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Figure 1. Null-text inversion for real image editing. Our method takes as input a real image (leftmost column) and an associated caption.
The image is inverted with a DDIM diffusion model to yield a diffusion trajectory (second column to the left). Once inverted, we use the
initial trajectory as a pivot for null-text optimization that accurately reconstructs the input image (third column to the left). Then, we can
edit the inverted image by modifying only the input caption using the editing technique of Prompt-to-Prompt [16] .

Abstract
Recent text-guided diffusion models provide powerful

image generation capabilities. Currently, a massive effort
is given to enable the modification of these images using
text only as means to offer intuitive and versatile editing. To
edit a real image using these state-of-the-art tools, one must
first invert the image with a meaningful text prompt into the
pretrained model’s domain. In this paper, we introduce an
accurate inversion technique and thus facilitate an intuitive
text-based modification of the image. Our proposed inver-
sion consists of two novel key components: (i) Pivotal in-
version for diffusion models. While current methods aim at
mapping random noise samples to a single input image, we
use a single pivotal noise vector for each timestamp and
optimize around it. We demonstrate that a direct inver-
sion is inadequate on its own, but does provide a good an-
chor for our optimization. (ii) null-text optimization, where
we only modify the unconditional textual embedding that
is used for classifier-free guidance, rather than the input
text embedding. This allows for keeping both the model
weights and the conditional embedding intact and hence
enables applying prompt-based editing while avoiding the
cumbersome tuning of the model’s weights. Our null-text
inversion, based on the publicly available Stable Diffusion
model, is extensively evaluated on a variety of images and
prompt editing, showing high-fidelity editing of real images.

* Equal contribution.
†Performed this work while working at Google.

1. Introduction
The progress in image synthesis using text-guided diffu-

sion models has attracted much attention due to their excep-
tional realism and diversity. Large-scale models [27,30,32]
have ignited the imagination of multitudes of users, en-
abling image generation with unprecedented creative free-
dom. Naturally, this has initiated ongoing research efforts,
investigating how to harness these powerful models for im-
age editing. Most recently, intuitive text-based editing was
demonstrated over synthesized images, allowing the user to
easily manipulate an image using text only [16].

However, text-guided editing of a real image with these
state-of-the-art tools requires inverting the given image and
textual prompt. That is, finding an initial noise vector that
produces the input image when fed with the prompt into
the diffusion process while preserving the editing capabili-
ties of the model. The inversion process has recently drawn
considerable attention for GANs [7,41], but has not yet been
fully addressed for text-guided diffusion models. Although
an effective DDIM inversion [13,35] scheme was suggested
for unconditional diffusion models, it is found lacking for
text-guided diffusion models when classifier-free guidance
[18], which is necessary for meaningful editing, is applied.

In this paper, we introduce an effective inversion scheme,
achieving near-perfect reconstruction, while retaining the
rich text-guided editing capabilities of the original model
(see Fig. 1). Our approach is built upon the analysis of two
key aspects of guided diffusion models: classifier-free guid-
ance and DDIM inversion.
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In the widely used classifier-free guidance, in each dif-
fusion step, the prediction is performed twice: once uncon-
ditionally and once with the text condition. These predic-
tions are then extrapolated to amplify the effect of the text
guidance. While all works concentrate on the conditional
prediction, we recognize the substantial effect induced by
the unconditional part. Hence, we optimize the embedding
used in the unconditional part in order to invert the input
image and prompt. We refer to it as null-text optimization,
as we replace the embedding of the empty text string with
our optimized embedding.

DDIM Inversion consists of performing DDIM sampling
in reverse order. Although a slight error is introduced in
each step, this works well in the unconditional case. How-
ever, in practice, it breaks for text-guided synthesis, since
classifier-free guidance magnifies its accumulated error. We
observe that it can still offer a promising starting point
for the inversion. Inspired by GAN literature, we use the
sequence of noised latent codes, obtained from an initial
DDIM inversion, as pivot [29]. We then perform our opti-
mization around this pivot to yield an improved and more
accurate inversion. We refer to this highly efficient op-
timization as Diffusion Pivotal Inversion, which stands in
contrast to existing works that aim to map all possible noise
vectors to a single image.

To the best of our knowledge, our approach is the first
to enable the text editing technique of Prompt-to-Prompt
[16] on real images. Moreover, unlike recent approaches
[19, 39], we do not tune the model weights, thus avoiding
damaging the prior of the trained model and duplicating
the entire model for each image. Throughout comprehen-
sive ablation study and comparisons, we demonstrate the
contribution of our key components to achieving a high-
fidelity reconstruction of the given real image, while allow-
ing meaningful and intuitive editing abilities. For our code,
built upon the publicly available Stable Diffusion model,
please visit our project page https://null-text-
inversion.github.io/.

2. Related Work
Large-scale diffusion models, such as Imagen [32],

DALL-E 2 [27], and Stable Diffusion [30], have recently
raised the bar for the task of generating images condi-
tioned on plain text, known as text-to-image synthesis.
Exploiting the powerful architecture of diffusion models
[17, 17, 30, 34–36], these models can generate practically
any image by simply feeding a corresponding text, and so
have changed the landscape of artistic applications.

However, synthesizing very specific or personal objects
which are not widespread in the training data has been chal-
lenging. This requires an inversion process that given in-
put images would enable regenerating the depicted object
using a text-guided diffusion model. Inversion has been
studied extensively for GANs [7, 10, 22, 41, 42, 44], ranging

Input Image

Input Image

“baby”       “robot” “sofa”       “grass”

“glasses”       “Joker mask” “...the park at sunset.” “park”       “desert”

Input caption: “A baby wearing a blue shirt lying on the sofa.”

Input caption: “A man in glasses eating a doughnut in the park.”

“glasses”       “sunglasses”

“doughnut”       “pizza”

“... sleeping baby...”

“... golden shirt...”“... floral shirt...”“... blond baby...”

“sofa”       “ball pit”

“angry man...”“... red-haired man...”

Figure 2. Real image editing using our method. We first apply
a single null-text inversion over the real input image, achieving
high-fidelity reconstruction. Then, various Prompt-to-Prompt text-
based editing operations are applied. As can be seen, our inver-
sion scheme provides high fidelity while retaining high editability.
See additional examples in Appendix C (Fig. 10).

from latent-based optimization [1, 2] and encoders [28, 38]
to feature space encoders [40] and fine-tuning of the model
[3, 29]. Motivated by this, Gal et al. [15] suggest a textual
inversion scheme for diffusion models that enables regen-
erating a user-provided concept out of 3 − 5 images. Con-
currently, Ruiz et al. [31] tackled the same task with model-
tuning. However, these works struggle to edit a given real
image while accurately reproducing the unedited parts.

Naturally, recent works have attempted to adapt text-
guided diffusion models to the fundamental challenge of
single-image editing, aiming to exploit their rich and di-
verse semantic knowledge. Meng et al. [23] add noise to the
input image and then perform a text-guided denoising pro-
cess from a predefined step. Yet, they struggle to accurately
preserve the input image details. To overcome this, several
works [4, 5, 25] assume that the user provides a mask to re-
strict the region in which the changes are applied, achieving
both meaningful editing and background preservation.

However, requiring that users provide a precise mask is
burdensome. Furthermore, masking the image content re-
moves important information, which is mostly ignored in
the inpainting process. While some text-only editing ap-
proaches are bound to global editing [12, 20, 21], Bar-Tal
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et al. [6] propose a text-based localized editing technique
without using any mask. Their technique allows high-
quality texture editing, but not modifying complex struc-
tures, since only CLIP [26] is employed as guidance instead
of a generative diffusion model.

Hertz et al. [16] suggest an intuitive editing technique,
called Prompt-to-Prompt, of manipulating local or global
details by modifying only the text prompt when using
text-guided diffusion models. By injecting internal cross-
attention maps, they preserve the spatial layout and geome-
try which enable the regeneration of an image while modi-
fying it through prompt editing. Still, without an inversion
technique, their approach is limited to synthesized images.
Sheynin et al. [33] suggest training the model for local edit-
ing without the inversion requirement, but their expressive-
ness and quality are inferior compared to current large-scale
diffusion models. Concurrent to our work, DiffEdit [9] uses
DDIM inversion for image editing, but avoids the emerged
distortion by automatically producing a mask that allows
background preservation.

Also concurrent, Imagic [19] and UniTune [39] have
demonstrated impressive editing results using the powerful
Imagen model [32]. Yet, they both require the restrictive
fine-tuning of the model. Moreover, Imagic requires a new
tuning for each editing, while UniTune involves a parame-
ter search for each image. Our method enables us to apply
the text-only intuitive editing of Prompt-to-Prompt [16] on
real images. We do not require any fine-tuning and provide
highly-quality local and global modifications using the pub-
licly available Stable Diffusion [30] model.

3. Method
Let I be a real image. Our goal is to edit I, using only

text guidance, to get an edited image I∗. We use the set-
ting defined by Prompt-to-Prompt [16], where the editing
is guided by source prompt P and edited prompt P∗. This
requires the user to provide a source prompt. Yet, we found
that automatically producing the source prompt using an
off-the-shelf captioning model [24] works well (see Sec. 4).
For example, see Fig. 2, given an image and a source prompt
”A baby wearing...”, we replace the baby with a robot by
providing the edited prompt ”A robot wearing...”.

Such editing operations first require inverting I to the
model’s output domain. Namely, the main challenge is
faithfully reconstructing I by feeding the source prompt P
to the model, while still retaining the intuitive text-based
editing abilities.

Our approach is based on two main observations. First,
DDIM inversion produces unsatisfying reconstruction when
classifier-free guidance is applied, but provides a good start-
ing point for the optimization, enabling us to efficiently
achieve high-fidelity inversion. Second, optimizing the un-
conditional null embedding, which is used in classifier-free
guidance, allows an accurate reconstruction while avoid-

DM

DM

DDIM Inversion

Pivotal tuning

Pivotal Tuning by Null-text Optimization

null-text

Input Image

Initial Inversion

Final Inversion

“A baby wearing
 a blue shirt

 lying on the sofa.”

“ ” tu

ning

Figure 3. Null-text Inversion overview. Top: pivotal inversion.
We first apply an initial DDIM inversion on the input image which
estimates a diffusion trajectory {z∗t }T0 . Starting the diffusion pro-
cess from the last latent z∗T results in unsatisfying reconstruction
as the latent codes become farther away from the original trajec-
tory. We use the initial trajectory as a pivot for our optimization
which brings the diffusion backward trajectory {z̄t}T1 closer to
the original image encoding z∗0 . Bottom: null-text optimization
for timestamp t. Recall that classifier-free guidance consists of
performing the prediction εθ twice – using text condition embed-
ding and unconditionally using null-text embedding ∅ (bottom-
left). Then, these are extrapolated with guidance scalew (middle).
We optimize only the unconditional embeddings ∅t by employing
a reconstruction MSE loss (in red) between the predicated latent
code zt−1 to the pivot z∗t−1.

ing the tuning of the model and the conditional embedding.
Thereby preserving the desired editing capabilities.

Next, we provide a short background, followed by a de-
tailed description of our approach in Sec. 3.2 and Sec. 3.3.
A general overview is provided in Fig. 3.

3.1. Background and Preliminaries
Text-guided diffusion models aim to map a random

noise vector zt and textual condition P to an output image
z0, which corresponds to the given conditioning prompt.
In order to perform sequential denoising, the network εθ is
trained to predict artificial noise, following the objective:

min
θ
Ez0,ε∼N(0,I),t∼Uniform(1,T ) ‖ε− εθ(zt, t, C)‖22 . (1)

Note that C = ψ(P) is the embedding of the text condition
and zt is a noised sample, where noise is added to the sam-
pled data z0 according to timestamp t. At inference, given a
noise vector zT , The noise is gradually removed by sequen-
tially predicting it using our trained network for T steps.

Since we aim to accurately reconstruct a given real
image, we employ the deterministic DDIM sampling [35]:

zt−1 =

√
αt−1
αt

zt+

(√
1

αt−1
− 1−

√
1

αt
− 1

)
·εθ(zt, t, C).

For the definition of αt and additional details, please refer
to Appendix E. Diffusion models often operate in the im-
age pixel space where z0 is a sample of a real image. In
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Null-text (ours)

Random caption

Global null-text
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DDIM inversion

Input caption: “A black dinning room table sitting in a yellow dinning room.”

Input Image DDIM inversion Textual inversion Random pivot Global null-text Random caption Null-text (ours)VQAE reconstruction

Figure 4. Ablation Study. Top: we compare the performance of our full algorithm (green line) to different variations, evaluating the
reconstruction quality by measuring the PSNR score as a function of number optimization iterations and running time in minutes. Bottom:
we visually show the inversion results after 200 iterations of our full algorithm (on right) compared to other baselines. Results for all
iterations are shown in Appendix B (Figs. 13 and 14).

our case, we use the popular and publicly available Stable
Diffusion model [30] where the diffusion forward process
is applied on a latent image encoding z0 = E(x0) and an
image decoder is employed at the end of the diffusion back-
ward process x0 = D(z0).

Classifier-free guidance. One of the key challenges in
text-guided generation is the amplification of the effect
induced by the conditioned text. To this end, Ho et al. [18]
have presented the classifier-free guidance technique,
where the prediction is also performed unconditionally,
which is then extrapolated with the conditioned prediction.
More formally, let ∅ = ψ(””) be the embedding of a null
text and let w be the guidance scale parameter, then the
classifier-free guidance prediction is defined by:
ε̃θ(zt, t, C,∅) = w · εθ(zt, t, C) + (1− w) · εθ(zt, t,∅).

E.g., w = 7.5 is the default parameter for Stable Diffusion.

DDIM inversion. A simple inversion technique was
suggested for the DDIM sampling [13, 35], based on the
assumption that the ODE process can be reversed in the
limit of small steps:

zt+1 =

√
αt+1

αt
zt+

(√
1

αt+1
− 1−

√
1

αt
− 1

)
·εθ(zt, t, C).

In other words, the diffusion process is performed in the
reverse direction, that is z0 → zT instead of zT → z0,
where z0 is set to be the encoding of the given real image.

3.2. Pivotal Inversion
Recent inversion works use random noise vectors for

each iteration of their optimization, aiming at mapping ev-
ery noise vector to a single image. We observe that this

is inefficient as inference requires only a single noise vec-
tor. Instead, inspired by GAN literature [29], we seek to
perform a more ”local” optimization, ideally using only a
single noise vector. In particular, we aim to perform our
optimization around a pivotal noise vector which is a good
approximation and thus allows a more efficient inversion.

We start by studying the DDIM inversion. In practice,
a slight error is incorporated in every step. For uncondi-
tional diffusion models, the accumulated error is negligi-
ble and the DDIM inversion succeeds. However, recall that
meaningful editing using the Stable Diffusion model [30]
requires applying classifier-free guidance with a large guid-
ance scale w > 1. We observe that such a guidance scale
amplifies the accumulated error. Therefore, performing the
DDIM inversion procedure with classifier-free guidance re-
sults not only in visual artifacts, but the obtained noise vec-
tor might be out of the Gaussian distribution. The latter
decreases the editability, i.e., the ability to edit using the
particular noise vector.

We do recognize that using DDIM inversion with guid-
ance scale w = 1 provides a rough approximation of the
original image which is highly editable but far from accu-
rate. More specifically, the reversed DDIM produces a T
steps trajectory between the image encoding z0 to a Gaus-
sian noise vector z∗T . Again, a large guidance scale is essen-
tial for editing. Hence, we focus on feeding z∗T to the diffu-
sion process with classifier-free guidance (w > 1). This re-
sults in high editability but inaccurate reconstruction, since
the intermediate latent codes deviate from the trajectory, as
illustrated in Fig. 3. Analysis of different guidance scale
values for the DDIM inversion is provided in Appendix B
(Fig. 9).

Motivated by the high editability, we refer to this initial
DDIM inversion with w = 1 as our pivot trajectory and
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Input Image

Input Image

Modifed caption: “A living room with a zebra dense pattern couch and pillows”

Modifed caption: “A girl sitting in a dry field.”

Figure 5. Fine control editing using attention re-weighting. We
can use attention re-weighting to further control the level of dry-
ness over the field or create a denser zebra pattern over the couch.

perform our optimization around it with the standard guid-
ance scale, w > 1. That is, our optimization maximizes
the similarity to the original image while maintaining our
ability to perform meaningful editing. In practice, we
execute a separate optimization for each timestamp t in the
order of the diffusion process t = T → t = 1 with the
objective of getting close as possible to the initial trajectory
z∗T , . . . , z

∗
0 :

min
∥∥z∗t−1 − zt−1∥∥22 , (2)

where zt−1 is the intermediate result of the optimization.
Since our pivotal DDIM inversion provides a rather good
starting point, this optimization is highly efficient compared
to using random noise vectors, as demonstrated in Sec. 4.

Note that for every t < T , the optimization should start
from the endpoint of the previous step (t+ 1) optimization,
otherwise our optimized trajectory would not hold at infer-
ence. Therefore, after the optimization of step t, we com-
pute the current noisy latent z̄t, which is then used in the
optimization of the next step to ensure our new trajectory
would end near z0 (see Eq. (3) for more details).

3.3. Null-text optimization
To successfully invert real images into the model’s do-

main, recent works optimize the textual encoding [15], the
network’s weights [31, 39], or both [19]. Fine-tuning the
model’s weight for each image involves duplicating the en-
tire model which is highly inefficient in terms of memory
consumption. Moreover, unless fine-tuning is applied for
each and every edit, it necessarily hurts the learned prior
of the model and therefore the semantics of the edits. Di-
rect optimization of the textual embedding results in a non-
interpretable representation since the optimized tokens does
not necessarily match pre-existing words. Therefore, an in-
tuitive prompt-to-prompt edit becomes more challenging.

Instead, we exploit the key feature of the classifier-free
guidance — the result is highly affected by the uncondi-
tional prediction. Therefore, we replace the default null-text
embedding with an optimized one, referred to as null-text

optimization. Namely, for each input image, we optimize
only the unconditional embedding ∅, initialized with the
null-text embedding. The model and the conditional textual
embedding are kept unchanged.

This results in high-quality reconstruction while still al-
lowing intuitive editing with Prompt-to-Prompt [16] by sim-
ply using the optimized unconditional embedding. More-
over, after a single inversion process, the same uncondi-
tional embedding can be used for multiple editing opera-
tions over the input image. Since null-text optimization is
naturally less expressive than fine-tuning the entire model,
it requires the more efficient pivotal inversion scheme.

We refer to optimizing a single unconditional embedding
∅ as a Global null-text optimization. During our experi-
ments, as shown in Fig. 4, we have observed that optimiz-
ing a different ”null embedding” ∅t for each timestamp t
significantly improves the reconstruction quality while this
is well suited for our pivotal inversion. And so, we use per-
timestamp unconditional embeddings {∅t}Tt=1, and initial-
ize ∅t with the embedding of the previous step ∅t+1.

Putting the two components together, our full algorithm
is presented in algorithm 1. The DDIM inversion with
w = 1 outputs a sequence of noisy latent codes z∗T , . . . , z

∗
0

where z∗0 = z0. We initialize z̄T = zt, and perform the
following optimization with the default guidance scale
w = 7.5 for the timestamps t = T, . . . , 1, each for N
iterations:

min
∅t

∥∥z∗t−1 − zt−1(z̄t,∅t, C)
∥∥2
2
. (3)

For simplicity, zt−1(z̄t,∅t, C) denotes applying DDIM
sampling step using z̄t, the unconditional embedding ∅t,
and the conditional embedding C. At the end of each step,
we update

z̄t−1 = zt−1(z̄t,∅t, C).
We find that early stopping reduces time consumption, re-
sulting in ∼ 1 minute using a single A100 GPU.

Finally, we can edit the real input image by using the
noise z̄T = z∗T and the optimized unconditional embed-
dings {∅t}Tt=1. Please refer to Appendix D for additional
implementation details.

4. Ablation Study
In this section, we validate the contribution of our main

components, thoroughly analyzing the effectiveness of our
design choices by conducting an ablation study. We focus
on the fidelity to the input image which is an essential eval-
uation for image editing. In Sec. 5 we demonstrate that
our method performs high-quality and meaningful manip-
ulations.
Experimental setting. Evaluation is provided in Fig. 4.
We have used a subset of 100 images and captions pairs,
randomly selected from the COCO [8] validation set. We
then applied our approach on each image-caption pair us-
ing the default Stable Diffusion hyper-parameters for an
increasing number of iterations per diffusion step, N =

5



Algorithm 1: Null-text inversion
1 Input: A source prompt embedding C = ψ(P) and

input image I.
2 Output: Noise vector zT and optimized

embeddings {∅t}Tt=1 .

3 Set guidance scale w = 1;
4 Compute the intermediate results z∗T , . . . , z

∗
0 using

DDIM inversion over I;
5 Set guidance scale w = 7.5;
6 Initialize z̄T ← z∗T , ∅T ← ψ(””);
7 for t = T, T − 1, . . . , 1 do
8 for j = 0, . . . , N − 1 do
9 ∅t ← ∅t−η∇∅

∥∥z∗t−1 − zt−1(z̄t,∅t, C)
∥∥2
2
;

10 end
11 Set z̄t−1 ← zt−1(z̄t,∅t, C), ∅t−1 ← ∅t;
12 end
13 Return z̄T , {∅t}Tt=1

1, . . . , 20 (see algorithm 1). The reconstruction quality was
measured in terms of mean PSNR. We now turn to analyze
different variations of our algorithm.
DDIM inversion. We mark the DDIM inversion as a
lower bound for our algorithm, as it is the starting point
of our optimization, producing unsatisfying reconstruction
when classifier-free guidance is applied (see Sec. 3.2).
VQAE. For an upper bound, we consider the reconstruc-
tion using the VQ auto-encoder [14], denoted VQAE, which
is used by the Stable Diffusion model. Although the latent
code or the VQ-decoder can be further optimized according
to the input image, this is out of our scope, since it would be
only applicable to this specific model [30] while we aim for
a general algorithm. Therefore, our optimization treats its
encoding z0 as ground truth, as the obtained reconstruction
is quite accurate in most cases.
Our method. As can be seen in Fig. 4, our method con-
verges to a near-optimal reconstruction with respect to the
VQAE upper bound after a total number of 500 iterations
(N = 10) and even after 250 iterations (∼ 1 minute on an
A100 GPU) we achieve high-quality inversion.
Random Pivot. We validate the importance of the DDIM
initialization by replacing the DDIM-based trajectory with
a single random trajectory of latent codes, sharing the
same starting point z0 — the input image encoding. In
other words, we randomly sample a single Gaussian noise
∼ N(0, I) for each image and use it to noise the corre-
sponding encoding z0 from t = 1 to t = T using the dif-
fusion scheduler. As presented in Fig. 4, the DDIM initial-
ization is crucial for fast convergence, since the initial error
becomes significantly larger when the pivot is random.
Robustness to different input captions. Since we re-
quire an input caption, it is only natural to ask whether

Input Text2LIVE VQGAN+CLIP SDEdit Ours

”A baby holding her monkey zebra doll.”

”A blue bicycle is parking on the side of the street”

”A girl sitting in a field boat”

”A child tiger is climbing on a tree””

Figure 6. Comparison. Text2LIVE [6] excels at replacing textures
locally but struggles to perform more structured editing, such as
replacing a kid with a tiger. VQGAN+CLIP [11] obtains inferior
realism. SDEdit [23] fails to faithfully reconstruct the original
image, resulting in identity drift when humans are involved. Our
method achieves realistic editing of both textures and structured
objects while retaining high fidelity to the original image. Addi-
tional examples provided in Appendix C (Fig. 16).

our method is highly sensitive to the chosen caption. We
take this to the extreme by sampling a random caption from
the dataset for each image. Even with unaligned captions,
the optimization converges to an optimal reconstitution with
respect to the VQAE. Therefore, we conclude that our in-
version is robust to the input caption. Clearly, choosing a
random caption is undesired for text-based editing. But,
providing any reasonable and editable prompt would work,
including using an off-the-shelve captioning model [24,37].
This is illustrated in Appendix B (Fig. 12). We invert an im-
age using multiple captions, demonstrating that the edited
parts should be included in the source caption in order to
produce semantic attention maps for editing. For example,
to edit the print on the shirt, the source caption should in-
clude a ”shirt with a drawing” or a similar phrase.
Global null-text embedding. We refer to optimizing a
single embedding ∅ for all timestamps as a Global em-
bedding. As can be seen, such optimization struggles to
converge, since it is less expressive than our final approach,
which uses embedding per-timestamp {∅t}Tt=1. See addi-
tional implementation details in Appendix D.
Textual inversion. We compare our method to textual
inversion, similar to the proposed method by Gal et al. [15].
We optimize the textual embedding C = ψ(P) using
random noise samples instead of pivotal inversion. That is,
we randomly sample a different Gaussian noise for each
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Input Image + Mask GlideBlended–Diffusion OursSD Inpainting

Input caption: “Two crochet birds sitting on a branch.”

Input caption: “A basket with apples kittens on a chair.”

Figure 7. Comparison to mask-based methods . As can be seen,
mask-based methods do not require inversion as the region outside
the mask is kept. However, unlike our approach, such methods
often struggle to preserve details that are found inside the masked
region. For example, basket size is not preserved.

optimization step and obtain zt by adding it to z0 according
to the diffusion scheduler. Intuitively, this objective aims to
map all noise vectors to a single image, in contrast to our
pivotal tuning inversion which focuses on a single trajectory
of noisy vectors. The optimization objective is then defined:

min
C
Ez0,ε∼N(0,I),t ‖ε− εθ(zt, t, C)‖22 . (4)

Note that Gal et al. [15] have attempted to regenerate a spe-
cific object rather than achieve an accurate inversion. As
presented in Fig. 4, the convergence is much slower than
ours and results in poor reconstruction quality.
Textual inversion with a pivot. We observe that employ-
ing our pivotal inversion with the mentioned textual inver-
sion improves the reconstruction quality significantly, re-
sults in a comparable reconstruction to ours. This further
demonstrates the power of performing the optimization us-
ing a pivot. However, we do observe that editability is re-
duced compared to the null-text optimization. In particu-
lar, as demonstrated in Appendix B (Fig. 15), the attention
maps are less accurate which decreases the performance of
Prompt-to-prompt editing.
Null-text optimization without pivotal inversion. We
observe that optimizing the unconditional null-text embed-
ding using random noise vectors, instead of pivotal inver-
sion as described in previous paragraphs, completely breaks
the null-text optimization. The results are inferior even to
the DDIM inversion baseline as presented in Appendix B
(Figs. 13 and 14). We hypothesize that null-text optimiza-
tion is less expressive than model-tuning and thus depends
on the efficient pivotal inversion, as it struggles to map all
noise vectors to a single image.

5. Results
Real image editing is presented in Figs. 1, 2 and 5, show-

ing our method not only reaches remarkable reconstruction
quality but also retains high editability. In particular, we
use the intuitive approach of Prompt-to-Prompt [16] and
demonstrate that the editing capabilities which previously

Table 1. User study results. The participants were asked to select
the best editing result in terms of fidelity to both the input image
and the textual edit instruction.

VQGAN+CLIP Text2Live SDEDIT Ours
3.8% 16.6% 14.5% 65.1%

were constrained to synthesized images are now applied to
real images using our inversion technique.

As can be seen in Fig. 2, our method effectively mod-
ifies both textures (”floral shirt”) and structured objects
(”baby” to ”robot”). Since we support the local editing
of Prompt-to-Prompt and achieve high-fidelity reconstruc-
tion, the original identity is well preserved, even in the chal-
lenging case of a baby face. Fig. 2 also illustrates that our
method requires only a single inversion process to perform
multiple editing operations. Using a single inversion proce-
dure, we can modify hair color, glasses, expression, back-
ground, and lighting and even replace objects or put on a
joker make-up (bottom rows). Using Prompt-to-Prompt, we
can also attenuate or amplify the effect of a specific word
over real images, as appeared in Fig. 5. For additional ex-
amples, please refer to Appendix C.

Visual results for our high-fidelity reconstruction are pre-
sented in Figs. 1 and 8, and Appendix C (Fig. 16), support-
ing our quantitative measures in Sec. 4.

5.1. Comparisons
Our method aims attention at intuitive editing using only

text, and so we compare our results to other text-only edit-
ing methods: (1) VQGAN+CLIP [11], (2) Text2Live [6], and
(3) SDEedit [23]. We evaluated these on the images used
by Bar-Tal et al. [6] and photos that include more structured
objects, such as humans and animals, which we gathered
from the internet. In total, we use 100 samples of images,
input captions, and edited captions.

We also compare our method to the mask-based methods
of (4) Glide [25], (5) Blended-Diffusion [5], and (6) Stable
Diffusion Inpaint [30]. The latter fine-tunes the diffusion
model using an inpainting objective, allowing simple edit-
ing by inpainting a masked region using a target prompt.

Lastly, we consider the concurrent work of (7) Imagic
[19], which employs model-tuning per editing operation
and has been designed for the Imagen model [32]. We
refrain from comparing to the concurrent works of Uni-
tune [39] and DiffEdit [9] as there are no available imple-
mentations.

Qualitative Comparison. As presented in Fig. 6, VQ-
GAN+CLIP [11] mostly produces unrealistic results.
Text2LIVE [6] handles texture modification well but fails
to manipulate more structured objects, e.g., placing a boat
(3rd row). Both struggle due to the use of CLIP [26] which
lacks a generative ability. In SDEdit [23], the noisy image
is fed to an intermediate step in the diffusion process, and
therefore, it struggles to faithfully reconstruct the original
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details. This results in severe artifacts when fine details are
involved, such as human faces. For instance, identity drifts
in the top row, and the background is not well preserved in
the 2nd row. Contrarily, our method successfully preserves
the original details, while allowing a wide range of realistic
and meaningful editing, from simple textures to replacing
well-structured objects.

Fig. 7 presents a comparison to mask-based methods,
showing these struggles to preserve details that are found
inside the masked region. This is due to the masking pro-
cedure that removes important structural information, and
therefore, some capabilities are out of the inpainting reach.

A comparison to Imagic [19], which operates in a dif-
ferent setting – requiring model-tuning for each editing op-
eration, is provided in Appendix B (Fig. 17). We first em-
ploy the unofficial Imagic implementation for Stable Diffu-
sion and present the results for different values of the in-
terpolation parameter α = 0.6, 0.7, 0.8, 0.9. This param-
eter is used to interpolate between the target text embed-
ding and the optimized one [19]. In addition, the Imagic
authors applied their method using the Imagen model over
the same images, using the following parameters α =
0.93, 0.86, 1.08. As can be seen, Imagic produces highly
meaningful editing, especially when the Imagen model is
involved. However, Imagic struggles to preserve the origi-
nal details, such as the identity of the baby (1st row) or cups
in the background (2nd row). Furthermore, we observe that
Imagic is quite sensitive to the interpolation parameter α, as
a high value reduces the fidelity to the image and a low value
reduces the fidelity to the text guidance, while a single value
cannot be applied to all examples. Lastly, Imagic takes a
longer inference time, as shown in Appendix C (Tab. 2).

Quantitative Comparison. Since ground truth is not
available for text-based editing of real images, quantitative
evaluation remains an open challenge. Similar to [6, 16],
we present a user study in Tab. 1. 50 participants have
rated a total of 48 images for each baseline. The partic-
ipants were recruited using Prolific (prolific.co). We pre-
sented side-by-side images produced by: VQGAN+CLIP,
Text2LIVE, SDEdit, and our method (in random order). We
focus on methods that share a similar setting to ours – no
model tuning and mask requirement. The participants were
asked to choose the method that better applies the requested
edit while preserving most of the original details. A print
screen is provided in Appendix F (Fig. 18). As shown in
Tab. 1, most participants favored our method.

Quantitative comparison to Imagic is presented in Ap-
pendix B (Fig. 11), using the unofficial Stable Diffusion
implementation. According to these measures, our method
achieves better scores for LPIPS perceptual distance, indi-
cating a better fidelity to the input image.

5.2. Evaluating Additional Editing Technique
Most of the presented results consist of applying our

method with the editing technique of Prompt-to-Prompt
[16]. However, we demonstrate that our method is not con-
fined to a specific editing approach, by showing it improves
the results of the SDEdit [23] editing technique.

In Fig. 8 (top), we measure the fidelity to the original im-
age using LPIPS perceptual distance [43] (lower is better),
and the fidelity to the target text using CLIP similarity [26]
(higher is better) over 100 examples. We use different val-
ues of the SDEdit parameter t0 (marked on the curve), i.e.,
we start the diffusion process from different t = t0 · T us-
ing a correspondingly noised input image. This parameter
controls the trade-off between fidelity to the input image
(low t0) and alignment to the text (high t0). We compare
the standard SDEdit to first applying our inversion and then
performing SDEdit while replacing the null-text embedding
with our optimized embeddings. As shown, our inversion
significantly improves the fidelity to the input image.

This is visually demonstrated in Fig. 8 (bottom). Since
the parameter t0 controls a reconstruction-editability trade-
off, we have used a different parameter for each method
(SDEdit with and without our inversion) such that both
achieve the same CLIP score. As can be seen, when using
our method, the true identity of the baby is well preserved.

6. Limitations
While our method works well in most scenarios, it still

faces some limitations. The most notable one is inference
time. Our approach requires approximately one minute
on GPU for inverting a single image. Then, infinite edit-
ing operations can be made, each takes only ten seconds.
This is not enough for real-time applications. Other limita-
tions come from using Stable Diffusion [30] and Prompt-to-
Prompt editing [16]. First, the VQ auto-encoder produces
artifacts in some cases, especially when human faces are in-
volved. We consider the optimization of the VQ decoder
as out of scope here, since this is specific to Stable Dif-
fusion and we aim for a general framework. Second, we
observe that the generated attentions maps of Stable Dif-
fusion are less accurate compared to the attention maps
of Imagen [32], i.e., words might not relate to the correct
region, indicating inferior text-based editing capabilities.
Lastly, complicated structure modifications are out of reach
for Prompt-to-Prompt, such as changing a seating dog to a
standing one as in [19]. Our inversion approach is orthog-
onal to the specific model and editing techniques, and we
believe that these will be improved in the near future.

7. Conclusions
We have presented an approach to invert real images with

corresponding captions into the latent space of a text-guided
diffusion model while maintaining its powerful editing ca-
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”A baby wearing a blue shirt lying on the sofa beach”

Figure 8. Our method improves SDEdit results. Top: we evalu-
ate SDEdit with and without applying null-text inversion. In each
measure, a different SDEdit parameter is used, i.e., different per-
cent of diffusion steps are applied over the noisy image (marked
on the curve). We measure both fidelity to the original image (via
LPIPS, low is better) and fidelity to the target text (via CLIP, high
is better). Bottom, from left to right: input image, null-text inver-
sion, SDEdit, applying SDEdit after null-text inversion, and ap-
plying Prompt-to-Prompt after null-text inversion. As can be seen,
our inversion significantly improves the fidelity to the original im-
age when applied before SDEdit.

pabilities. Our two-step approach first uses DDIM inversion
to compute a sequence of noisy codes, which roughly ap-
proximate the original image (with the given caption), then
uses this sequence as a fixed pivot to optimize the input null-
text embedding. Its fine optimization compensates for the
inevitable reconstruction error caused by the classifier-free
guidance component. Once the image-caption pair is accu-
rately embedded in the output domain of the model, prompt-
to-prompt editing can be instantly applied at inference time.
By introducing two new technical concepts to text-guided
diffusion models – pivotal inversion and null-text optimiza-
tion, we were able to bridge the gap between reconstruc-
tion and editability. Our approach offers a surprisingly sim-
ple and compact means to reconstruct an arbitrary image,
avoiding the computationally intensive model-tuning. We
believe that null-text inversion paves the way for real-world
use case scenarios for intuitive, text-based, image editing.
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Figure 9. Setting the guidance scale for DDIM. We evaluate the
DDIM inversion with different values of the guidance scale. On
left, we measure the log-likelihood of the latent vector zT with
respect to multivariate normal distribution. This estimates the ed-
itability as zT should ideally distribute normally and deviation
from this distribution reduces our ability to edit the image. On
right, we measure the reconstruction quality using PSNR. As can
be seen, using a small guidance scale, such as w = 1, results in
better editability and reconstruction.

Appendix

A. Societal Impact
Our work suggests a new editing technique for manip-

ulating real images using state-of-the-art text-to-image dif-
fusion models. This modification of real photos might be
exploited by malicious parties to produce fake content in
order to spread disinformation. This is a known problem,
common to all image editing techniques. However, research
in identifying and preventing malicious editing is already
making significant progress. We believe our work would
contribute to this line of work, since we provide an analysis
of the inversion and editing procedures using text-to-image
diffusion models.

B. Ablation Study
DDIM Inversion. To validate our selection of the guid-
ance scale parameter of w = 1 during the DDIM Inver-
sion (see Algorithm 1, line 3, in the main text), we con-
duct the DDIM inversion with different values of w from
1 to 8 using the same data as in Section 4. For each in-
version, we measure the log-likelihood of the result latent
image z∗T ∈ R64×64×4 under the standard multivariate nor-
mal distribution. Intuitively, to achieve high edibility we
would like to maximize this term since during training z∗T
distributes normally. The mean log-likelihood as a function
of w is plotted in Fig. 9a. In addition, we measure the re-
construction with respect to the ground truth input image
using the PSNR metric. As can be seen in Fig. 9b, increas-
ing the value of w results in less editable latent vector z∗T
and poorer initial reconstruction for our optimization, and
therefore we use w = 1.

Robustness to different input captions. In Fig. 12 (top),
we demonstrate our robustness to different input captions
by successfully inverting an image using multiple captions.
Yet, the edited parts should be included in the source cap-

Table 2. Inference time comparison. We measure both inversion
and editing time for different methods. SDEdit is faster than ours,
as an inversion is not employed by default, but fails to preserve the
unedited parts. Our method is more efficient than the rest of the
baselines, as it provides accurate reconstruction with faster inver-
sion time, while also allowing multiple editing operations after a
single inversion.

Method Inversion Editing Multiple edits

VQGAN + CLIP — ∼ 1m No
Text2Live — ∼ 9m No
SDEdit — 10s Yes
Imagic ∼ 5m 10s No
Ours ∼ 1m 10s Yes

tion in order to produce semantic attention maps for these
(Fig. 12 bottom). For example, to edit the print on the shirt,
the source caption should include a ”shirt with a drawing”
term or a similar one.

Null-text optimization without pivotal inversion. Opti-
mizing the null-text embedding fails without the efficient
pivotal inversion. This is demonstrated in Fig. 13 and 14,
where the non-pivotal null-text optimization produces low-
quality reconstruction (2nd row).

Textual inversion with a pivot. Fig. 15 illustrate per-
forming textual inversion around a pivot, i.e., similar to
our pivotal inversion but optimizing the conditioned embed-
ding. This results in a comparable reconstruction to ours, as
demonstrated in Fig. 15 (bottom), but editability is reduced.
By analyzing the attention maps (Fig. 15, top), observing
that these are less accurate than ours. For example, using
our null-text optimization, the attention referring to ”goats”
is much more local, and attention referring to ”desert” is
more accurate. Consequently, editing the ”desert” results in
artifacts over the goats (Fig. 15, bottom).

C. Additional results
Additional editing results of our method are provided in

Fig. 10 and additional comparisons are provided in Fig. 16.

Inference time comparison. As can be seen in Tab. 2,
SDEdit is the fastest since an inversion is not employed, but
as a result, it fails to preserve the details of the original im-
age. Our method is more efficient than Text2Live [6], VQ-
GAN+CLIP [12] and Imagic [19], as it provides an accurate
reconstruction in ∼ 1 minute, while also allowing multiple
editing operations after a single inversion.

Comparison to Imagic Quantitative comparison to
Imagic is presented in Fig. 11, using the unofficial Stable
Diffusion implementation. According to these measures,
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”A living room with a couch and pillows”

Input red velvet couch leather couch unicorn couch

”close up of a giraffe eating a bucket”

Input giraffe→ ”goat giraffe→ ”robot bucket→ ”basket

”A piece of cake”

Input fish cake avocado cake Lego cake

”A basket with apples on a chair”

Input apples→ puppies apples→ cookies cardboard basket

”A bicycle is parking on the side of the street”

Input street→ beach snowy street street→ forest

”two birds sitting on a branch”

Input branch→ rainbow Lego birds origami birds

Figure 10. Additional editing results for our method.

our method achieves better preservation of the original de-
tails (lower LPIPS). This is also supported by the visual re-
sults in Fig. 17, as Imagic struggles to accurately retain the
background. Furthermore, we observe that Imagic is quite
sensitive to the interpolation parameter α, as a high value re-
duces the fidelity to the image and a low value reduces the
fidelity to the text, while a single value cannot be applied
to all examples. In addition, the authors of Imagic applied
their method on the same three images, presented in Fig. 17,
using α = 0.93, 0.86, 1.08. This results in much better
quality, however, still the background is not preserved.
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Figure 11. Comparison to Imagic We quantitatively evaluate
Imagic using the unofficial implementation for Stable Diffusion.
We measure both fidelity to the original image (via LPIPS, low is
better) and fidelity to the target text (via CLIP, high is better). We
use different values of the text embedding interpolation parameter
α, marked on the curve. The high LPIPS perceptual distance indi-
cates that Imagic fails to retain high fidelity to the original image.

D. Implementation details
In all of our experiments, we employ the Stable Diffu-

sion [30] using a DDIM sampler with the default hyperpa-
rameters: number of diffusion steps T = 50 and guidance
scale w = 7.5. Stable diffusion utilizes a pre-trained CLIP
network as the language model ψ. The null-text is tokenized
into start-token, end-token, and 75 non-text padding tokens.
Notice that the padding tokens are also used in CLIP and
the diffusion model since both models do not use masking.

All inversion results except the ones in the ablation study
were obtained using N = 10 (See Algorithm 1 in the main
paper) and a learning rate of 0.01. We have used an early
stop parameter of ε = 1e − 5 such that the total inversion
for an input image and caption took 40s− 120s on a single
A100 GPU. Namely, for each timestamp t, we stop the op-
timization when the loss function value reaches ε = 1e− 5.

Baseline Implementations. For the comparisons in sec-
tion 5, we use the official implementation of Text2Live* [6]
and VQGAN+CLIP† [11]. We have implemented the
SDEdit [23] method over Stable Diffusion based on the of-
ficial implementation‡. We also compare our method to
Imagic [19] using an unofficial implementation§ (see Ap-
pendix C).

Global null-text Inversion. The algorithm for optimiz-
ing only a single null-text embedding ∅ for all timestamps
is presented in algorithm 2. In this case, since the optimiza-
tion of ∅ in a single timestamp affects all other timestamps,
we change the order of the iterations in Algorithm 1. That
is, we performN iterations in each we optimize ∅ for all the
diffusion timestamps by iterating over t. As shown in Sec-

*https://github.com/omerbt/Text2LIVE
†https://github.com/nerdyrodent/VQGAN-CLIP
‡https://github.com/ermongroup/SDEdit
§https://github.com/ShivamShrirao/diffusers/tree/main/examples/imagic
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tion 4, the convergence of this optimization is much slower
than our final method. More specifically, we found that only
after 7500 optimization steps (about 30 minutes) the global
null-text inversion accurately reconstruct the input image.

Algorithm 2: Global null-text inversion
1 Input: A source prompt P and input image I.
2 Output: Noise vector zT and an optimized

embedding ∅ .

3 Set guidance scale w = 1;
4 Compute the intermediate results z∗T , . . . , z

∗
0 of

DDIM inversion for image I;
5 Set guidance scale w = 7.5;
6 Initialize ∅← ψ(””);
7 for j = 0, . . . , N − 1 do
8 Set z̄T ← z∗T ;
9 for t = T, T − 1, . . . , 1 do

10 ∅← ∅− η∇∅
∥∥z∗t−1 − zt−1(z̄t,∅, C)

∥∥2
2
;

Set z̄t−1 ← zt−1(z̄t,∅, C);
11 end
12 end
13 Return z̄T , ∅

E. Additional Background - Diffusion Models
Diffusion Denoising Probabilistic Models (DDPM) [17,

34] are generative latent variable models that aim to model
a distribution pθ(x0) that approximates the data distribu-
tion q(x0) and easy to sample from. DDPMs model a
“forward process” in the space of x0 from data to noise.
This is called “forward” due to its procedure progress-
ing from x0 to xT . Note that this process is a Markov
chain starting from x0, where we gradually add noise to
the data to generate the latent variables x1, . . . , xT ∈
X . The sequence of latent variables, therefore, follows
q(x1, . . . , xt | x0) =

∏t
i=1 q(xt | xt−1), where a step

in the forward process is defined as a Gaussian transition
q(xt | xt−1) := N(xt;

√
1− βtxt−1, βtI) parameterized

by a schedule β0, . . . , βT ∈ (0, 1). When T is large enough,
the last noise vector xT nearly follows an isotropic Gaussian
distribution.

An interesting property of the forward process is that
one can express the latent variable xt directly as the
following linear combination of noise and x0 without
sampling intermediate latent vectors:

xt =
√
αtx0 +

√
1− αtw, w ∼ N(0, I), (5)

where αt :=
∏t
i=1(1− βi).

To sample from the distribution q(x0), we define the dual
“reverse process” p(xt−1 | xt) from isotropic Gaussian
noise xT to data by sampling the posteriors q(xt−1 | xt).
Since the intractable reverse process q(xt−1 | xt) depends
on the unknown data distribution q(x0), we approximate it

with a parameterized Gaussian transition network pθ(xt−1 |
xt) := N(xt−1 | µθ(xt, t),Σθ(xt, t)). The µθ(xt, t) can be
replaced [17] by predicting the noise εθ(xt, t) added to x0
using equation 5.

We use Bayes’ theorem to approximate

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− αt

εθ(xt, t)

)
. (6)

Once we have a trained εθ(xt, t), we can using the follow-
ing sample method

xt−1 = µθ(xt, t) + σtz, z ∼ N(0, I). (7)

We can control σt of each sample stage, and in DDIMs [35]
the sampling process can be made deterministic using
σt = 0 in all the steps. The reverse process can finally be
trained by solving the following optimization problem:

min
θ
L(θ) := min

θ
Ex0∼q(x0),w∼N(0,I),t ‖w − εθ(xt, t)‖22 ,

teaching the parameters θ to fit q(x0) by maximizing a vari-
ational lower bound.

F. User-Study
An illustration of our user study is provided in Fig. 18

G. Image Attribution
Girl in a field: https://unsplash.com/photos/

1pCpWipo_jM
Birds on a branch: https://pixabay.com/photos/
sparrows-birds-perched-sperlings-3434123/
Basket with apples: https://unsplash.com/photos/
4Bj27zMqNSE
Bicycle: https://unsplash.com/photos/vZAk_
n9Plfc
Child climbing: https : / / unsplash . com / photos /
oLZViCDG-dk
Mountains: https://pixabay.com/photos/desert-
mountains-sky-clouds-peru-4842264/
Giraffe: https://www.flickr.com/photos/tambako/
30850708538/
Blue-haired woman in the forest: https://unsplash.com/
photos/I3oRtzyBIFg
Dining table: https://cocodataset.org/#explore?
id=360849
Elephants: https://cocodataset.org/#explore?id=
345520
Man with a doughnut: https://cocodataset.org/
#explore?id=360849
Cake on a table: https://cocodataset.org/#explore?
id=413699
Piece of cake: https://cocodataset.org/#explore?
id=133063
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Our Inversion

Our Inversion

Our Inversion

Input Image

Cross-attention maps

Input caption: “A woman in the forest.”

“...forest at winter.”“...forest at fall.” forest      magic kingdomforest       water parkforest       beachforest       city
Input caption: “A woman wearing a shirt with a drawing.”

“...long sleeves shirt...” “...turtle neck shirt...” “...red shirt...” “... drawing of kermit.” “...of cookie monster.” “...of inspector gadget.”

Input caption: “A woman with a blue hair.”

“...sad woman...” “...curly blue hair...” “...green hair...”“...smiling woman...” woman        squirrel woman      storm trooper

Figure 12. Robustness to the input caption. We can invert an input image (top) using different input captions (first column). Naturally,
the selection of the caption effects the editing abilities with Prompt-to-Prompt, as can be seen in the visualization of the cross-attention
map (bottom). Yet, our method is not particularly sensitive to the exact wording of the prompt.
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Input caption: “A black dinning room table sitting in a yellow dinning room.”

Input image DDIM invresion VQAE
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Figure 13. Ablation study. We show the inversion results for an increasing number of optimization iterations. Our method achieves
high-quality reconstruction with fewer optimization steps.
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Input caption: “Two people riding elephants in dirty deep water.”
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Input image DDIM invresion VQAE

Number of optimization iterations

Figure 14. Ablation study. We show the inversion results for an increasing number of optimization iterations. Our method achieves
high-quality reconstruction with fewer optimization steps.
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Attention maps of Text embedding optimization + Pivotal Inversion

Attention maps of null-text optimization

Input Inversion (T+P) Text + Pivot Ours Text + Pivot Ours

desert −→ forest ” desert −→ snow ”

Figure 15. Ablation study - Textual inversion with a pivot. We compare our method to replacing the null-text optimization with optimizing
the conditional (textual) embedding while still applying pivotal inversion. As can be seen (top), this results in less accurate attention maps,
and thus, in less accurate editing capabilities. In particular, textual inversion with a pivot achieves high-fidelity reconstruction (”Inversion
(T+P)”), but goat heads distort (bottom) when editing is applied due to the inaccurate attention maps.
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Input Our Inversion Text2LIVE VQGAN+CLIP SDEdit Our Editing

”a bridge over a frozen waterfall”

”A golden bridge over a waterfall”

”A child monkey is climbing on a tree”

”A Landscape of Snowy mountains”

”A Landscape of mountains Tuscany”

””A pepperoni cake on a table””

Figure 16. Additional comparison results.
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Input Imagic - Stable Diffusion with α = 0.6, 0.7, 0.8, 0.9 Imagic - Imagen Ours

”A baby holding her monkey lion doll”

”A spinach moss cake on a table”

”A piece of unicorn cake”

Figure 17. Comparison to Imagic [19]. We first employ the unofficial Imagic implementation for Stable Diffusion and present the results
for different values of the interpolation parameter α = 0.6, 0.7, 0.8, 0.9 (left to right). In addition, Imagic authors applied their method
using the Imagen model over the same images, using the parameters α = 0.93, 0.86, 1.08 (from top to bottom row). As can be seen, Imagic
produces highly meaningful editing, especially when the Imagen model is involved. However, Imagic struggles to preserve the original
details, such as the identity of the baby (1st row) or cups in the background (2nd row). Furthermore, we observe that each example requires
a separate tuning of the α parameter. Lastly, recall that each Imagic editing requires a separate tuning of the model.
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Figure 18. User study print screen.
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