrained Dynamic Convolu-
tion (DCDC) to adaptively generate factual/counterfactual
attention based on the following observations. First, the
existing attention module is static, which hinders models
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Figure 4. Illustration of Diversity-Constrained Dynamic Convo-
lution. DCDC is formulated as a sample-agnostic convolution
W0 and sample-adaptive one, which could be decomposed into
two bases P/Q and an affinity matrix Φ(X). Rank-based diver-
sity constraint on two bases aims to guarantee the representation
power.

from perceiving the sample-wise properties of the sparse
silhouette. Second, previous counterfactuals are from pre-
defined distribution, which cannot adaptively represent the
confounders of specific samples.
Vanilla Dynamic Convolution. The main idea of dynamic
convolution [58, 68] W(X) is to linearly combine S static
candidate convolutions {Ws} through the score {πs(X)}
adaptively produced by the SE-style attention [29] as:

W(X) =

S∑
s=1

πs(X)Ws s.t. 0 ≤ πs(X) ≤ 1,

S∑
s=1

πs(X) = 1. (6)

Reformulation with Matrix Decomposition. To avoid the
high costs from the high-dimensional computation [15], we
reformulate the dynamic convolution with matrix decom-
position. First, each candidate convolution Ws could be
re-defined as the combination of a sample-agnostic ker-
nel W0 and the corresponding offset kernel ∆Ws, i.e.,
Ws = W0 + ∆Ws, where W0 = 1

S

∑S
s=1 Ws. Thus,

the dynamic convolution W(X) could be reformulated as:

W(X) =

S∑
s=1

πs(X)W0 +

S∑
s=1

πs(X)∆Ws

= W0 +

S∑
s=1

πs(X)∆Ws.

(7)

Specifically, W0 and {πs(X)∆Ws} could be regarded
as the kernel to extract sample-agnostic features and
sample-adaptive features, respectively. Further, we propose
to leverage low-rank decomposition on the sample-adaptive
kernel to improve the efficiency as follows:

W(X) = W0 +

L∑
i=1

L∑
j=1

piϕi,j(X)qT
j

= W0 +PΦ(X)QT ,

(8)



where P ∈ RCout×L and Q ∈ Rk×Cin×L are bases to in-
teract the input in low-dimensional latent space RL. k is
the kernel size. Φ(·) ∈ RL×L denotes affinity matrix to
adaptively interact P and Q. Therefore, the adaptiveness
of dynamic convolution is transformed from the attention-
based linear combination to the generative aggregation of
two bases. And Φ(X) could be generated by an MLP:

Φ(X) = Wfc2 × δ(Wfc1 × (GAP (X))), (9)

where Wfc1 ∈ RC/r×C and Wfc2 ∈ RL2×C/r. δ(·) de-
notes the Sigmoid. In this way, the decomposition-base dy-
namic convolution could efficiently reduce the dimension of
the latent space from SC to L (SC ≫ L).
Rank-based Diversity Constraint. To guarantee the rep-
resentation power, we propose to diversify two bases P and
Q. The diversity of the weight matrix W ∈ Rm×n could
be represented by the rank function as:

Rank(W) = σ0
1 + σ0

2 + · · ·+ σ0
r = lim

p→0
||W||pSp

, (10)

where σi is the ith singular value of the weight matrix W
and r = min{m,n}. The rank function Rank(·) has sim-
ilar form with Schatten p-norm || · ||pSp

(p → 0) [56, 63],
which could be defined as:

||W||Sp
= (σp

1 + σp
2 + · · ·+ σp

r )
1/p. (11)

However, optimizing rank is NP-hard and the Schatten p-
norm (p ̸= 1) is non-convex [67]. Further, Schatten 1-norm
(nuclear norm) ||W||S1 has been verified to be a convex
approximation [43] to Rank(W) and is differentiable as:

∂||W||S1

∂W
=

tr(∂Σ)

∂W
=

tr(UT∂(W)V)

∂W
= UVT , (12)

where W is decomposed into UΣVT by singular value de-
composition (SVD), which introduces nearly no extra com-
putation since the representation is low-dimensional. Thus,
we propose to leverage Schatten 1-norm as the diversity
constraint to maximize Rank(W):

Ldiv = −
∑

i∈{A,C}

||Pi||S1
−

∑
j∈{A,C}

||Qj ||S1
. (13)

3.4. Optimization

To effectively optimize GaitGCI, the objective is com-
posed of counterfactual loss Lcf , triplet loss Ltri [26], and
diversity constraintLdiv . Specifically,Lcf can be easily im-
plemented with cross-entropy loss by replacing the original
prediction Y with causality effect Ye.

Ltotal = Lce(Ye, y)︸ ︷︷ ︸
Counterfactual Loss

+Ltri + λLdiv, (14)

where y is the ground truth and λ is the weight of diversity
constraint, respectively.

4. Experiments
4.1. Dataset

OU-MVLP [54]. It is one of the largest gait datasets, which
includes 10307 subjects and each subject contains two se-
quences. The viewpoints are uniformly distributed between
[0◦,90◦] and [180◦,270◦]. Following the mainstream pro-
tocol [12], the first sequence of each ID is deemed as the
gallery, and the rest are the probe during the evaluation.
CASIA-B [70]. CASIA-B contains 124 subjects, and the
viewpoints are distributed in [0◦, 180◦]. Besides, 10 groups
of three conditions are included in each subject, i.e., 6 nor-
mal (NM), 2 with a bag (BG), and 2 with a coat (CL). For
evaluation, we adopt the mainstream protocol [12], which
selects the first 74 subjects as the training set and the rest as
the test set. During the evaluation, the sequences (NM#01-
NM#04) are the gallery, and the rest are the probe.
GREW [77]. GREW is one of the largest in-the-wild
datasets, including 26345 subjects and 128671 sequences.
It contains 4 modalities: silhouettes, optical flow, 2D/3D
pose. GREW is divided into training set, validation set, and
test set, containing 20000, 345, and 6000 subjects, respec-
tively. During the evaluation, each subject contains 2 se-
quences as the probe and another 2 sequences as the gallery.
Gait3D [76]. Gait3D is the latest in-the-wild dataset con-
taining 4000 subjects and 25309 sequences, which are col-
lected in a large supermarket from 39 cameras. Following
the protocol [76], 3000 subjects are selected as the train-
ing set, and the rest are the test set. For evaluation, one
sequence of each subject is regarded as the query, and the
other sequences become the gallery. Further, Gait3D pro-
vides 3D annotations to study model-based applications.

4.2. Implementation Details

For common settings, the backbone is composed of 4
3D low-rank convolution layers. In the training stage, the
frame number of each sequence is set to 30. The optimizer
is Adam (lr=1e-4). The loss weight λ is 0.1. The latent
dimension L and reduction ratio r are set to 8 and 4, re-
spectively. During the evaluation, all frames are fed into the
framework. More details are in the supplementary material.

For CASIA-B, the channel C of the backbone is set to
(32, 64, 128, 128). We train the model for 80k iterations
with batch size of (8,8). M is set to 2. For other datasets, the
network capacity should be increased [28,42]. We add extra



Table 1. Rank-1 (%) performance comparison on OU-MVLP, excluding the identical-view cases.

Method Venue Probe View Mean
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GaitSet [12] AAAI19 79.5 87.9 89.9 90.2 88.1 88.7 87.8 81.7 86.7 89.0 89.3 87.2 87.8 86.2 87.1
GaitPart [19] CVPR20 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7
GLN [28] ECCV20 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2
CSTL [30] ICCV21 87.1 91.0 91.5 91.8 90.6 90.8 90.6 89.4 90.2 90.5 90.7 89.8 90.0 89.4 90.2
3DLocal [31] ICCV21 86.1 91.2 92.6 92.9 92.2 91.3 91.1 86.9 90.8 92.2 92.3 91.3 91.1 90.2 90.9
GaitGL [42] ICCV21 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7
GaitMPL [18] TIP22 83.9 90.1 91.3 91.5 91.2 90.6 90.1 85.3 89.3 90.7 90.7 90.7 89.8 88.9 89.6
Lagrange [10] CVPR22 85.9 90.6 91.3 91.5 91.2 91.0 90.6 88.9 89.2 90.5 90.6 89.9 89.8 89.2 90.0

GaitGCI – 91.2 92.3 92.6 92.7 93.0 92.3 92.1 92.0 91.8 91.9 92.6 92.3 91.4 91.6 92.1

Table 2. Rank-1 (%), parameters (M), and computation cost (G
MACs) comparison at the inference stage on CASIA-B.

Method Venue NM BG CL Mean Param. MACs

GaitSet [12] AAAI19 95.0 87.2 70.4 84.2 2.59 3.27
GaitPart [19] CVPR20 96.2 91.5 78.7 88.8 1.20 56.96
GLN [28] ECCV20 96.9 94.0 77.5 89.5 14.70 22.14
MT3D [41] MM20 96.7 93.0 81.5 90.4 3.20 36.59
CSTL [30] ICCV21 97.8 93.6 84.2 91.9 9.09 6.43
3DLocal [31] ICCV21 97.5 94.3 83.7 91.8 4.26 11.20
GaitGL [42] ICCV21 97.4 94.5 83.6 91.8 2.49 12.62
GaitMPL [18] TIP22 95.5 92.9 87.9 92.1 – –
Lagrange [10] CVPR22 96.9 93.5 86.5 92.3 – –

GaitGCI-T – 97.9 95.0 86.4 93.1 1.09 5.41
GaitGCI-M – 98.2 96.1 87.6 94.0 2.45 12.13
GaitGCI-L – 98.4 96.6 88.5 94.5 4.35 21.54

Table 3. Rank-1 (%), Rank-5 (%), Rank-10 (%), and Rank-20 (%)
performance comparison on GREW.

Method Venue Rank-1 Rank-5 Rank-10 Rank-20

PoseGait [40] PR20 0.2 1.1 2.2 4.8
GaitGraph [55] ICIP21 1.3 3.5 5.1 7.5

GEINet [51] ICB16 6.8 13.4 17.0 21.0
TS-CNN [66] TPAMI16 13.6 24.6 30.2 37.0

GaitSet [12] AAAI19 46.3 63.6 70.3 76.8
GaitPart [19] CVPR20 44.0 60.7 67.3 73.5
GaitGL [42] ICCV21 47.3 63.6 69.3 74.2

GaitGCI – 68.5 80.8 84.9 87.7

2 layers with 128 channels. The batch size and M are set
to (32,8) and 8, respectively. The iterations are 200k, 200k,
and 150k for OU-MVLP, GREW, and Gait3D, respectively.

4.3. Results under in-the-lab Scenario

OU-MVLP. The comparison of Tab. 1 indicates that Gait-
GCI outperforms previous methods by a considerable mar-
gin, which reveals the effectiveness and generalizability
of GaitGCI. In detail, GaitGCI achieves the best perfor-
mance at almost all viewpoints. Specifically, performance
at 0◦/180◦ with less information is significantly improved,
which may be attributed to reducing the impact of con-

founders so that the gait pattern is relatively salient.
CASIA-B. The comparison of Tab. 2 demonstrates that
GaitGCI could efficiently outperform previous methods.
Considering that GaitGCI is lightweight and increasing the
number of channels could improve the network’s capac-
ity, we design three variants of GaitGCI, i.e., GaitGCI-T,
GaitGCI-M, and GaitGCI-L with the channel C, 1.5C, and
2C, respectively. Specifically, GaitGCI-T could efficiently
achieve 93.1% rank-1 accuracy only with 1.09 M parame-
ters and 5.41 G MACs. Further, GaitGCI-L could achieve
94.5% rank-1 accuracy with acceptable costs. As a trade-
off, GaitGCI-M could outperform GaitGL by 2.2% with
similar parameters and computation costs. Moreover, Gait-
GCI greatly improves the performance on BG/CL condi-
tions, which suggests that confounders may hinder the de-
velopment of existing methods on challenging conditions.
The results of each view are in the supplementary material.

4.4. Results under in-the-wild Scenario

GREW. The performance comparison of skeleton-based,
GEI-based, and silhouette-based methods on GREW is
shown in Tab. 3. Several conclusions could be drawn. First,
the performance of the previous methods dramatically dete-
riorates when migrated to the in-the-wild scenario. Second,
silhouette-based methods dominate the single-modality in-
the-wild scenarios compared to skeleton/GEI-based meth-
ods. Third, GaitGCI significantly outperforms previous
methods by over 20% and achieves 3rd in the GREW com-
petition [77] only using silhouette sequences. The results of
GREW competition are in the supplementary material.
Gait3D. The comparison on the latest in-the-wild dataset
Gait3D is conducted in Tab. 4, including skeleton-based,
silhouette-based, and multi-modal methods. GaitGCI out-
performs prevailing silhouette-based methods by 14.6% and
13.6% in terms of rank-1 accuracy at the resolution of
128×88 and 64×44, respectively. Besides, the improve-
ment of mAP and mINP fully illustrates the superior re-
trieval performance of GaitGCI. Further, silhouette-based
GaitGCI exceeds SMPLGait [76], which introduces extra
3D SMPL to perform multi-modal learning.



Table 4. Rank-1 (%), Rank-5 (%), mAP (%), and mINP (%) comparison on Gait3D at the resolution of 128×88 and 64×44. As skeleton-
based methods are unrelated to the resolution, we only report one group of results. “*” denotes the method with extra 3D modality.

Input Size (H×W) 128×88 64×44

Methods Venue Rank-1 Rank-5 mAP mINP Rank-1 Rank-5 mAP mINP

PoseGait [40] PR20 0.2 1.1 0.5 0.3 - - - -
GaitGraph [55] ICIP21 6.3 16.2 5.2 2.4 - - - -

GaitSet [12] AAAI19 42.6 63.1 33.7 19.7 36.7 58.3 30.0 17.3
GaitPart [19] CVPR20 29.9 50.6 23.3 13.2 28.2 47.6 21.6 12.4
GLN [28] ECCV20 42.2 64.5 33.1 19.6 31.4 52.9 24.7 13.6
GaitGL [42] ICCV21 23.5 38.5 16.4 9.2 29.7 48.5 22.3 13.3
CSTL [30] ICCV21 12.2 21.7 6.4 3.3 11.7 19.2 5.6 2.6

SMPLGait* [76] CVPR22 53.2 71.0 42.4 26.0 46.3 64.5 37.2 22.2

GaitGCI – 57.2 74.5 45.0 27.6 50.3 68.5 39.5 24.3

Table 5. Ablation on counterfactual intervention learning (CIL)
and diversity-constrained dynamic convolution (DCDC), which
includes generative factual attention (GFA) and generative coun-
terfactual attention (GCA).

CIL GFA GCA NM BG CL Mean

96.5 92.9 80.9 90.1
✓ 97.1 93.8 84.2 91.7
✓ ✓ 97.8 94.8 85.2 92.6
✓ ✓ 97.7 94.5 85.3 92.5
✓ ✓ ✓ 97.9 95.0 86.4 93.1
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Figure 5. Performance comparison of prevailing methods and
those equipped with CIL and DCDC (denoted with suffix ’++’).

Summary. First, prevailing methods experience a dramatic
performance decrease under in-the-wild scenarios, which
indicates that the confounders under in-the-wild scenarios
are more complex than those under in-the-lab scenarios.
Second, the superior performance of GaitGCI under in-the-
wild scenarios demonstrates the necessity for alleviating the
impact of confounders. Third, although multi-modal meth-
ods dominate in-the-wild scenarios, silhouette-based meth-
ods have considerable performance improvement potential.

Table 6. Analysis on DCDC. MD and DC denote matrix decom-
position and diversity constraint, respectively.

Method NM BG CL Mean
Static Conv 97.4 94.0 84.8 92.1
DyConv 97.6 94.4 85.8 92.6

+MD 97.7 94.7 85.7 92.7
+MD+DC 97.9 95.0 86.4 93.1

4.5. Ablation Study

In this section, we conduct a series of quantitative and
qualitative ablation studies to analyze the effectiveness of
GaitGCI and its components. The baseline refers to the
backbone with temporal pooling and separate FC [12].
Individual Effectiveness of CIL and DCDC. The indi-
vidual effects of CIL and DCDC are shown in Tab. 5,
where the factual/counterfactual attention of methods with-
out GFA/GCA is set to static convolution and pre-defined
normal distribution [11, 49], respectively. CIL effectively
improves 1.6% rank-1 accuracy than baseline. Further, gen-
erative factual attention and generative counterfactual atten-
tion achieve 0.9% and 0.8% performance gain, respectively.
And they deliver 1.4% performance improvement in total,
indicating the effectiveness and necessity of generative fac-
tual/counterfactual attention.
Generalizability of GaitGCI. As a model-agnostic mod-
ule, CIL and DCDC could be plugged into prevailing meth-
ods. As shown in Fig. 5, they could effectively boost the
existing methods with nearly no extra costs, which indicates
the generalizability and efficiency of CIL and DCDC. Fur-
ther, this study demonstrates that the confounders may limit
the performance of previous silhouette-based methods.
Analysis on DCDC. To evaluate the effectiveness
of diversity-constrained dynamic convolution on fac-
tual/counterfactual generation, the ablation is conducted
in Tab. 6. First, DyConv [15] outperforms static convolu-
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Figure 6. Comparison of the feature space under in-the-lab and in-the-wild scenarios using t-SNE [57].

Figure 7. Analysis of attention channel number M .

tion, which indicates the necessity of adaptiveness. Second,
matrix decomposition could effectively reduce the compu-
tation and parameters while maintaining comparable per-
formance, which demonstrates the redundancy of the high-
dimensional computation of dynamic convolution. Third,
the rank-based diversity constraint could efficiently improve
the representation power.
Analysis on M . The channel number M controls the capac-
ity to perceive sample-wise factual/counterfactual attention.
From the results in Fig. 7, we can conclude that: first, the
in-the-wild dataset requires larger M , which may be due to
the complexity of confounders and the dataset scale; sec-
ond, the performance rises first and then falls with increas-
ing M , which indicates that larger M brings stronger ca-
pacity while superfluous M may lead to overfitting.
Visualization of Network Attention. The visualization
with Grad-CAM [50] is shown in Fig. 1. Prevailing meth-
ods tend to collapse into confounders while neglecting most
regions of the body boundary that could represent gait pat-
terns. By alleviating the impact of confounders, Gait-
GCI could effectively focus on the discriminative and in-
terpretable regions for gait pattern representation.
Visualization of Feature Space. To qualitatively evaluate
the retrieval performance, we visualize the feature space by
t-SNE [57] in Fig. 6. First, GaitGCI could improve intra-
class compactness and inter-class dispersibility under both
scenarios. Second, the feature space of baseline under the

in-the-lab scenario tends to have several sub-cluster in each
cluster, and this phenomenon is more evident under the in-
the-wild scenario, which may indicate the confounders of
in-the-wild scenario are more complex. Meanwhile, it may
also be why the previous model has acceptable performance
under the in-the-lab scenario while the performance drops
sharply under the in-the-wild scenario.

5. Conclusion and Limitations

This paper proposes a generative counterfactual inter-
vention learning framework, which could force the net-
work to focus on discriminative and interpretable re-
gions. Counterfactual intervention learning leverages
causal inference to analyze the direct causality link be-
tween factual attention and prediction. Further, diversity-
constrained dynamic convolution, which could adap-
tively generate factual/counterfactual attention, utilizes ma-
trix decomposition/diversity constraint to guarantee effi-
ciency/representation power, respectively. Extensive exper-
iments prove that GaitGCI could efficiently achieve state-
of-the-art performance in arbitrary scenarios and could be
used as a plug-and-play module.

For limitations, GaitGCI utilizes SVD, whose costs
could only be ignored with low-dimensional feature repre-
sentation. Besides, channel M is a hyperparameter that de-
pends on the dataset. In future work with high-dimensional
representation and multi-dataset scenarios, we could allevi-
ate these issues with numerical iteration methods [5,14] and
attention-based channel selection, respectively.
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