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Abstract

Transformers-based methods have achieved significant
performance in image deraining as they can model the
non-local information which is vital for high-quality im-
age reconstruction. In this paper, we find that most ex-
isting Transformers usually use all similarities of the to-
kens from the query-key pairs for the feature aggrega-
tion. However, if the tokens from the query are differ-
ent from those of the key, the self-attention values esti-
mated from these tokens also involve in feature aggregation,
which accordingly interferes with the clear image restora-
tion. To overcome this problem, we propose an effective
DeRaining network, Sparse Transformer (DRSformer) that
can adaptively keep the most useful self-attention values
for feature aggregation so that the aggregated features bet-
ter facilitate high-quality image reconstruction. Specifi-
cally, we develop a learnable top-k selection operator to
adaptively retain the most crucial attention scores from the
keys for each query for better feature aggregation. Si-
multaneously, as the naive feed-forward network in Trans-
formers does not model the multi-scale information that is
important for latent clear image restoration, we develop
an effective mixed-scale feed-forward network to gener-
ate better features for image deraining. To learn an en-
riched set of hybrid features, which combines local con-
text from CNN operators, we equip our model with mix-
ture of experts feature compensator to present a coop-
eration refinement deraining scheme. Extensive experi-
mental results on the commonly used benchmarks demon-
strate that the proposed method achieves favorable perfor-
mance against state-of-the-art approaches. The source code
and trained models are available at https://github.
com/cschenxiang/DRSformer.

1. Introduction

Single image deraining is a typical low-level vision prob-
lem emerging in the last decade. It aims to recover the clean

*Corresponding author.

(d) IDT [50] (e) Ours

(f) Ground Truth

Figure 1. Image deraining results between our method and recent
Transformer-based methods [48,50,58]. Our method can generate
high-quality image with more accurate detail and texture recovery.

image from the observed rainy one. As the clear image and
rain streaks are unknown, it is an ill-posed inverse problem.
To solve this problem, early approaches [20, 24, 60] usu-
ally impose various priors based on statistical properties of
rain streaks and clear images. In fact, these handcrafted pri-
ors are not robust to complex and varying rainy scenarios,
which limit the deraining performance.

Recently, numerous learning-based methods [4, 19, 23,
36, 52,53, 56] have resorted to diverse CNN architectures
as a preferable choice compared to traditional algorithms.
However, the intrinsic characteristics of convolutional op-
eration, i.e, local receptive fields and independence of input
content, hinder the model’s capacity to eliminate long-range
rain degradation perturbation. To alleviate such limitations,
Transformers [2, 26, 35, 50] have been applied to image de-
raining and have achieved decent performance as they can
better model the non-local information for high-quality im-
age reconstruction. Nevertheless, the image details, which
are local features of images, are not modeled well by these
approaches when restoring clear images as shown in Fig-
ure 1. One main reason is that the self-attention in Trans-
formers does not model the local invariant properties that
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CNNs do well. Since rain streaks tend to confuse with back-
ground details in local regions, recent studies [5, 18,57] try
to mitigate such drawbacks by combining CNN operations
and Transformers for boosting image deraining, where the
Transformers based on the standard formulations.

We note that the standard Transformers [40] usually use
all attention relations based on the query-key pairs to ag-
gregate features. As the tokens from the key are not always
relevant to those from the query, using the self-attention val-
ues estimated from these tokens in the feature aggregation
interferes with the following latent clear image restoration.
The root cause behind this deficiency lies in that, the na-
tive dense calculation pattern of self-attention amplifies rel-
atively smaller similarity weights, making feature interac-
tion and aggregation process susceptible to implicit noises.
This also naturally leads to corresponding redundant or ir-
relevant representations are still taken into consideration
when modeling global feature dependencies [44,64]. Thus,
these findings motivate us to explore the most useful self-
attention values so that we can make full use of the features
for better image restoration.

To this end, we develop an effective sparse Transformer
network for image deraining, named as DRSformer. Specif-
ically, the key component of the proposed framework is
the sparse Transformer block (STB) which contains a top-
k sparse attention (TKSA) that keeps the most useful self-
attention values for feature aggregation and a mixed-scale
feed-forward network (MSFN) that explores the multi-scale
features for better image deraining. First, we design the top-
k attention mechanism to replace the vanilla self-attention
[40]. The TKSA keeps the largest K similarity scores be-
tween the queries and the keys for the self-attention comput-
ing, thereby facilitating better feature aggregation. Further-
more, the developed MSFN further explores the multi-scale
information to better improve the aggregated features. Fi-
nally, based on the observation that rain distribution reveals
the degradation location and degree, we also introduce mix-
ture of experts feature compensator (MEFC) to provide col-
laborative refinement for STB. With the above-mentioned
designs, our proposed method offers three-fold advantages:
(1) it can enjoy natural robustness in terms of less sensi-
tivity to useless feature interference, (2) it can not only en-
rich the locality but also empower the capability of global
feature exploitation, and (3) it can co-explore data (embod-
ied in MEFC) and content (embodied in STB) sparsity for
achieving deraining performance gains.

The main contributions are summarized as follows:

* We propose a sparse Transformer architecture to help
generate high-quality deraining results with more ac-
curate detail and texture recovery.

* We develop a simple yet effective learnable top-k se-
lection operator to adaptively maintain the most useful
self-attention values for better feature aggregation.

* We design an effective feed-forward network based on
mixed-scale fusion strategy to explore multi-scale rep-
resentations for better facilitating image deraining.

» Extensive experimental results on various benchmarks
demonstrate that our method achieves favorable per-
formance against state-of-the-art (SOTA) approaches.

2. Related Work

Single image deraining. Since image deraining is an ill-
posed problem, traditional methods [12, 20,24, 30, 60] usu-
ally develop kinds of image priors to provide additional
constraints. However, these handcrafted priors tend to rely
on empirical observations and thus are not able to model
the inherent properties of clear images. To overcome this
problem, numerous CNN-based frameworks [53] have been
developed to solve image deraining and achieved decent
restoration performance. To better represent the rain distri-
bution, several studies take rain characteristics such as rain
direction [27], density [61], veiling effect [15] into account,
and optimize the network structure via recursive computa-
tion [19, 23, 36] or transfer mechanism [16,49, 54,55]. Al-
though these methods achieve better performance than the
hand-crafted prior-based ones, they have difficulty captur-
ing the long-range dependencies due to the intrinsic limi-
tations of convolution. Different CNN-based deraining ap-
proaches, we utilize the Transformer as the network back-
bone to model non-local information for image deraining.

Vision Transformers. Motivated by the great success of
the Transformers [7] in natural language processing (NLP)
[40] and high-level vision tasks [1, 28], Transformers have
been applied to image restoration [2,13,48,51,58] and per-
form better than the previous CNN-based baselines as they
are able to model non-local information. For the field of im-
age rain removal, Jiang et al. [18] design a dynamic asso-
ciated deraining network by incorporating self-attention in
Transformer with a background recovery network. More re-
cently, Xiao et al. [50] elaborately develop image deraining
Transformer (IDT) with window-based and spatial-based
dual Transformer to achieve excellent results. Note that,
most existing methods rely on the dense dot-product self-
attention as the heart of Transformers. However, one short-
coming of this computation manner is that redundant or ir-
relevant features with smaller weights may interfere with
the attention map, which makes the output features contain
potential noises. In this work, we propose sparse attention
in Transformer to relieve the negligence of the most relevant
information faced by vanilla self-attention.

Sparse representation. With inspirations drawn from neu-
ral activity in biological brains, sparsity of hidden represen-
tation in deep neural networks as a tantalizing “free lunch”
emerges for both vision and NLP tasks [44, 64]. Indeed, it
is widely proven that sparse representation also plays a crit-
ical role in handling low-level vision problems, such as im-
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Figure 2. The overall architecture of the proposed sparse Transformer network for image deraining (DRSformer), which mainly contains
sparse Transformer block (STB) with top-k sparse attention (TKSA) and mixed-scale feed-forward network (MSFN), and mixture of

experts feature compensator (MEFC). LN refers to the layer normalization and DW-Conv refers to the depth-wise convolution.

age deraining [46] and super-resolution [31]. In principle,
sparse attention can be categorized into data-based (fixed)
sparse attention and content-based sparse attention [6, 38].
For data-based sparse attention, several local attention op-
erations are introduced into CNN backbone, which mainly
considers attending only to local window size. Recent stud-
ies [11,42] have investigated enforcing sparsity to Trans-
former backbone. More recently, Zhang et al. [63] design
an attention retractable Transformer to allow tokens from
sparse areas to interact features, which is data-based spar-
sity. Different from it, we implement a simple but effective
approximation for self-attention based on top-k selection to
achieve sparse attention, which is content-based sparsity.

Top-k selection. Zhao et al. [64] first propose an explicit
selection method based on top-k mechanism in NLP tasks.
Driven by their success, k-NN attention [42,44] is further
introduced for boosting vision Transformers. Unlike per-
forming top-k selection in the spatial dimension [44], we
design an efficient top-k useful channel selection operator.

3. Proposed Method

In this section, we first describe the overall pipeline and
symmetrically hierarchical network architecture for image
deraining. Afterward, we provide the details of the pro-
posed sparse Transformer block (STB), as the fundamental
building unit of our method, which mainly contains two key
elements: top-k sparse attention (TKSA) and mixed-scale
feed-forward network (MSFN). Finally, we present the in-
troduced mixture of experts feature compensator (MEFC).

3.1. Overall pipeline

The overall pipeline of our proposed DRSformer, shown
in Figure 2, is based on a hierarchical encoder-decoder

framework. Given a rainy image I,q;, € R¥*" 3 where
H x W represents the spatial resolution of the feature map,
we perform overlapped image patch embedding with 3 x 3
convolution. In the network backbone, we stack Nic(1,23 4]
STBs to extract rich features for spatially-varying rain dis-
tribution. To excavate the multi-scale representation from
rain degeneration, each level of encoder-decoder pipeline
covers its own specific spatial resolution and channel di-
mension. For feature down-sampling and up-sampling, we
apply pixel-unshuffle and pixel-shuffle operations. Similar
to [48,50,58], we also add skip-connections to bridge across
continuous intermediate features for stable training. In each
STB, unlike the standard self-attention [7] in Transformer,
we develop TKSA to achieve feature sparsity, aiming to en-
force the feature aggregation process more effectively. In
addition, a MSFN is introduced into STB to enrich multi-
scale local information and help image restoration. At the
early and final stages of the model learning, we equip our
model with Ny MEFCs to provide complementary feature
refinement, so that high-quality clear outputs can be finally
reconstructed. With this hybrid formulation, we allow DRS-
former to exploit both the adaptive content and the intrinsic
property of rainy images, facilitating the separation of un-
desired rain streaks and latent clear background, and ex-
periments demonstrate that the above design choices yield
quality improvements (see Sec. 4.3)

The final reconstructed result is obtained by: Ijerqin =
F(Irqin) + Irain, where F(+) is the overall network and it
is trained by minimizing the following loss function:

L= ||Iderain_lgt||17 1)
where I, denotes the ground-truth image, and || -||; denotes
the L1-norm.



3.2. Sparse Transformer block

As the standard Transformers [7, 40, 58] take all the to-
kens to compute self-attention globally, which is unfriendly
for image restoration due to it may involve noisy interac-
tions between the irrelevant features. To solve such limita-
tions, we develop a sparse Transformer block (STB) as the
feature extraction unit by taking the advantages of sparsity
that emerged in neural networks [64]. Formally, given the
input features at the (I-1)-th block X;_1, the encoding pro-
cedures of STB can be defined as:

X, = X;_; + TKSA (LN (X,_1)), 2

X; = X + MSFN (LN (X})), (3)
where LN denotes the layer normalization; X; and X de-
note the outputs from the top-k sparse attention (TKSA) and
mixed-scale feed-forward network (MSFN), which are de-
scribed below.

Top-k sparse attention (TKSA). We revisit the standard
self-attention in Transformer, which has become an empiri-
cal operation in most of the existing models. Given a query
@, key K and value V with the dimension of RELXd the
output of dot-product attention is generally formulated as:

KT
Q)\ > v, “)

where Q, K, and V denote the matrix forms of @), K, and
V, respectively. A is an optional temperature factor defined
by A = V/d. Generally, multi-head attention is implemented
to each of the k new @, K and V, yielding d = C/k chan-
nel dimensional outputs which are concatenated and then
got the final result for all heads via the linear projection.
Noted that, this vanilla self-attention paradigm is based on
densely fully-connected, which requires computing the at-
tention map for all query-key pairs. In our work, we develop
TKSA to replace it, thus avoiding the involvement of irrel-
evant information during the feature interaction process.
Specifically, we first encode channel-wise context by ap-
plying 1 x 1 convolutions followed by 3 x 3 depth-wise con-
volutions. Inspired by [58], we apply self-attention across
channels rather than the spatial dimension to reduce the time
and memory complexity. Next, we calculate similarities of
pixel pairs between all the reshaped queries and keys, and
mask out the unnecessary elements assigned with lower at-
tention weights in the transposed attention matrix M of size

Att(Q, K, V) = softmax (

RE*C . Unlike the dropout strategy of randomly abandon-
ing the scores, an adaptive selection of the top-k contribu-
tive scores is implemented upon M, aiming to preserve the
most significant components and remove the useless ones
[3]. Here, k is an adjustable parameter to dynamically con-
trol the magnitude of sparsity, which is formally obtained
by weighted average of some proper fractions, such as %
Thus, only top-k values within the range [A;, As] are nor-

malized from each row of M for softmax computing. For

other elements that are smaller than top-k scores, we replace
their probabilities with O at given indices using the scatter
function. This dynamic selection makes the attention from
dense to sparse, which is derived by:

]
T)v.

where T (+) is the learnable top-k selection operator:

SparseAtt(Q, K, V) = softmax (E(

Sij  Si; € top-k(row j)
0 otherwise.

[E(S)]ij = { (6)

Finally, we multiply the softmax and value by matrix
multiplication. As we use the multi-head strategy, we con-
catenate all the outputs of multi-head attention, and then get
the final result by the linear projection.

Mixed-scale feed-forward network (MSFN). Previous
studies [48, 50, 58] usually introduce single-scale depth-
wise convolutions into the regular feed-forward network to
imporve locality. However, those exploitations all ignore
the correlations of multi-scale rain streaks. In fact, rich
multi-scale representation has fully demonstrated its effec-
tiveness [19,41] in better removing rain. Here, we design a
MSEN by inserting two multi-scale depth-wise convolution
paths in the transmission process, see Figure 2. Given an in-
put tensor X;_; € RF*WXC after layer normalization, we
first utilize 1 x 1 convolution to expand the channel dimen-
sion in the ratio of r, then feed it into two parallel branches.
During the feature transformation, the 3 x 3 and 5 x 5 depth-
wise convolutions are employed to enhance the multi-scale
local information extraction. In this way, the entire feature
fusion procedure of the developed MSFN is formulated as:

X1 = ffen (N (X100)).
X = o (F25(X0) X7 = o (f25(X0).
sz =0 ( ??gg[xg)l7xil]) ’X72 =0 ( E()i;vg[x?l,xfl]) )

Xi = fixa X7 X7+ X,
@)

where o (-) is a ReLU activation, f{,; represents 1 x 1 con-
volution, f§¥$ and f3¥¢ denote 3 x 3 and 5 x 5 depth-wise
convolutions, and [-] is the channel-wise concatenation.

3.3. Mixture of experts feature compensator

To fill in the comprehensive faculty of integrating spar-
sity in the DRSformer, we further introduce MEFC to per-
form a unified co-exploration towards joint data and content
sparsity. Recalling the classical design of effective CNN
models [39], we elaborately select multiple sparse CNN op-
erations to form parallel layers, dubbed as experts, which
involve an average pooling with receptive field of 3 x 3,
separable convolution layers with kernel sizes of 1 x 1,
3 x 3,5 x5, 7 x 7, and dilated convolution layers with



Table 1. Comparison of quantitative results on synthetic and real datasets. Bold and underline indicate the best and second-best results.

Datasets Rain200L Rain200H DID-Data DDN-Data SPA-Data
Metrics PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
Prior-based methods DSC [30] 27.16 0.8663 | 14.73 0.3815 | 24.24 0.8279 | 27.31 0.8373 | 3495 0.9416
GMM [24] 28.66 0.8652 | 14.50 0.4164 | 25.81 0.8344 | 27.55 0.8479 | 34.30 0.9428
DDN (8] 34.68 09671 | 26.05 0.8056 | 30.97 0.9116 | 30.00 0.9041 | 36.16 0.9457
RESCAN [23] | 36.09 0.9697 | 26.75 0.8353 | 33.38 0.9417 | 31.94 0.9345 | 38.11 0.9707
PReNet [36] 37.80 09814 | 29.04 0.8991 | 33.17 0.9481 | 32.60 0.9459 | 40.16 0.9816
CNN-based methods MSPFEN [19] 38.58 09827 | 29.36  0.9034 | 33.72 0.9550 | 32.99 0.9333 | 43.43 0.9843
RCDNet [43] 39.17 09885 | 30.24 0.9048 | 34.08 0.9532 | 33.04 0.9472 | 43.36 0.9831
MPRNet [59] 39.47 09825 | 30.67 09110 | 33.99 0.9590 | 33.10 0.9347 | 43.64 0.9844
DualGCN [9] | 40.73 0.9886 | 31.15 0.9125 | 34.37 0.9620 | 33.01 0.9489 | 44.18 0.9902
SPDNet [56] 40.50 0.9875 | 31.28 0.9207 | 34.57 0.9560 | 33.15 0.9457 | 43.20 0.9871
Uformer [48] 40.20 0.9860 | 30.80 0.9105 | 35.02 0.9621 | 3395 0.9545 | 46.13 0.9913
Transformer-based methods Restormer [58] | 40.99 0.9890 | 32.00 0.9329 | 35.29 0.9641 | 34.20 0.9571 | 4798 0.9921
IDT [50] 40.74 0.9884 | 32.10 0.9344 | 34.89 0.9623 | 33.84 0.9549 | 47.35 0.9930
DRSformer 41.23 0.9894 | 32.18 0.9330 | 35.38 0.9647 | 34.36 0.9590 | 48.53 0.9924

kernel sizes of 3 x 3, 5 x 5, 7 x 7. Different from the
conventional mixture of experts [17,37], our MEFC does
not attach an external gating network. Instead, we make the
self-attention [14,21] become a switcher of different experts
to adaptively select the importance of diverse representa-
tions depending on the inputs. Given an input feature map
X, 1 € REXWXC e first apply the channel-wise average
to generate C-dimensional channel descriptor z. € R¢:

1 H W
Zc = m szlfl(iaj)a

i=1 j=1

@®)

where X;_1(i, 7) is the (y, z) position of the feature X;_.
Then, the coefficient vector of each expert is allocated cor-
responding to the learnable weight matrices W; € RT*¢
and Wy € RO*T. Here, T is the dimension of the weight
matrices. To avoid altering the sizes of its inputs and out-
puts, we zero pad the input feature maps computed by each
expert. Finally, the output of the [-th MEFC is calculated
by:

Tl = W2U (lec) s
o

Zfewp (XlaTl)

i=1

€))

Xi= fix [ + Xi-1,

where fer, and O represent the expert operations and the
number of experts, respectively. ff, ; represents 1 x 1 con-
volution, o(-) is a ReLU function, and [-] is the channel-
wise concatenation. With this design, MEFC is now closely
linked to the main STBs so that is able to adaptively remove
the rainy effects of diverse appearances.

4. Experiments and Analysis
4.1. Experimental settings

Datasets. We implement deraining experiments on multiple
public benchmarks, including Rain200L/H [52], DID-Data
[61] and DDN-Data [8]. Rain200L and Rain200H contain
1,800 synthetic rainy images for training and 200 ones for
testing. DID-Data and DDN-Data consist of 12,000 and

12,600 synthetic images with different rain directions and
density levels. There are 1,200 and 1,400 rainy images for
testing. In addition, we also evaluate our method using a
large-scale real-world dataset, i.e, SPA-Data [45], contain-
ing 638,492 image pairs for training and 1,000 testing ones.

Comparison methods. We compare our DRSformer with
two prior-based models (DSC [30] and GMM [24]), CNN-
based methods (DDN [8], RESCAN [23], PReNet [36],
MSPFEN [19], RCDNet [43], MPRNet [59], DualGCN [9],
and SPDNet [56]), and recent Transformer-based methods
(Uformer [48], Restormer [58], and IDT [50]). For recent
representative methods (DualGCN, SPDNet, Restormer and
IDT), we retrain their models provided by the authors if no
pretrained models are provided, otherwise we evaluate them
with their online codes for fair comparisons. For other ap-
proaches, we refer to some reported results in [10, 50].

Evaluation metrics. We adopt PSNR [34] and SSIM [47]
as the evaluation metrics for the above benchmarks. Follow-
ing previous deraining methods [10,19], we calculate PSNR
and SSIM metrics in Y channel of YCbCr space. For the
rainy images without ground truth images, we use the non-
reference metrics including NIQE [33] and BRISQUE [32].

Training details. In our model, { Ny, N1, Na, N3, N4} are
set to {4,4, 6,6, 8}, and the number of attention heads for
four STBs of the same level is set to {1,2,4,8}. The ini-
tial channel C' is 48 and the expanding ratio is set to 2. In
terms of MEFC, we set O = 8 for the number of experts
and T' = 32 for the weight matrix. Note that we do not use
MEEFC for training Rain200L and SPA-Data, because their
rain streaks are less complex and easier to learn. In terms of
STB, the sparseness [A1, A] in TKSA is set to [§, 3], and
the channel expansion factor r in MSFN is set to 2.66. Dur-
ing training, we use AdamW optimizer with batch size of 8
and patch size of 128 for total 300K iterations. The initial
learning rate is fixed as 1 x 10~* for 92K iterations, and then
decreased to 1 x 1076 for 208K iterations with the cosine
annealing scheme [29]. For data augmentation, vertical and
horizontal flips are randomly applied. The entire framework



>o o N e e e o N el |

Ground Truth

MPRNet SPDNet Uformer

Rainy Input RCDNet DualGCN SPDNet

Restormer IDT Ours

Restormer IDT Ours Ground Truth

Figure 4. Visual quality comparison on the SPA-Data dataset. Zooming in the figures offers a better view at the deraining capability.

is performed on the PyTorch with 4 NVIDIA GeForce RTX
3090 GPUs, which works in an end-to-end learning fashion
without costly large-scale pretraining [2].

4.2. Comparisons with the state-of-the-arts

Synthetic datasets. The quantitative evaluations on differ-
ent benchmark datasets are reported in Table 1. As shown,
we can note that our proposed method outperforms all the
other derainers, especially on PSNR, e.g., DRSformer sur-
passes the concurrent approach IDT by 0.4 dB on average.
Compared with previous CNN-based models, this progress
can be much more obvious. The notable increasing scores
on the DID-Data and DDN-Data benchmarks reveal that
our method can properly handle diverse types of spatially-
varying rain streaks. For convincing evidence, we show the
visual quality comparison between samples generated by
recent approaches in Figure 3. The pure CNN-based mod-
els, e.g., MPRNet and SPDNet, fail to restore clear images
in heavy rainy scenarios. It can be seen that the results of all
computing Transformer-based methods are flawed in terms
of detail and texture recovery. Unfortunately, IDT even in-
troduces considerable boundary artifacts. Thanks to the de-
veloped sparse attention with top-k selection, our method
can generate high-quality deraining results, which are more
consistent with that of the ground truth.

Real-world datasets. We further conduct experiments on
the SPA-Data benchmark dataset, and corresponding results
are provided in the last column of Table 1. As expected,
our model continues to achieve the highest PSNR/SSIM
value, exhibiting the superior of DRSformer in terms of de-

raining performance and generalization. The visual qual-
ity comparison can be observed in Figure 4. In contrast,
our method significantly competes with others in remov-
ing most rain streaks while preserving truthful image struc-
tures. In order to further validate the effectiveness of DRS-
former, we also randomly choose 20 real rainy images with-
out ground truths from Internet-Data [45] to perform an-
other evaluation. As displayed in Table 2, our net gets the
lower NIQE and BRISQUE values, which means a high-
quality output with clearer content and better perceptual
quality against other comparative models on the real rainy
scenarios. Through qualitative quality comparison in Fig-
ure 5, most deep models are sensitive to spatially-long rain
streaks and leave some apparent rain effects. On the con-
trary, our net successfully removes most rain perturbation
and owns a visual pleasant recovery effect, which implies
that it can well generalize to unseen real-world data types.

4.3. Ablation studies

Effectiveness of Top-k selection. To examine the effect of
the top-k selection in the TKSA, we present the deraining
results of TKSA w/o top-k in Figure 6. We can see that the
PSNR values of the derained images by the method without
using the top-k selection are lower than those by the method
using the top-k selection. In addition, we also note that each

<
element of the self-attention matrix softmax (%) in

Eq. (4) is non-negative and the summation of the elements

from each row of softmax (QTKT> is 1. Thus, applying
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Figure 5. Visual quality comparison on real-world rainy images. Zooming in the figures offers a better view at the deraining capability.

Table 2. Comparison of quantitative results on real-world rainy images, and note that lower scores indicate better image quality.

Methods Rainy Input MPRNet [59] SPDNet [56] Uformer [48] Restormer [58] IDT [50] Ours
NIQE | /BRISQUE |  5.829/33.129 4.740/32.018 4.422/26.173 4.833/28.106  5.005/34.036  4.238/25.573  4.095/22.730
- w Top-k

- w/o Top-k

Rain1400

Rain1200

Dataset

Rain200L
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Figure 6. Ablation analysis for top-k selection on the benchmarks.
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Figure 7. Ablation analysis for different number k in the TKSA.

.
the self-attention matrix softmax % to V will remove

the high-frequency information of V, which lead to over-
smoothed results.

To understand the effect of such top-k selection, we fur-
ther use high-pass filtering (HPF) to visualize learned fea-
tures in Figure 8. Compared to standard self-attention op-
eration (w/o top-k), our strategy can better help reconstruct
finer-detail feature and improve potential restoration qual-
ity. As the nearby pixels tend to be more similar than oth-
ers, top-k selection operator helps to reduce the irrelevant
context from long-range pixel dependency. This step of se-
lection allows the smaller similarity weights (from a part of
long-range feature interactions) to be discarded in the pro-
cedure of self-attention calculation, thus facilitating more
accurate representation for achieving high-quality output.

(a) w/o Top-k (a) w Top-k (b) w/o Top-k (b) w Top-k

Figure 8. Visualization of feature maps. Our proposed top-k selec-
tion can effectively leverage pixel-dependent properties of image
structure and generate more precise high-frequency details.

Effect of the number of k. The key parameter for our pro-
posed TKSA is k, and its influence is investigated in Fig-
ure 7. We note that the optimal choice of k determines the
boundary control of the sparsity rate. If k is manually set
to a single value, such as %, we notice that its performance
is sensitive to k. To avoid an exhaustive search, we set a
controllable interval range for k to dynamically learn the
most contribute score. When k is too small, we find that the
performance will undoubtedly decline sharply due to insuf-
ficient global information aggregation. The best result can
achieve 32.18 dB when [A1, As] in the TKSA is assigned
to [%, %] As k continues to increase, the final deraining
performance gradually decreases due to the introduction of
irrelevant and useless features.

Effectiveness of MSFN. To evaluate the effectiveness of
the proposed MSFN, we compare it with three baselines:
(1) conventional feed-forward network (FN) [7], (2) Dconv
feed-forward network (DFN) [25], and (3) gated-Dconv
feed-forward network (GDFN) [58]. The quantitative anal-
ysis results on Rain200H are listed in Table 3. Although
GDEFN introduces a gating mechanism in two same-scale
depth-wise convolution streams to bring performance ad-
vantages, it still neglects the multi-scale knowledge for de-
raining. By adding local feature extraction and fusion at
different scales, the MSFN can indeed better boost the per-
formance, and achieve PSNR gain of 0.21 dB over GDFN.

Effectiveness of MEFC. To evaluate the effectiveness of
MEFC, we perform experiments based on different model
variants in Table 4. Compared to the baseline model (a),
MEFC provides additional performance benefits thanks to
auxiliary data sparsity. In addition, we observe that MEFCs
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Figure 9. Ablation qualitative comparison for different variants of DRSformer. The models (a-f) are consistent with the settings in Table 4.

Table 3. Ablation study for different feed-forward networks.

Models FN [7] DFN [25] GDFN [58] MSFN
PSNR/SSIM  31.84/0.9275 31.88/0.9279 31.97/0.9286 32.18/0.9330

Table 4. Ablation study for different variants of our DRSformer.
MEFC-1 and MEFC-2 denote MEFC in early and final stages.

Models MEFC-1 STBs MEFC-2 Experts PSNR/SSIM
(a) 0 32.03/0.9308
(b) 32.01/0.9311
(c) 32.07/0.9328
(d) 32.06/0.9316
(e) 32.14/0.9325
) 32.18/0.9330
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at different locations of the network pipeline have specific
impacts on the restoration performance. Indeed, we also an-
alyze the effect of the different numbers of experts in each
MEFC. When using single expert model (d), the perfor-
mance is dramatically degraded compared with our multi-
expert model (f). Unlike setting all experts to the same
structure [21], our multi-expert formulation is more diverse,
which brings its gains to the performance due to different
receptive fields and disparate CNN operations. Through
the zoomed boxes in Figure 9, the recovered results of the
model with all the above components tend to be clearer
since it enables more diverse features to be fully used dur-
ing the restoration process. All in all, our model (f) per-
forms better than the other possible configurations, which
indicates that each design strategy that we consider has its
own contribution to the final performance of DRSformer.

4.4. Closely-related methods

We note that the recent method [22] proposes a k-NN im-
age Transformer (KiT) to solve image restoration by aggre-
gating k similar patches with the pair-wise local attention.
Compared with KiT that employs complex locality sensi-
tive hashing that cannot ensure sufficient global interaction,
our simple but effective top-k selection mechanism not only
enjoys the locality but also empowers the ability of global
relation mining. As the code of KiT is not available, we re-
fer to the results of their paper. Figure 10 shows qualitative
comparisons trained on the Rain800 [62]. We can see that
KiT tends to blur the contents and cause color distortion. In
contrast, our method leads to better deraining results.

In addition, we also note that [44] recently designs the .-
NN attention to enhance the representation ability of vision
Transformers by selecting the top-k similar tokens. Dif-
ferent from KVT [44], which implements top-k selection

RN . | |

() Rainy Input  (b) KiT [22] (c) KVT [44] (d) Ours
Figure 10. Comparison results with closely-related methods.
in the spatial dimension, our operator is more efficient in
computing sparse attention across channels. Furthermore,
the sparsity level of k£ in our proposed TKSA is dynami-
cally learnable, rather than the fixed setting in [44]. Here,
we adopt k-NN attention in KVT to replace our TKSA for
comparison. To ensure the fair comparison, the same train-
ing settings are kept for model testing. As shown in Figure

10 (c) and (d), our method can generate a clearer image.

5. Concluding Remarks

We have presented an effective sparse Transformer net-
work, called DRSformer, to solve image deraining. Based
on the observation that vanilla self-attention in Transformer
may suffer from the global interaction of irrelevant informa-
tion, we develop the top-k sparse attention to keep the most
useful self-attention values for better feature aggregation.
To facilitate the aggregated features for removing rain, we
develop a mixed-scale feed-forward network to better ex-
plore multi-scale representations. Furthermore, the mixture
of experts feature compensator is introduced to the model to
provide collaborative refinement for the sparse Transformer
backbone, so that the fine details of the reconstructed im-
age is preserved. Experimental results show that our DRS-
former performs favorably against state-of-the-art methods.

Limitations. Our proposed method aims to further boost
image deraining performance, but there are limitations in
the model efficiency. Specifically, our model requires 33.7
Million parameters and costs 242.9G FLOPs on one image
with size of 256 x 256. We will apply the pruning or distilla-
tion scheme in our model to maintain the original deraining
performance while achieving credible model compression.
Acknowledgements. This work has been partly sup-
ported by the National Key R&D Program of China (No.
2018AAA0102001), the National Natural Science Founda-
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