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Abstract

StyleGANs are at the forefront of controllable image
generation as they produce a latent space that is seman-
tically disentangled, making it suitable for image editing
and manipulation. However, the performance of StyleGANs
severely degrades when trained via class-conditioning on
large-scale long-tailed datasets. We find that one reason
for degradation is the collapse of latents for each class in
theW latent space. With NoisyTwins, we first introduce an
effective and inexpensive augmentation strategy for class
embeddings, which then decorrelates the latents based on
self-supervision in the W space. This decorrelation miti-
gates collapse, ensuring that our method preserves intra-
class diversity with class-consistency in image generation.
We show the effectiveness of our approach on large-scale
real-world long-tailed datasets of ImageNet-LT and iNatu-
ralist 2019, where our method outperforms other methods
by ∼ 19% on FID, establishing a new state-of-the-art.

1. Introduction

StyleGANs [21, 22] have shown unprecedented success
in image generation, particularly on well-curated and artic-
ulated datasets (eg. FFHQ for face images, etc.). In addition
to generating high fidelity and diverse images, StyleGANs
also produce a disentangled latent space, which is exten-
sively used for image editing and manipulation tasks [50].
As a result, StyleGANs are being extensively used in var-
ious applications like face-editing [11, 42], video genera-
tion [47, 53], face reenactment [3], etc., which are a tes-
tament to their usability and generality. However, de-
spite being successful on well-curated datasets, training
StyleGANs on in-the-wild and multi-category datasets is
still challenging. A large-scale conditional StyleGAN (i.e.
StyleGAN-XL) on ImageNet was recently trained success-
fully by Sauer et al. [40] using the ImageNet pre-trained
model through the idea of a projection discriminator [39].
While the StyleGAN-XL uses additional pre-trained mod-
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Figure 1. Qualitative Comparison on tail classes (T1-T4) for
iNaturalist 2019. We provide sample(s) from real class (with
class frequency), generated by StyleGAN2-ADA and after adding
proposed NoisyTwins. NoisyTwins achieves remarkable diversity,
class-consistency and quality by just using 38 samples on average.

els, obtaining such models for distinctive image domains
like medical, forensics, and fine-grained data may not be
feasible, which limits its generalization across domains.

In this work, we aim to train vanilla class-conditional
StyleGAN without any pre-trained models on challenging
real-world long-tailed data distributions. As training Style-
GAN with augmentations [20, 55] leads to low recall [24]
(which measures diversity in the generated images) and
mode collapse, particularly for minority (i.e. tail) classes.
For investigating this phenomenon further, we take a closer
look at the latent W space of StyleGAN that is produced
by a fully-connected mapping network that takes the condi-
tioning variables z (i.e. random noise) and class embedding
c as inputs. The vectors w in W space are used for con-
ditioning various layers of the generator (Fig. 2). We find
that output vectors w from the mapping network hinge on
the conditioning variable c and become invariant to random
conditioning vector z. This collapse of latents leads to un-
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Figure 2. Schematic illustration ofW space for different GANs. Existing conditioning methods either suffer from mode collapse [20]
or lead to class confusion [36] inW space. With proposed NoisyTwins, we achieve intra class diversity while avoiding class confusion.

stable training and is one of the causes of poor recall (a.k.a.
mode collapse) for minority classes. Further, on augment-
ing StyleGAN with recent conditioning and regularization
techniques [17, 36], we find that they either lead to a poor
recall for minority classes or lead to class confusion (Fig.
2) instead of mitigating the collapse.

To mitigate the collapse of w in W space, we need to
ensure that the change in conditioning variable z leads to
the corresponding change in w. Recently in self-supervised
learning, several techniques [2, 54] have been introduced
to prevent the collapse of learned representations by maxi-
mizing the information content in the feature dimensions.
Inspired by them we propose NoisyTwins, in which we
first generate inexpensive twin augmentations for class em-
beddings and then use them to decorrelate the w variables
through self-supervision. The decorrelation ensures that w
vectors are diverse for each class and the GAN is able to
produce intra-class diversity among the generated images.

We evaluate NoisyTwins on challenging benchmarks of
large-scale long-tailed datasets of ImageNet-LT [31] and
iNaturalist 2019 [49]. These benchmarks are particularly
challenging due to a large number of classes present, which
makes GANs prone to class confusion. On the other hand,
as these datasets are long-tailed with only a few images per
class in tail classes, generating diverse images for those
classes is challenging. We observe that existing metrics
used in GAN evaluations are not able to capture both class
confusion and mode collapse. As a remedy, we propose to
use intra-class Frechet Inception Distance (FID) [12] based
on features obtained from pre-trained CLIP [35] embed-
dings as an effective metric to measure the performance
of class-conditional GANs in long-tailed data setups. Us-
ing NoisyTwins enables StyleGAN to generate diverse and
class-consistent images across classes, mitigating the mode
collapse and class confusion issues in existing state-of-the-
art (SotA) (Fig. 1). Further, with NoisyTwins, we obtain
diverse generations for tail classes even with ≤ 30 images,
which can be attributed to the transfer of knowledge from
head classes through shared parameters (Fig. 1 and 6). In
summary, we make the following contributions:

1. We evaluate various recent SotA GAN conditioning

and regularization techniques on the challenging task
of long-tailed image generation. We find that all exist-
ing methods either suffer from mode collapse or lead
to class confusion in generations.

2. To mitigate mode collapse and class confusion, we in-
troduce NoisyTwins, an effective and inexpensive aug-
mentation strategy for class embeddings that decorre-
lates latents in theW latent space (Sec. 4).

3. We evaluate NoisyTwins on large-scale long-tailed
datasets of ImageNet-LT and iNaturalist-2019, where
it consistently improves the StyleGAN2 performance
(∼ 19%), achieving a new SotA. Further, our approach
can also prevent mode collapse and enhance the perfor-
mance of few-shot GANs (Sec. 5.3).

2. Related Works

StyleGANs. Karras et al. introduced StyleGAN [21] and
subsequently improved its image quality in StyleGAN2.
StyleGAN could produce high-resolution photorealistic im-
ages as demonstrated on various category-specific datasets.
It introduced a mapping network, which mapped the sam-
pled noise into another latent space, which is more dis-
entangled and semantically coherent, as demonstrated by
its downstream usage for image editing and manipula-
tion [1,33,34,43,44]. Further, StyleGAN has been extended
to get novel views from images [27, 29, 45], thus making it
possible to get 3D information from it. These downstream
advances are possible due to the impressive performance
of StyleGANs on class-specific datasets (such as faces).
However, similar photorealism levels are yet uncommon on
multi-class long-tailed datasets (such as ImageNet).

GANs for Data Efficiency and Imbalance. Failure of
GANs on less data was concurrently reported by Karras et
al. [20] and Zhao et al. [55]. The problem is rooted in the
overfitting of the discriminator due to less real data. Since
then, the proposed solutions for this problem have relied on
a) augmenting the data, b) introducing regularizers, and c)
architectural modifications. Karras et al. [20] and Zhao et
al. [55] relied on differentiable data augmentation before
passing images into the discriminator to solve this prob-
lem. DeceiveD [15] proposed to introduce label-noise for



discriminator training. LeCamGAN [48] finds that enforc-
ing LeCam divergence as a regularization trick in the dis-
criminator can robustify GAN training under a limited data
setting. DynamicD [51] tunes the capacity of the discrim-
inator on-the-fly during training. While these methods can
handle the data inefficiency, they are ineffective on class
imbalanced long-tailed data distribution [36].

CBGAN [37] proposed a solution to train the uncondi-
tional GAN model on long-tailed data distribution by in-
troducing a signal from the classifier to balance the classes
generated by GAN. In a long-tailed class-conditional set-
ting, gSR [36] proposes to regularize the exploding spec-
tral norms of the class-specific parameters of the GAN.
Collapse-by-conditioning [41] addresses the limited data
in classes by introducing a training regime that transitions
from an unconditional to a class-conditioned setting, thus
exploiting the shared information across classes during the
early stages of the training. However, these methods suffer
from either class confusion or poor generated image quality
on large datasets, which is resolved by NoisyTwins.

Self-Supervised Learning for GANs. Ideas from Self-
supervised learning have shown their benefits in GAN train-
ing. IC-GAN [6] trains GAN conditioned on embeddings
on SwAV [5], which led to remarkable improvement in
performance on the long-tailed version of ImageNet. In-
sGen [52] and ReACGAN [16, 17] introduce the auxil-
iary task of instance discrimination for the discriminator,
thereby making the discriminator focus on multiple tasks
and thus alleviating discriminator overfitting. While InsGen
relies on both noise space and image space augmentations,
ReACGAN and ContraGAN follow only image space aug-
mentations. Contrary to these, NoisyTwins performs aug-
mentations in the class-embedding space and contrasts them
in theW-space of the generator instead of the discriminator.

3. Preliminaries

3.1. StyleGAN

StyleGAN [21] is a Generative Adversarial Network
comprising of its unique Style Conditioning Based Gener-
ator (G) and discriminator network (D) trained jointly. We
will focus on the architecture of StyleGAN2 [23] as we use
it in our experiments, although our work is generally appli-
cable to all StyleGAN architectures. The StyleGAN2 gener-
ator is composed of blocks that progressively upsample the
features and resolution inspired by Progressive GAN [19],
starting from a single root image. The diversity in the im-
ages comes from conditioning each block of image gener-
ation through conditioning on the latent coming from the
mapping network (Fig. 2). The mapping network is a fully
connected network that takes in the conditioning variables,
the z ∈ Rd coming from a random distribution (e.g., Gaus-
sian, etc.) and class conditioning label c which is converted

to an embedding c ∈ Rd. The mapping network takes these
and outputs vectors w in theW latent space of StyleGAN,
which is found to be semantically disentangled to a high ex-
tent [50]. The w is then processed through an affine trans-
form and passed to each generator layer for conditioning the
image generation process through Adaptive Instance Nor-
malization (AdaIN) [13]. The images from generator G,
along with real images, are passed to discriminator D for
training. The training utilizes the non-saturating adversarial
losses [9] for G and D given as:

min
D
LD =

m∑
i=1

log(D(xi)) + log(1−D(G(zi, ci))) (1)

min
G
LG =

m∑
i=1

− log(D(G(zi, ci))) (2)

We now describe the issues present in the StyleGANs
trained on long-tailed data and their analysis inW space.

3.2. Class Confusion and Class-Specific Mode Col-
lapse in Conditional StyleGANs

To finely analyze the performance of StyleGAN and
its variants on long-tailed datasets, we train them on the
CIFAR10-LT dataset. In Fig. 3, we plot the qualitative re-
sults of generated images and create a t-SNE plot for latents
in W space for each class. We first train the StyleGAN2
baseline with augmentations (DiffAug) [20, 55]. We find
that it leads to mode collapse, specifically for tail classes
(Fig. 3). In conjunction with images, we also observe
that corresponding t-SNE embeddings are also collapsed
near each class’s mean in W space. Further, recent meth-
ods which have proposed the usage of contrastive learning
for GANs, improve their data efficiency and prevent dis-
criminator overfitting [14, 16]. We also evaluate them by
adding the contrastive conditioning method, which is D2D-
CE loss-based on ReACGAN [17], to the baseline, where
in results, we observe that the network omits to learn tail
classes and produces head class images at their place (i.e.,
class confusion). In Fig. 3, it can be seen that the net-
work confuses semantically similar classes, that is, gener-
ating cars (head or majority class) in place of trucks and
airplanes (head class) instead of ships. In theW space, we
find the same number of clusters as the number of classes
in the dataset. However, the tail label cluster images also
belong to the head classes of cars and airplanes. In a very
recent work gSR [36], it has been shown that constraining
the spectral norm of G embedding parameters can help re-
duce the mode collapse and lead to stable training. How-
ever, we find that constraining the embeddings leads to class
confusion, as seen in t-SNE visualization in Fig. 3. We
find that this class confusion gets further aggravated when
StyleGAN is trained on datasets like ImageNet-LT, which
contain a large number of classes, along with a bunch of
semantically similar classes (Sec. 5.2). Based on our W
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Figure 3. Comparison of GANs and theirW space for CIFAR10-LT. We plot the generated images on (left) and generate a t-SNE plot of
w latents for generated images inW space (right). We find that mode collapse and class confusion in images is linked to the corresponding
collapse and confusion in latentW space. Our proposed NoisyTwins mitigates both collapse (left) and confusion (right) simultaneously.

space analysis and qualitative results above, we observe that
the class confusion and mode collapse of images is tightly
coupled with the structure of W space. Further, the recent
SotA methods are either unable to prevent collapse or suffer
from class confusion. Hence, this work aims to develop a
technique that mitigates both confusion and collapse.

4. Approach
In this section, we present our method NoisyTwins,

which introduces noise-based augmentation twins in the
conditional embedding space (Sec. 4.1), and then combines
it with the Barlow-Twins-based regularizer from the self-
supervised learning (SSL) paradigm to resolve the issue of
class confusion and mode collapse (Sec. 4.2).

4.1. Noise Augmentation in Embedding Space

As we observed in the previous section that w vectors
for each sample become insensitive to changes in z. This
collapse in w vectors for each class leads to mode collapse
for baselines (Fig. 3). One reason for this could be the fact
that z is composed of continuous variables, whereas the em-
bedding vectors c for each class are discrete. Due to this,
the GAN converges to the easy degenerate solution where
it generates a single sample for each class, becoming in-
sensitive to changes in z. For inducing some continuity in c
embeddings vectors, we introduce an augmentation strategy
where we add i.i.d. noise of small magnitude in each of the
variables in c. Based on our observation (Fig. 3) and exist-
ing works [36], there is a high tendency for mode collapse in
tail classes. Hence we add noise in embedding space that is

proportional to the inverse of the frequency of samples . We
provide the mathematical expression of noise augmentation
c̃ below:

c̃ ∼ c+N (0, σcId) where σc = σ
(1− α)
1− αnc

(3)

Here nc is the frequency of training samples in class c, I
is the identity matrix of size d × d, and α, σ are hyper-
parameters. The expression of σc is from the effective num-
ber of samples [8], which is a softer version of inverse fre-
quency proportionality. In contrast to the image space aug-
mentation, these noise augmentations come for free as there
is no significant additional computation overhead. This
noise is added in the embedding c before passing it to the
generator and the discriminator, which ensures that the class
embeddings occupy a continuous region in latent space.
Insight: The augmentation equation above (Eq. 3) can be

interpreted as approximating the discrete random variable
c with a Gaussian with finite variance and the embedding
parameters c being the mean µc.

c̃ ∼ N (µc, σcId) (4)
This leads to the class-embedding input c̃ to mapping net-
work to have a Gaussian distribution, similar in nature to z.
This noise augmentation strategy alone mitigates the degen-
erate solution of class-wise mode collapse to a great extent
(Table 1) and helps generate diverse latent w for each class.
Due to the diverse w conditioning of the GAN, it leads to
diverse image generation.

4.2. Invariance inW-Space with NoisyTwins

The augmentation strategy introduced in the previous
section expands the region for each class inW latent space.
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Figure 4. Overview of NoisyTwins. For the ith sample of class ci, we create twin augmentations (c̃ia, c̃ib), by sampling from a Gaussian
centered at class embedding (µci ). After this, we concatenate them with the same zi and obtain (w̃i

a, w̃
i
b) from the mapping network,

which we stack in batches of augmented latents (W̃A and W̃B). The twin (w̃i
a, w̃

i
b) vectors are then made invariant to augmentations

(similar) in the latent space by minimizing cross-correlation [2, 54] between the latents of two augmented batches (W̃A and W̃B).

Although that does lead to diverse image generation as w
are diverse; however, this does not ensure that these w will
generate class-consistent outputs for augmentations in em-
bedding (c̃). To ensure class consistent predictions, we need
to ensure invariance in w to noise augmentation.

For enforcing invariance to augmentations, a set of re-
cent works [2, 10, 54] in self-supervised learning make the
representations of augmentations similar through regular-
ization. Among them, we focus on Barlow Twins as it does
not require a large batch size of samples. Inspired by Bar-
low twins, we introduce NoisyTwins (Fig. 4), where we
generate twin augmentations c̃a and c̃b of the same class
embedding (µc) and concatenate them to same z. After cre-
ating a batch of such inputs, they are passed to the map-
ping network to get batches of augmented latents (W̃A and
W̃B). These batches are then used to calculate the cross-
correlation matrix of latent variables given as:

Cj,k =

∑
(w̃a,w̃b)∈(W̃A,W̃B)

w̃j
aw̃

k
b∑

w̃a∈W̃A

w̃j
aw̃

j
a

∑
w̃b∈W̃B

w̃k
b w̃

k
b

(5)

The matrix C is a square matrix of size same as of latents
w. The final loss based on confusion matrix is given as:

LNT =
∑
j

(1−C2
jj) + γ

∑
j 6=k

C2
j,k (6)

The first term tries to make the two latents (w̃a and w̃b)
invariant to the noise augmentation applied (i.e. similar),
whereas the second term tries to de-correlate the differ-
ent variables, thus maximizing the information in w vec-
tor [54] (See Appendix). The γ is the hyper-parameter that
determines the relative importance of the two terms. This
loss is then added to the generator loss term (LG + λLNT )
and optimized through backpropagation. The above proce-
dure comprises our proposed method, NoisyTwins (Fig. 4),
which we empirically evaluate in the subsequent sections.

5. Experimental Evaluation

5.1. Setup

Datasets: We primarily apply all methods on long-tailed
datasets, as GANs trained on them are more prone to class
confusion and mode collapse. We first report on the com-
monly used CIFAR10-LT dataset with an imbalance fac-
tor (i.e. ratio of most to least frequent class) of 100. To
show our approach’s scalability and real-world applica-
tion, we test our method on the challenging ImageNet-LT
and iNaturalist 2019 datasets. The ImageNet-LT [31] is
a long-tailed variant of the 1000 class ImageNet dataset,
with a plethora of semantically similar classes (e.g., Dogs,
Birds etc.), making it challenging to avoid class confusion.
iNaturalist-2019 [49] is a real-world long-tailed dataset
composed of 1010 different variants of species, some of
which have fine-grained differences in their appearance. For
such fine-grained datasets, ImageNet pre-trained discrimi-
nators [39, 40] may not be useful, as augmentations used to
train the model makes it invariant to fine-grained changes.

Training Configuration: We use StyleGAN2 architec-
ture for all our experiments. All our experiments are per-
formed using PyTorch-StudioGAN implemented by Kang
et al. [18], which serves as a base for our framework. We
use Path Length regularization (PLR) as it ensures changes
inW space lead to changes in images, using a delayed PLR
on ImageNet-LT following [40]. We use a batch size of 128
for all our experiments, with one G step per D step. Un-
less stated explicitly, we used the general training setup for
StyleGANs from [18], including methods like R1 regular-
ization [32], etc. More details on the exact training config-
uration for each dataset are provided in Appendix.

Metrics: In this work we use the following metrics for eval-
uation of our methods:
a) FID: Fréchet Inception Distance [12] is the Wasserstein-
2 Distance between the real and validation data. We use a
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Figure 5. Choice of Eval. backbone: intra-FID (iFID) of a class
based on InceptionV3 backbone (left plot) is not able to capture the
mode collapse (increase in iFID in the absence of mode collapse).
This is well-captured by iFIDCLIP based on CLIP [35] backbone
(right plot, decrease in iFID in the absence of mode collapse).

held-out validation set and 50k generated samples to evalu-
ate FID in each case. As FID is biased towards ImageNet
and can be arbitrarily manipulated, we also report FIDCLIP.
b) Precision & Recall: As we aim to mitigate the mode
collapse and achieve diverse generations across classes, we
use improved Precision & Recall [25] metrics, as poor re-
call indicates mode collapse [40].
d) Intra-Class FIDCLIP (iFIDCLIP): The usage of only
FID based on Inception-V3 Networks for evaluation of
Generative Models has severe limitations, as it has been
found that FID can be reduced easily by some fringe fea-
tures [26]. iFID is computed by taking FID between 5k
generated and real samples for the same class. As we want
to evaluate both class consistency and diversity, we find that
similar limitations exist for intra-class FID (iFID), which
has been used to evaluate class-conditional GANs [18]. In
Fig. 5, we show the existence of generated images for a par-
ticular class (more in Appendix) from models trained on
iNaturalist 2019, where iFID is better for the mode col-
lapsed model than the other model generating diverse im-
ages. Whereas the iFIDCLIP, based on CLIP backbone can
rank the models correctly with the model having mode col-
lapse having high iFIDCLIP. Further, we find that the mean
iFID can be deceptive in detecting class confusion and col-
lapse cases, as it sometimes ranks models with high real-
ism better than models generating diversity (See Appendix).
Hence, mean iFIDCLIP (ref. to as iFIDCLIP in result section
for brevity) can be reliably used to evaluate models for class
consistency and diversity.
Baselines: For evaluating NoisyTwins performance in com-
parison to other methods, we use the implementations
present in StudioGAN [16]. For fairness, we re-run all
the baselines on StyleGAN2 in the same hyperparame-
ter setting. We compare our method to the StyleGAN2

(SG2) and StyleGAN2 with augmentation (DiffAug [55]
and ADA [20]) baselines. We further tried to improve the
baseline by incorporating the recent LeCam regularization
method; however, it resulted in gains only for the iNatural-
ist 2019 dataset, where we use LeCam for all experiments.
Further on StyleGAN2, we also use contrastive D2D-CE
loss conditioning (i.e. ReACGAN) as a baseline. How-
ever, the D2D-CE baseline completely ignores learning of
tail classes (Fig. 3) for CIFAR10-LT and is expensive to
train; hence we do not report results for it for large-scale
long-tailed datasets. We also compare our method against
the recent SotA group Spectral Normalization (gSR) [36]
method, which we implement for StyleGAN2 by constrain-
ing the spectral norms of embedding parameters of the gen-
erator (G) as suggested by authors. As a sanity check,
we reproduce their results on CIFAR10-LT and find that
our implementation matches the reported results correctly.
We provide results on all datasets, for both the proposed
Noise Augmentation (+ Noise) and the overall proposed
NoisyTwins (+NoisyTwins) method.

5.2. Results on Long-Tailed Data Distributions

CIFAR10-LT. We applied DiffAug [55] on all baselines,
except on gSR, where we found that DiffAug provides
inferior results compared to ADA (as also used by au-
thors [36]). It can be observed in Table 2 that the addition
of NoisyTwins regularization significantly improves over
baseline by (∼ 14 FID) along with providing superior class
consistency as shown by improved iFIDCLIP. NoisyTwins
is also able to outperform the recent gSR regularization
method and achieves improved results for all metrics. Fur-
ther, NoisyTwins improves FID for StyleGAN2-ADA base-
line used by gSR too from 32.08 to 23.02, however the fi-
nal results are inferior than reported DiffAug baseline re-
sults. Further, we observed that despite not producing any
tail class images (Fig. 3), the D2D-CE baseline has much
superior FID in comparison to baselines. Whereas the pro-
posed iFIDCLIP value is similar for the baseline and D2D-
CE model. This clearly demonstrates the superiority of pro-
posed iFIDCLIP in detecting class confusion.
Large-scale Long-Tailed Datasets. We experiment with
iNaturalist 2019 and ImageNet-LT. These datasets are par-
ticularly challenging as they contain long-tailed imbalances
and semantically similar classes, making GANs prone to
mode collapse and class confusion. The baselines Style-
GAN2 and StyleGAN2-ADA both suffer from mode col-
lapse (Fig. 6), particularly for the tail classes. Whereas for
the recent SotA gSR method, we find that although it un-
dergoes less collapse in comparison to baselines, it suffers
from class confusion as seen from similar Intra-FIDCLIP in
comparison to baselines (Table 1). Compared to that, our
method NoisyTwins improves when used with StyleGAN2-
ADA significantly, leading to a relative improvement of



Table 1. Quantitative results on ImageNet-LT and iNaturalist 2019 Datasets. We compare FID(↓), FIDCLIP(↓), iFIDCLIP(↓),
Precision(↑) and Recall(↑) with other existing approaches on StyleGAN2 (SG2). We obtain an average ∼ 19% relative improvement
on FID, ∼ 33% on FIDCLIP, and ∼ 11% on iFIDCLIP metrics over the previous SotA on ImageNet-LT and iNaturalist 2019 datasets.

ImageNet-LT iNaturalist 2019
Method FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑) FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑)
SG2 [23] 41.25 11.64 46.93 0.50 0.48 19.34 3.33 38.24 0.74 0.17
SG2+ADA [20] 37.20 11.04 47.41 0.54 0.38 14.92 2.30 35.19 0.75 0.57
SG2+ADA+gSR [36] 24.78 8.21 44.42 0.63 0.35 15.17 2.06 36.22 0.74 0.46

SG2+ADA+Noise (Ours) 22.17 7.11 41.20 0.72 0.33 12.87 1.37 31.43 0.81 0.63
+ NoisyTwins (Ours) 21.29 6.41 39.74 0.67 0.49 11.46 1.14 31.50 0.79 0.67

Table 2. Quantitative results on CIFAR10-LT Dataset. We compare with other
existing approaches. We obtain ∼ 26% relative improvement over the existing
methods on FIDCLIP and iFIDCLIP metrics.

Method FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑)
SG2+DiffAug [55] 31.73 6.27 11.59 0.63 0.35
SG2+D2D-CE [17] 19.97 4.77 11.35 0.73 0.42
gSR [36] 22.10 5.54 9.94 0.70 0.29

SG2+DiffAug+Noise (Ours) 28.90 5.26 10.65 0.71 0.38
+ NoisyTwins(Ours) 17.74 3.55 7.24 0.70 0.51

Table 3. Comparison with SotA approaches
on BigGAN. We compare FID(↓) with other
existing models on ImageNet-LT (IN-LT) and
iNaturalist 2019 (iNat-19).

Method iNat-19 IN-LT

BigGAN [4] 14.85 28.10
+ gSR [36] 13.95 -

ICGAN [6] - 23.40

StyleGAN2-ADA [20] 14.92 37.20
+ NoisyTwins (Ours) 11.46 21.29

42.7% in FID for ImageNet-LT and 23.19% on the iNat-
uralist 2019 dataset when added to StyleGAN2-ADA base-
line. Further with Noise Augmentation (+Noise), we ob-
serve generations of high-quality class-consistent images,
but it also suffers from mode collapse. This can be ob-
served by the high-precision values in comparison to low-
recall values. However, adding NoisyTwins regularization
over the noise augmentation improves diversity by improv-
ing recall (Table 1).

Fig. 6 presents the generated images of tail classes for
various methods on ImageNet-LT , where NoisyTwins gen-
erations show remarkable diversity in comparison to others.
The presence of diversity for classes with just 5-6 train-
ing images demonstrates successful transfer of knowledge
from head classes to tail classes, due to shared parameters.
Further, to compare with existing SotA reported results, we
compare FID of BigGAN models from gSR [36] and In-
stance Conditioned GAN (ICGAN) [6]. For fairness, we
compare FID on the validation set for which we obtained
gSR models from authors and re-evaluate them, as they re-
ported FID on a balanced training set. As BigGAN mod-
els are more common for class-conditioned generation [18],
their baseline performs superior to StyleGAN2-ADA base-
lines (Table 3). However, the addition of NoisyTwins to the
StyleGAN2-ADA method improves it significantly, even
outperforming the existing methods of gSR (by 18.44%)
and ICGAN (by 9.44%) based on BigGAN architecture.
This shows that NoisyTwins allows the StyleGAN2 base-
line to scale to large and diverse long-tailed datasets.

5.3. NoisyTwins on Few-Shot Datasets

We now demonstrate the potential of NoisyTwins in
another challenging scenario of class-conditional few-shot

image generation from GANs. We perform our experi-
ments using a conditional StyleGAN2-ADA baseline, for
which we tune hyper-parameters to obtain a strong base-
line. We then apply our method of Noise Augmentation and
NoisyTwins over the strong baseline for reporting our re-
sults. We use the few-shot dataset of LHI-AnimalFaces [46]
and a subset of ImageNet Carnivores [30, 41] to report our
results. Table 4 shows the results of these experiments,
where we find that our method, NoisyTwins, significantly
improves the FID of StyleGAN2 ADA baseline by (22.2%)
on average for both datasets. Further, combining Noisy
Twins with SotA Transitional-cGAN [41] through official
code, also leads to effective improvement in FID. These re-
sults clearly demonstrate the diverse potential and applica-
bility of our proposed method NoisyTwins.

6. Analysis

We perform analysis of NoisyTwins w.r.t. to its hyperpa-
rameters, standard deviation (σ) of noise augmentation and
regularization strength (λ). We also compare NoisyTwins
objective (ref. Eq. 6) with contrastive objective. Finally,
we compare NoisyTwins over Latent Diffusion Models for
long-tailed class conditional generation task. We perform
ablation experiments on CIFAR10-LT, for which additional
details and results are present in Appendix. We also present
comparison of NoisyTwins for GAN fine-tuning.

How much noise and regularization strength is optimal?
In Fig. 7, we ablate over the noise variance parameter σ
for CIFAR10-LT. We find that a moderate value of noise
strength 0.75 leads to optimal results. For the strength of
NoisyTwins loss (λ), we find that the algorithm performs
similarly on values near 0.01 and is robust to it (Fig. 7).
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Figure 6. Qualitative results on ImageNet-LT for tail classes. We find that existing SotA methods for tail classes show collapsed (a) or
arbitrary image generation (b). With NoisyTwins, we observe diverse and class-consistent image generation, even for classes having 5-6
images. The tail classes get enhanced diversity by transferring the knowledge from head classes, as they share parameters.

Table 4. Quantitative results on ImageNet Carnivore and Ani-
malFace Datasets. Our method improves over both StyleGAN2-
ADA (SG2-ADA) baseline and SotA Transitional-cGAN .

ImageNet Carnivore AnimalFace
Method FID(↓) iFIDCLIP(↓) FID(↓) iFIDCLIP(↓)
SG2 [23] 111.83 36.34 94.09 29.94
SG2+ADA [20] 22.77 12.85 20.25 11.12

SG2+ADA+Noise (Ours) 19.25 12.51 18.78 10.42
+ NoisyTwins (Ours) 16.01 12.41 17.27 10.03

FID(↓) FID(↓)
Transitional-cGAN [41] 14.60 20.53

+ NoisyTwins (Ours) 13.65 16.15

Which type of self-supervision to use with noise augmen-
tation? The goal of our method is to achieve invariance
to Noise Augmentation in the W latent space. This can
be achieved using either contrastive learning-based meth-
ods like SimCLR [7] or negative-free method like Barlow
Twins [54]. Contrastive loss (SimCLR based) produces FID
of 26.23 vs 17.74 by NoisyTwins (BarlowTwins based). We
find that contrastive baseline improves over the noise aug-
mentation baseline (28.90) however falls significantly be-
low the NoisyTwins, as the former requires a large batch
size to be effective which is expensive for GANs.

How does NoisyTwins compare with modern Vision and
Language models? For evaluating the effectiveness of
modern vision language-based diffusion models, we test the
generation of the iNaturalist 2019 dataset by creating the
prompt “a photo of S” where we replace the class name in
place of S. We use the LDM [38] model trained on LAION-
400M to perform inference, generating 50 images per class.
We obtained an FID of 57.04 in comparison to best FID
of 11.46 achieved by NoisyTwins. This clearly demon-
strates that for specific use cases like fine-grained genera-
tion, GANs are still ahead of general-purpose LDM.

Effect of  Barlow Regularization 
Strength on FID

Effect of  Noise Standard 
Deviation on FID

FID FIDCLIP

Figure 7. Ablation of Hyperparameters. Quantitative compar-
ison on CIFAR10-LT for standard deviation of Noise Augmenta-
tion (σ) and strength (λ) of NoisyTwins loss.

7. Conclusion
In this work, we analyze the performance of Style-

GAN2 models on the real-world long-tailed datasets includ-
ing iNaturalist 2019 and ImageNet-LT. We find that existing
works lead to either class confusion or mode collapse in the
image space. This phenomenon is rooted in collapse and
confusion in the latent W space of StyleGAN2. Through
our analysis, we deduce that this collapse occurs when the
latents become invariant to random conditioning vectors z,
and collapse for each class. To mitigate this, we introduce
inexpensive noise based augmentation for discrete class em-
beddings. Further, to ensure class consistency, we couple
this augmentation technique with BarlowTwins’ objective
in the latent W space which imparts intra-class diversity
to latent w vectors. The noise augmentation and regu-
larization comprises our proposed NoisyTwins technique,
which improves the performance of StyleGAN2 establish-
ing a new SotA on iNaturalist 2019 and ImageNet-LT. The
extension of NoisyTwins for conditioning on more-complex
attributes for StyleGANs is a good direction for future work.
Acknowledgements: This work was supported in part by
SERB-STAR Project (STR/2020/000128). Harsh Rang-
wani is supported by PMRF fellowship.
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Figure 8. Qualitative Results and iFID. We observe that the
noise-only baseline suffers from the mode collapse and class con-
fusion for tail categories as shown on (left). Despite this, it is
found that the mean iFID based on Inception V3 shows a smaller
value for StyleGAN2ADA+Noise, whereas a higher value for di-
verse and class-consistent NoisyTwins. Hence, this metric does
not align with qualitative results. On the other hand, the proposed
mean iFIDCLIP is lower for NoisyTwins, demonstrating its relia-
bility for evaluating GAN models.

A. Notations and Code

We summarize the notations used throughout the paper
in Table 5. We provide PyTorch-style pseudo code for
NoisyTwins in noisy twins.py in the supplementary
material. We will open-source our code to promote repro-
ducible research.

B. Comparison of iFID and iFIDCLIP

In this section, we present failure cases of InceptionV3-
based iFID in the detection of mode collapse, and show
how CLIP-based iFID can detect these cases. InceptionV3-
based iFID assigns a lower value to a generator with mode

Table 5. Notation Table

Symbol Space Meaning

c Rd Class Embedding
z Rd Noise vector
w Rd Vector inW latent Space
D Discriminator
G Generator
BS R+ Batch Size
xi R3×H×W Image
c̃ Rd Noise Augmented Class Embedding
nc R+ Frequency of training samples in class c
σc R+ Effective number of samples based noise

standard deviation
σ R+ Hyperparameter for scaling noise
µc Rd Mean embedding parameters of class c
W̃A W̃B RBS×d Batches of augmented latents
Cj,k R Cross-correlation between jth and kth

latent variables
λ R+ Strength of NoisyTwins regularization
γ R+ Relative importance of the two terms of

NoisyTwins loss
ρ R+ Imbalance ratio of dataset: Ratio be-

tween the most and the least frequent
classes

collapse, compared to another generator which creates di-
verse and class-consistent images. In addition to the exam-
ple given in the main text (Fig. 5), we provide examples
from three different classes (Fig. 9). In all the four cases,
the InceptionV3-based iFID is better for mode collapsed
classes. Whereas iFIDCLIP follows the correct behavior,
where the class consistent and diverse model is ranked bet-
ter. Due to this inconsistent behavior, mean iFID (mean
across classes) which is a commonly used as a metric for
quantifying class confusion [17] can be incorrect.

For example, we observe that the StyleGAN2-ADA
baseline with proposed noise augmentation achieves mean
iFID (243.88) on ImageNet-LT, compared to 257.29 for
the NoisyTwins model (Table 1 in main text). However,
while examining the tail class samples (Fig. 8), we find
that noise augmented baseline suffers from mode collapse
and class confusion, whereas NoisyTwins generates di-
verse and class-consistent images. Hence, the mean iFID
based on Inception-V3 does not align well with qualita-
tive results. On the contrary, the iFIDCLIP value is 41.20
for the noise-augmented model compared to 39.37 for
NoisyTwins, which correlates with the human observation
that the NoisyTwins model should have a lower FID as it
is diverse and class-consistent. Hence, the proposed met-
ric iFIDCLIP can be used to to evaluate models for class-
conditional image generation reliably.

C. Experimental Details
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Figure 9. iFID Comparison on iNaturalist 2019 dataset. We provide examples of classes where the quality of images generated by
StyleGAN2-ADA is worse, which either suffers from mode collapse or artifacts in generation. Yet iFID based on Inception V3 ranks it
higher in terms of quality, which doesn’t align with human judgement. On the other hand the proposed iFIDCLIP is able to rank the models
correctly and gives a lower value to diverse generations from NoisyTwins.

Table 6. HyperParameter Configurations used for experiments. We provide a detailed list of hyperparameters used for the experiments
across datasets for NoisyTwins on StyleGANs.

Long-Tail Datasets Few-Shot Datasets

iNaturalist-2019 ImageNet-LT CIFAR10-LT (ρ=100) ImageNet Carnivores AnimalFaces

Resolution 64 64 32 64 64
Augmentation ADA ADA DiffAug ADA ADA

Regularizers

Effective Samples α 0 0 0.99 0 0
Noise Scaling σ 0.1 0.25 0.75 0.5 0.5

NoisyTwins Start Iter. 25k 60k 0 0 0
NoisyTwins Weights (λ, γ) 0.001, 0.005 0.001, 0.005 0.01, 0.05 0.001, 0.05 0.001, 0.05

LeCam Reg Weight 0.01 0 0 0 0
R1 Regularization γR1 0.2048 0.2048 0.01 0.01 0.01

PLR Start Iter. 0 60k No PLR 0 0

StyleGAN

Mapping Net Layers 2 8 8 2 2
D Backbone ResNet ResNet Orig ResNet ResNet
Style Mixing 0.9 0.9 0 0 0

G EMA Rampup None None 0.05 0.05 0.05
G EMA Kimg 20 20 500 500 500

MiniBatch Group 8 8 32 32 32

We run our experiments using PyTorchStudioGAN [18]
as the base framework. For most baseline experiments,
we use the standard StyleGAN configurations present in
the framework. We use a learning rate of 0.0025 for the
discriminator (D) and the generator (G) network. We use
a batch size of 128 for all our experiments. In addition,
following the observations of previous work [40], we ap-
ply a delayed Path Length Regularization (PLR) starting
at 60k iterations for all our experiments on ImageNet-LT.
For NoisyTwins, the most important hyperparameters are λ
(regularization strength) and σ (noise variance). We per-
form a grid search on λ values of {0, 0.001, 0.01, 0.1} and
σ values of {0.10, 0.25, 0.50, 0.75}. We provide a detailed
list of optimal hyperparameters used in Table 6. All the

models trained on a particular dataset use the same hyperpa-
rameters, to maintain fairness in the comparison of models.
We summarize all the hyperparameters used for respective
datasets in Table 6.

For our experiments on few-shot datasets with SotA
transitional-cGAN, we use the author’s official code imple-
mentation available on GitHub 1. We use the same config-
uration specified to first evaluate on ImageNet Carnivores
and AnimalFaces datasets. To integrate NoisyTwins, we
generate the noise augmentations by augmenting the class
embeddings and then apply NoisyTwins regularization in
W space. We use the same hyperparameter setting used by

1https://github.com/mshahbazi72/transitional-cGAN



Table 7. Statistical Analysis for CIFAR10-LT. This table provides the mean and one standard deviation of metrics for all methods on
CIFAR10-LT performed on three independent evaluation runs by generating 50k samples across random seeds.

CIFAR10-LT (ρ=100)
Method FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑)
SG2+DiffAug [20] 31.72±0.16 6.24±0.02 11.63±0.03 0.63±0.00 0.35±0.00
SG2+D2D-CE [17] 20.08±0.15 4.75±0.04 11.35±0.01 0.73±0.00 0.43±0.00
gSR [36] 22.50±0.29 5.55±0.01 9.94±0.00 0.70±0.00 0.28±0.01

SG2+DiffAug+Noise (Ours) 28.85±0.18 5.29±0.02 10.64±0.01 0.71±0.00 0.38±0.00
+ NoisyTwins (Ours) 17.72±0.08 3.56±0.01 7.27±0.02 0.69±0.01 0.52 ±0.01

Effect of  Barlow Regularization Strength 
on FID

FID FIDCLIP

Figure 10. Ablation on γ: Quantitative comparison on CIFAR10-
LT for the strength of hyperparameter (γ) in NoisyTwins loss func-
tion.

the authors and NoisyTwins with λ = 0.001 and γ = 0.05.

C.1. Statistical Significance of the Experiments

We report mean and standard deviation over three eval-
uation runs for all baselines on the CIFAR10-LT (Table 7).
It can be observed that most metrics that we have reported
have a low standard deviation, and metrics are close to the
mean value across runs. As we find standard deviation to be
low across the metrics evaluated and the process of evaluat-
ing iFID to be expensive, we do not explicitly report them
on large multi-class datasets.

Figure 11. Comparison of FID curves for CIFAR10-LT
(ρ=100). NoisyTwins leads to stable training with decreasing FID
with iterations.

D. Additional Details of Analysis

We perform our ablation experiments on CIFAR10-LT
using the same configuration as mentioned in Table 6. We
provide ablation experiments on the standard deviation of
noise (σ) and the strength of regularization loss (λ) (Sec.
6), as we observe that they influence the performance of the
system most. We further provide ablation on the parameter
γ in Fig. 10, which controls the relative importance between
the invariance enforcement and decorrelation enhancement
terms in Eq. 6 of the main text. We find that performance
remains almost the same while varying γ from 0.005 to 0.1,
with optimal value occurring around 0.05 for CIFAR10-LT.
Hence, the model is robust to γ.

We further analyze our method for a range of imbal-
ance ratios (i.e., ρ, ratio of the most frequent to least fre-
quent class) in the class distribution. We present results
for CIFAR10-LT with imbalance factors (ρ) values of 50,
100, and 200 in Table 8. Our method can prevent mode
collapse and improves the baseline FID significantly in all
cases. Also note that the baseline gets more unstable (high
FID) as the imbalance ratio increases, which shows the ne-
cessity of using NoisyTwins as it stabilizes the training even



Table 8. Evaluation of NoisyTwins by varying degree of imbalance. NoisyTwins can produce diverse and class-consistent results across
imbalance ratios.

CIFAR10-LT
Method ρ FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑)
SG2+DiffAug [20] 50 26.79 5.83 9.61 0.65 0.38
+NoisyTwins (Ours) 14.92 2.99 6.38 0.71 0.57

SG2+DiffAug [20] 100 31.73 6.27 11.59 0.63 0.35
+NoisyTwins (Ours) 17.74 3.55 7.24 0.70 0.51

SG2+DiffAug [20] 200 55.48 10.59 19.49 0.65 0.36
+NoisyTwins (Ours) 23.57 4.91 9.17 0.68 0.46

StyleGAN2+DiffAug NoisyTwins (Ours)

Figure 12. Class-wise iFIDCLIP comparison of models on
CIFAR10-LT (ρ=100) dataset.

when large imbalances are present in the dataset (Fig. 11).

Information Maximization in w: Noisy Twins works on
the principle of information maximization (IM), same as
BarlowTwins [54] (App. Sec. A), where we maximize the
information I between mapping w and the inputs [c, z] to
the GAN. This ensures variations in z are preserved when
transformed to w vector inW-space. To verify this hypoth-
esis, we put the (γ = 0) for IM (cross-correlation) term in
Eq. 3, which leads to mode collapse (FID 80).

E. Additional Results
Fig. 12 provides the class-wise comparison of the

proposed iFIDCLIP for the baseline and after adding
NoisyTwins. NoisyTwins produces better iFIDCLIP for all
classes, hence does not lead to performance degradation for
head classes while improving performance on tail classes.

We now provide additional qualitative results for mod-
els. Similar to ImageNet-LT, we also provide a full-scale
comparison of images from different methods in Fig. 15
for iNaturalist-2019. In addition to the images from the tail
classes, we also show generations from the head and middle

Table 9. Results for Large Resolutions on Animal Faces dataset

FID (↓) AF (128 × 128) AF (256 × 256)
Transitional-cGAN [41] 22.59 22.28
+NoisyTwins (Ours) 16.79 19.14

classes. In Fig. 15, it is clearly shown that NoisyTwins can
obtain high-quality and diverse samples compared to the
baseline. We find that the StyleGAN2-ADA baseline pro-
duces similar images across a class for tail classes, which
confirms the occurrence of class-wise mode collapse even
in large datasets. Further, it can be seen that the regularizer-
based method (gSR) is unable to capture the identity of
the real class and suffers from the issue of class confu-
sion (as also seen in t-SNE of Fig. 2 of the main text).
Our method NoisyTwins, can produce realistic-looking di-
verse images even for tail classes, which shows the suc-
cessful transfer of knowledge from head classes. Train-
ing a class-conditioned GAN on long-tailed datasets leads
to class confusion when the extent of knowledge transfer
is not controlled. NoisyTwins strikes the right balance be-
tween knowledge transfer from the head classes to benefit
the quality of generation in the tail classes, thus not allow-
ing class confusion. This would not be possible if we train
GAN independently on tail classes (∼ 30 images), which
shows the practical usefulness of joint training on complete
long-tailed data (i.e., our setup).

We showcase qualitative results of generations from few-
shot datasets (i.e., ImageNet Carnivore and AnimalFaces).
Fig. 13 and 14 show the results of the SotA few-shot
baseline of Transitional-cGAN (left) and after augmenting
it with our proposed NoisyTwins (right). Our proposed
method, NoisyTwins, can further stabilize the training of
Transitional-cGAN and improve the quality and diversity
of the generated samples on both datasets of ImageNet Car-
nivores and AnimalFaces.

Results across other Resolutions: NoisyTwins scales well



Transitional cGAN (FID: 14.60) Transitional cGAN + NoisyTwins (FID: 13.65)

Figure 13. Qualitative comparison on few-shot ImageNet Carnivores dataset.

Transitional cGAN (FID: 20.53) Transitional cGAN + NoisyTwins (FID: 16.15)

Figure 14. Qualitative comparison on few-shot AnimalFaces dataset.
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Figure 15. Qualitative Analysis on iNaturalist2019 (1010 classes). Examples of generations from various classes for evaluated baselines
(Table 1). The baseline ADA suffers from mode collapse, whereas gSR suffers from class confusion particularly for tail classes, particularly
for tail classes as seen above on the left. NoisyTwins generates diverse and class-consistent images across all categories.



Table 10. Results for large iNaturalist 2019 dataset (128 × 128)

FID (80k) (↓) FID (↓) FIDCLIP (↓)
StyleGAN2-ADA [20] 16.58 12.31 2.18
+NoisyTwins (Ours) 15.29 12.01 1.93

Figure 16. BigGAN-AM results on iNaturalist Dataset.

on larger resolutions as demonstrated on few-shot Animal-
Faces (AF) dataset using Transitional-cGAN [41] in Ta-
ble 9, where we observe a significant improvement if FID
for both 128 × 128 and 64 × 64 resolution data. Further,
on large-scale iNat-19 StyleGAN2-ADA baseline in Tab.
10, we also find that NoisyTwins is able to improve per-
formance. The NoisyTwins method also converges faster as
at intermediate stage of 80k iterations in full run of 150k it-
erations, the FID for NoisyTwins is lower than baseline. As
NoisyTwins method is based on the information maximiza-
tion principle [54] and generalizes on datasets, we expect it
benefits other large resolutions of StyleGAN too, similar to
what is observed in Sauer et al. [40].

Comparison to Fine-Tuning Approaches: We tested
NoisyTwins in fine-tuning setting to investigate if it is
able to overcome mode collapse. For this we first train
StyleGAN-2 DiffAug baseline (Table 2) and then obtain the
checkpoint which has collapse, we then resume training of
baseline after adding the NoisyTwins regularizer. As seen
in Fig. 17, NoisyTwins is able to reconstruct the collapsed
class of baseline on fine-tuning, improving the FID to 19.46
from 31.73 on the CIFAR10-LT dataset.

We also compare our method to other fine-tuning ap-
proaches like BigGAN-AM [28], which tries to adapt the
embeddings for new classes or repair collapsed classes us-
ing knowledge transfer from a pre-trained classifier trained
on the target dataset. However, we see in Fig. 16, when fine-

FID

C
o

lla
p

se
d

B
as

el
in

e

Truck Class (CIFAR10-LT)

Fi
n

e-
tu

n
in

g
 

w
/ 

N
o

is
yT

w
in

s

FID
: 31.73

FID
: 19.4

6

Figure 17. Fine-tuning Results. (Top) FID Curve during fine-
tuning with NoisyTwins for CIFAR10-LT dataset. (Below) Di-
verse images of the truck class generated after fine-tuning baseline
with NoisyTwins.

tuned for fine-grained datasets like iNaturalist, these ap-
proaches fail completely due to the significant domain shift
of these datasets compared to ImageNet. We hypothesize
that this is because the activation maximization(AM) [28]
using a classifier trained on iNaturalist is unable to produce
meaningful images as there is presence of distribution shift
between the datasets.
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