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Figure 1. Representative results and overall concept of the proposed method. (a) Results of blind deblurring. Both the image and the kernel
in the bottom right corner are jointly estimated with the proposed method. (b) Results of imaging through turbulence. (c) Evolution of
joint reconstruction with the proposed method. 1st, 2nd row illustrate the change of x̂0(xt) and k̂0(kt) through time as t = 1 → 0, with
the measurement and the kernel initialization given on the first column.

Abstract

Diffusion model-based inverse problem solvers have
demonstrated state-of-the-art performance in cases where
the forward operator is known (i.e. non-blind). However,
the applicability of the method to blind inverse problems has
yet to be explored. In this work, we show that we can indeed
solve a family of blind inverse problems by constructing an-
other diffusion prior for the forward operator. Specifically,
parallel reverse diffusion guided by gradients from the in-
termediate stages enables joint optimization of both the for-
ward operator parameters as well as the image, such that
both are jointly estimated at the end of the parallel reverse

diffusion procedure. We show the efficacy of our method
on two representative tasks — blind deblurring, and imag-
ing through turbulence — and show that our method yields
state-of-the-art performance, while also being flexible to be
applicable to general blind inverse problems when we know
the functional forms.

1. Introduction
Inverse problems subsume a wide set of important prob-

lems in science and engineering, where the objective is to
recover the latent image from the corrupted measurement,
generated by the forward operator. Considering the taxon-
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Figure 2. Description of BlindDPS. From the intermediate (noisy) estimate xi,ki, we achieve the denoised representation x̂0(xi), k̂0(ki)
through Tweedie’s formula with the score functions siθ∗ , s

k
θ∗ . The residual ‖y − k̂0 ∗ x̂0‖ is computed with the denoised estimates, and

the residual-minimizing gradients are applied parallel to both diffusion processes.

omy, they can be split into two major categories — non-
blind inverse problems, and blind inverse problems. The
former considers the cases where the forward operator is
known, and hence eases the problem. In contrast, the latter
considers the cases where the operator is unknown, and thus
the operator needs to be estimated together with the recon-
struction of the latent image. The latter problem is consider-
ably harder than the former problem, as joint minimization
is typically much less stable.

In this work, we mainly focus on leveraging generative
priors to solve inverse problems in imaging. Among many
different generative model classes, diffusion models have
established the new state-of-the-art. In diffusion models,
we define the forward data noising process, which gradually
corrupts the image into white Gaussian noise. The genera-
tive process is defined by the reverse of such process, where
each step of reverse diffusion is governed by the score func-
tion [53]. With the recent surge of diffusion models, it has
been demonstrated in literature that diffusion models are not
only powerful generative models, but also excellent gener-
ative priors to solve inverse problems. Namely, one can ei-
ther resort to iterative projections to the measurement sub-
space [14, 53], or estimate posterior sampling [12] to ar-
rive at feasible solutions that meet the data consistency. For
both linear [14, 28, 53] and some non-linear [3, 12] inverse
problems, guiding unconditional diffusion models to solve
down-stream inverse problems were shown to have stronger
performance even when compared to the fully supervised
counterparts.

Nevertheless, current solvers are strictly limited to cases
where the forward operator is known and fixed. For ex-
ample, [12, 28] consider non-blind deblurring with known
kernels. The problem now boils down to optimizing only
for the latent image, since the likelihood can be computed
robustly. Unfortunately, in real world problems, knowing
the kernel exactly is impractical. It is often the case where
the kernel is also unknown, and we have to jointly estimate
the image and the kernel. In such cases, not only do we

need a prior model of the image, but we also need some
proper prior model of the kernel [42, 55]. While conven-
tional methods exploit, e.g. patch-based prior [55], sparsity
prior [42], etc., they often fall short of accurate modeling of
the distribution.

In this work, we aim to leverage the ability of diffusion
models to act as strong generative priors and propose Blind-
DPS (Blind Diffusion Posterior Sampling) — constructing
multiple diffusion processes for learning the prior of each
component — which enable posterior sampling even when
the operator is unknown. BlindDPS starts by initializing
both the image and the operator parameter with Gaussian
noise. Reverse diffusion progresses in parallel for both
models, where the cross-talk between the paths are enforced
from the approximate likelihood and the measurement, as
can be seen in Fig. 2. With our method, both the image and
the kernel starts with a coarse estimation, gradually getting
closer to the ground truth as t→ 0 (see Fig. 1(c)).

In fact, our method can be thought of as a coarse-to-
fine strategy naturally admitting a Gaussian scale-space rep-
resentation [30, 37], which can be seen as a continuous
generalization of the coarse-to-fine optimization strategy
that most of the optimization-based methods take [42, 45].
Furthermore, our method is generally applicable to cases
where we know the structure of the forward model a priori
(e.g. convolution). To demonstrate the generality, we fur-
ther show that our method can also be applied in imaging
through turbulence. From our experiments, we show that
the proposed method yields state-of-the-art performance
while being generalizable to different inverse problems.

2. Background

Diffusion models Variance preserving (VP) diffusion
models (i.e. DDPM [22]), in the score-based persepc-
tive [53], define the forward noising process of the data
x(t) , xt, t ∈ [0, 1] with a linear stochastic differential
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equation (SDE)

dx = −β(t)

2
xdt+

√
β(t)dw, (1)

where β(t) is the noise schedule, and w is the standard
Brownian motion. One can define a proper noise sched-
ule β(t) such that the data distribution x(0) ∼ p0 = pdata

is molded into the standard Gaussian distribution x(1) ∼
p1 ' N (0, I). Then, the corresponding reverse SDE is
given by [2]

dx =

[
−β(t)

2
x− β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dw̄,

(2)

where ∇xt log pt(xt) is the score function, typically ap-
proximated by denoising score matching (DSM) [56]

θ∗ = argmin
θ

Et,xt,x0

[
‖sθ(xt, t)−∇xt log p(xt|x0)‖22

]
.

(3)
Once trained, we can use the plug-in estimate
∇xt log pt(xt) ' sθ(xt, t) for the reverse diffusion
in (2), and solve by discretization (e.g. ancestral sampling
of [22]), effectively sampling from the prior distribution
p(x0).

Diffusion posterior sampling (DPS) Consider the fol-
lowing Gaussian measurement model

p(y|x0) = N (y|H(x0), σ2I), y ∈ Rm, x0 ∈ Rn, (4)

where y is the corrupted measurement, x0 is the latent im-
age that we wish to estimate, andH is the forward operator.
As the problem is often ill-posed, it is desirable to be able to
sample from the posterior distribution p(x0|y). By Bayes’
rule, we have for a general timestep t,

∇xt log p(xt|y) = ∇xt log p(y|xt) +∇xt log p(xt) (5)
' ∇xt log p(y|xt) + sθ∗(xt, t), (6)

where we can plug (6) into the reverse diffusion (2) to sam-
ple from p(x0|y), i.e.

dx = (−β(t)

2
x− β(t)[∇xt

log p(y|xt)

+sθ∗(xt, t)])dt+
√
β(t)dw̄. (7)

Note that the time-conditional log-likelihood log p(y|xt) is
intractable in general. However, it was shown in the work
of DPS [12] that we can use an approximation to arrive at

∇xt
log pt(y|xt) ' ∇xt

log p(y|x̂0(xt)),

where

x̂0(xt) :=
1√
ᾱ(t)

(xt + (1− ᾱ(t))sθ∗(xt, t)) (8)

is the denoised estimate of xt in the VP-SDE context given
by the Tweedie’s formula [18]. Hence, one can use the fol-
lowing tractable reverse SDE to sample from the posterior
distribution

dx = (−β(t)

2
x− β(t)[∇xt

log p(y|x̂0(xt))

+sθ∗(xt, t)])dt+
√
β(t)dw̄, (9)

where we observe that ∇xt
log p(y|x̂0(xt)) can be effi-

ciently computed using analytical likelihood, and backprop-
agation through the score function, i.e.

∇xt
log pt(xt|y) ' sθ∗(xt)−

1

σ2
∇xt
‖y −H(x̂0(xt))‖22.

However, one should note that the method in (9) is only
applicable when the forward model H is fixed, and hence
cannot be directly used for solving blind inverse problems.

Blind inverse problem Blind inverse problems consider
the case where the forward model H is unknown. Among
them, we focus on the case where the forward operator is
parameterized with ϕ, and we need to estimate the param-
eter ϕ. Specifically, consider the following forward model

y = Hϕ(x) + n, (10)

where ϕ is the parameter of the forward model, x is the
ground truth image, and n is some noise. Here, both ϕ,x
are unknown, and should be estimated. A classical way to
solve (10) is to optimize for the following

min
x,ϕ

1

2
‖Hϕ(x)− y‖2 +Rϕ(ϕ) +Rx(x), (11)

where Rϕ(ϕ), Rx(x) are regularization functions for ϕ,x,
respectively, which can also be thought of as the negative
log prior for each distribution, e.g. R(·) = − log p(·).

For example, consider blind deconvolution from camera
motion blur as illustrated in Fig. 3(a). The forward model
reads

y = k ∗ x+ n, (12)

where k is the blur kernel, corresponding to the parameter
ϕ. On the other hand, although the “real” forward model
for atmospheric turbulence is rarely directly used in prac-
tice due to the highly complicated nature of the wave prop-
agation theory, the tilt-blur model is often used [6, 7, 50],
as the model is simple but fairly accurate. Specifically, the
visualization of such imaging process is shown in Fig. 3(b),
which can be mathematically described by

y = k ∗ Tφ(x) + n, (13)
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Figure 3. Illustration of the imaging forward model. (a) Blind
deconvolution, (b) Imaging through turbulence

where T is the tilt operator parameterized by the tilt vector
field φ. To remove the scale ambiguity between the kernel
and image, the magnitude and the polarity constraints of
kernels are often used:

1Tk = 1,k � 0. (14)

Then, the success of the optimization algorithm (11) with
the forward models (12) or (13) under the constraint (14)
depends on two factors: 1) How closely the prior-imposing
functions R{x,k} estimate the true prior, and 2) how well
the optimization procedure finds the minimum value. Con-
ventional methods are sub-optimal in both aspects. First,
the prior (e.g. sparsity [42], dark channel [45], implicit
from deep networks [48]) functions do not fully represent
the true prior. Second, the optimization process is unsta-
ble and hard to tune. For instance, [42, 45] requires differ-
ent weighting parameters per image, and often fails during
the abrupt changes in the stage transition during coarse-to-
fine optimization strategy. In section 3, we show that our
method can solve both of these problems.

3. BlindDPS
In DPS [12], the authors used the diffusion prior for Rx

by training a score function that models ∇x log p(x). As
for blind inverse problems, a prior model for the parameter
p(ϕ) should also be specified. In this regard, our proposal
is to use the diffusion prior also for the forward model pa-
rameter by estimating ∇ϕ log p(ϕ). With such choice, one
can model a much more accurate prior for the parameters
compared to the conventional choices. In the following,
we detail on how to build our method BlindDPS, focusing
on blind deconvolution. The method for imaging through
turbulence can be derived in a completely analogous fash-
ion, where the details can be found in Supplementary sec-
tion B.1.
Key idea. In blind deblurring (deconvolution), the proba-
bilistic forward model is specified as follows

p(y|x0,k0) := N (y|k0 ∗ x0, σ
2I), (15)

where k0 is the random variable of the convolution kernel.
As x0 and k0 are independent, the posterior probability is
given as

p(x0,k0|y) ∝ p(y|x0,k0)p(x0)p(k0). (16)

Note that our aim is to use implicit diffusion priors for both
p(x0) and p(k0) through their score functions. One can eas-
ily take pre-trained score functions for the image. Similarly,
the score function for the kernel can also be estimated from
standard DSM (3) to get skθ∗(k, t) ' ∇kt

log pt(kt). Note
that performing DSM to achieve skθ∗ costs much less than
training the image score function siθ∗ , as the distribution is
much simpler, and the dimensionality of the vector k is also
sufficiently smaller than x.

On the other hand, again from the independence of x0

and k0, we are able to construct two separate reverse diffu-
sion processes of identical form:

dx =

[
−β(t)

2
x− β(t)∇xt log p(xt)

]
dt+

√
β(t)dw̄,

dk =

[
−β(t)

2
k − β(t)∇kt

log p(kt)

]
dt+

√
β(t)dw̄.

Note that the two reverse SDEs are only able to sample from
the marginals — p(x0), p(k0). However, one can define the
dependency between x,y, and k from the posterior proba-
bility. Using Bayes’ rule in (16) for general t, we have

∇xt
log p(xt,kt|y) = ∇xt

log p(y|xt,kt) +∇xt
log p(xt),

∇kt
log p(xt,kt|y) = ∇kt

log p(y|xt,kt) +∇kt
log p(kt).

Here, in order to estimate the time-conditional log-
likelihood log p(y|xt,kt) which is intractable in general,
we need the following result:

Theorem 1. Under the same conditions in [12], we have

∇xt
log pt(y|xt,kt) ' ∇xt

log p(y|x̂0(xt), k̂0(kt))

∇kt
log pt(y|xt,kt) ' ∇kt

log p(y|x̂0(xt), k̂0(kt)).

Remark 1. Our theorem holds as long as xt, kt are in-
dependent. Note that the theorem can be further general-
ized to handle more random variables whenever the inde-
pendence between the variables is established. In other
words, we can construct arbitrary many diffusion proce-
dures for each component of the forward model, which can
be solved analogous to the approximation proposed in The-
orem 1. This result will be useful when we solve the prob-
lem of imaging through turbulence in in Supplementary sec-
tion B.1.

Using Theorem 1, we finally arrive at the following reverse
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Algorithm 1 BlindDPS — Blind Deblurring

Require: N , y, α, {σ̃i}Ni=1, λ,Rk(·)
1: xN ,kN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ŝi ← siθ∗(xi, i)
4: ŝk ← skθ∗(ki, i)
5: x̂0 ← 1√

ᾱi
(xi +

√
1− ᾱiŝi)

6: k̂0 ← 1√
ᾱi

(ki +
√

1− ᾱiŝk)

7: k̂0 ← PC(k̂0)
8: zi, zk ∼ N (0, I)

9: x′i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃izi

10: k′i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
ki +

√
ᾱi−1βi

1−ᾱi
k̂0 + σ̃izk

11: xi−1 ← x′i−1 − α∇xi‖y − k̂0 ∗ x̂0‖2
12: Lk ← ‖y − k̂0 ∗ x̂0‖2 + λRk(k̂0)
13: ki−1 ← k′i−1 − α∇ki

Lk
14: end for
15: return x0,k0

SDEs

dx = (−β(t)

2
x− β(t)[∇xt

log p(y|x̂0(xt), k̂0(kt))

+ siθ∗(xt, t)])dt+
√
β(t)dw̄, (17)

dk = (−β(t)

2
k − β(t)[∇kt

log p(y|x̂0(xt), k̂0(kt))

+ skθ∗(kt, t)])dt+
√
β(t)dw̄. (18)

The system of equations (17),(18) are now numerically
solvable as the gradient of the log likelihood is analytically
tractable. Specifically, for the Gaussian measurement, we
have

∇xt log p(y|x̂0, k̂0) = − 1

σ2
∇xt‖y − k̂0 ∗ x̂0‖22. (19)

Combined with the ancestral sampling steps [22], our algo-
rithm for posterior sampling of blind deblurring is formally
given in Algorithm 1. Here, note that we choose to take
static step size times the gradient of the norm instead of
taking time-dependent step sizes times the gradient of the
squared norm, as it was shown to be effective despite its
simplicity [12]. Furthermore, in order to impose the usual
condition (14), we define a set C := {k|1Tk = 1,k � 0},
and project onto the set through PC(k̂0) in Algorithm 1, af-
ter the estimation of k̂0 at each intermediate step. For visual
illustration of the proposed method, see Fig. 2.
Augmenting diffusion prior with sparsity. Implement-
ing (17),(18) directly induces fairly stable results with the
correct choice of α. Here, we go a step further and adopt
a lesson from the classic literature. As we often wish to
estimate blur kernels that are sparse, we promote sparsity

only to the kernel that we are estimating by augmenting the
diffusion prior with `0/`1 regularization. The minimization
strategy for the kernel then becomes

ki−1 = k′i−1 − α
(
‖y − k̂0 ∗ x̂0‖2 + λRk(k̂0)

)
, (20)

where λ is the regularization strength, and the choice of
Rk(·) := `0/`1 regularization depends on the type of the
dataset. With such augmentation, reconstruction can be fur-
ther stabilized.
Interpretation in Gaussian scale-space. (Gaussian)
Scale-space theory [37] states that one can represent signals
in multiple scales by gradually convolving with Gaussian
filters. As adding Gaussian noise to random vectors in the
forward pass of the diffusion has a dual relation in the den-
sity domain (i.e. convolution with Gaussian kernels), one
can think of the diffusion process as a realization of one
such process. Thus, the reverse diffusion process can be in-
terpreted as a coarse-to-fine synthesis evolving through the
Gaussian scale-space, which is most visible by visualizing
x̂0(xt), k̂0(kt) when evolving through t = 1 → 0 (see
Fig. 1(c)).

For blind deconvolution problems, in order to achieve
optimal quality, it is a standard practice to start the optimiza-
tion process at a coarse scale by down-sampling, and se-
quentially upsample with a pre-determined schedule to re-
fine the estimates [42, 43]. However, the discretized sched-
ule is typically abrupt (e.g. [42, 43] uses 8 discretization)
and ad-hoc. On the other hand, by using the reverse diffu-
sion process, we are granted with a natural, smooth sched-
ule of evolution, which can be thought of as a continuous
generalization of the coarse-to-fine reconstruction strategy.
This could be another reason why the proposed method is
able to dramatically outperform the conventional methods.

4. Experiments
4.1. Experimental setup

Blind deblurring. For blind deblurring, we conduct
experiments on FFHQ 256×256 [27], and AFHQ-dog
256×256 [11] dataset on {motion, Gaussian}-deblurring.
We choose 1k validation set for FFHQ, and use 500 test
sets for AFHQ-dog. We leverage pre-trained score func-
tions, as in the experimental setting of [14]. We train
the score function on 60k generated blur kernels of size
64 × 64 (both Gaussian and motion1) for 3M steps with a
small U-Net [17]. For testing, motion blur kernel is ran-
domly generated with with intensity 0.5 following [12],
and the standard deviation of the gaussian kernels is set to
3.0. Step size for Algorithm 1 is set to α = 0.3 for both
FFHQ/AFHQ. We choose Rk(·) = `1, λ = 1.0 for FFHQ,
and Rk(·) = `0, λ = 5.0 for AFHQ.

1https://github.com/topics/motion-blur
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Figure 4. Blind deblurring results. (row 1): FFHQ 256×256 motion deblurring, (row 2): AFHQ 256×256 motion deblurring. (row 3):
AFHQ 256×256 Gaussian deblurring. (a) Measurement, (b) Pan-DCP [45], (c) MPRNet [61], (d) SelfDeblur [48], (e) BlindDPS (ours),
(f) Ground truth. For (c), kernel not shown as the method only estimate images.

FFHQ (256× 256) AFHQ (256× 256)

Motion Gaussian Motion Gaussian

Method FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑
BlindDPS (ours) 29.49 0.281 22.24 27.36 0.233 24.77 23.89 0.338 20.92 20.54 0.287 23.63

SelfDeblur [48] 270.0 0.717 10.83 235.4 0.686 11.36 300.5 0.768 9.081 172.2 0.662 11.53
MPRNet [61] 111.6 0.434 17.40 95.12 0.337 20.75 131.8 0.521 14.85 46.19 0.366 20.51
DeblurGANv2 [33] 220.7 0.571 17.75 185.5 0.529 19.69 186.2 0.597 17.64 86.87 0.523 20.29
Pan-DCP [45] 214.9 0.520 15.41 92.70 0.393 20.50 214.0 0.704 11.87 57.14 0.392 20.97
Pan-`0 [42] 242.6 0.542 15.53 109.1 0.415 19.94 235.0 0.627 15.34 62.76 0.395 21.41

Table 1. Quantitative evaluation (FID, LPIPS, PSNR) of blind deblurring task on FFHQ and AFHQ. Bold: Best, under: second best.

FFHQ (256× 256) AFHQ (256× 256)

Motion Gaussian Motion Gaussian

Method MSE ↓ MNC ↑ MSE ↓ MNC ↑ MSE ↓ MNC ↑ MSE ↓ MNC ↑
BlindDPS (ours) 0.003 0.955 0.000 0.995 0.003 0.930 0.001 0.991

SelfDeblur [48] 0.021 0.323 0.020 0.266 0.021 0.268 0.020 0.272
Pan-DCP [45] 0.020 0.425 0.016 0.478 0.020 0.365 0.016 0.481
Pan-`0 [42] 0.020 0.454 0.016 0.518 0.020 0.398 0.015 0.517

Table 2. Quantitative evaluation (MSE, MNC [24]) of kernel esti-
mation on FFHQ and AFHQ. Bold: Best, under: second best.

Imaging through turbulence. For imaging through turbu-
lence, we conduct experiments with FFHQ 256×256, and
ImageNet 256×256 [16], with pre-trained ImageNet score
function taken from [17]. The score function for kernel blur
is taken from the blind deblurring experiment, and the score
function for the tilt map is trained with 50k randomly gen-
erated tilt maps following [6]. The point spread function
(PSF) is assumed to be a Gaussian with standard deviation

of 4.0, 2.0 for FFHQ, ImageNet, respectively (size 64×64).
For both blind inverse problems, we add Gaussian measure-
ment noise with σ = 0.02. Step size is set to α = 0.3. Full
details on experimental setup can be found in supplemen-
tary section F.
Evaluation. We use three metrics—Frechet inception
distance (FID), learned Perceptual Image Patch Similarity
(LPIPS), and peak signal-to-noise-ratio (PSNR)—for quan-
titatively measuring the performance of the image recon-
struction. For kernel estimation, we use mean-squared-
error (MSE), and maximum of normalized convolution
(MNC) [24], which is computed by

MNC := max

(
k̃ ∗ k∗

‖k̃‖2‖k∗‖2

)
, (21)

where k̃,k∗ are the estimated, and the ground truth kernels,
respectively.
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FFHQ (256× 256) ImageNet (256× 256)

Method FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑
BlindDPS (ours) 27.35 0.247 24.49 51.25 0.341 19.59

TSR-WGAN [26] 58.30 0.258 26.29 69.80 0.369 17.67
ILVR [10] 65.50 0.370 21.48 85.21 0.494 18.09
MPRNet [61] 116.2 0.411 19.68 78.24 0.421 20.34
DeblurGANv2 [33] 225.9 0.561 18.40 60.31 0.393 21.56

Table 3. Quantitative evaluation (FID, LPIPS, PSNR) of imag-
ing through turbulence task on FFHQ and ImageNet. Bold: Best,
under: second best.

Comparison methods. For blind deblurring, we compare
the reconstruction performance of BlindDPS against state-
of-the-art methods. Specifically, we choose MPRNet [61]
and DeblurGANv2 [33] as supervised learning-based base-
lines that are incapable of kernel estimation, but work
through amortized inference. We also compare our method
against SelfDeblur [48], which leverages deep image prior
(DIP) for estimating both the kernel and the image. For
optimization-based methods, we use Pan-dark channel prior
(Pan-DCP) [45], and Pan-`0 [42]. For imaging through tur-
bulence, we use MPRNet [61], DeblurGANv2 [33], and
TSR-WGAN [26] as comparison methods that are based on
supervised traning. We also compare against ILVR [10],
which is a diffusion model-based method that is capable of
restoring images from low resolution.

4.2. Results

Blind deblurring. Motion deblurring results are presented
in Fig. 1(a) and Fig. 4. As our setting for motion deblur-
ring imposes a rather aggressive degradation with a large
blur kernel, most of the prior arts fail catastrophically, not
being able to generate a feasible solution. In contrast, our
method accurately captures both the kernel and the image
with sharpness. Similar trend can be seen for Gaussian de-
blurring presented in the third row of Fig. 4. Other meth-
ods fall far short of BlindDPS in the sense that they either
produce reconstructions that are blurry with inaccurate blur
kernel estimation, or fails dramatically (e.g. SelfDeblur).
Furthermore, the proposed method establishes the state-of-
the-art in all quantitative metrics, which can be seen in Ta-
ble 1 and Table 2.
Imaging through turbulence. We show the reconstruc-
tion results in Fig. 1(b) and Fig. 5, with quantitative met-
rics in Table 3. Consistent with the results from blind de-
blurring, BlindDPS outperforms the comparison methods
in most cases, effectively removing both the blur and the tilt
from the measurement. Notably, our method outperforms
all other methods by large margins on perceptual metrics
(i.e. FID, LPIPS). For PSNR, the proposed method of-
ten slightly underperforms against supervised learning ap-
proaches, which is to be expected, as for reconstructions
from heavy degradations, retrieving the high-frequency de-

Motion Gaussian

λ 0.0 0.1 1.0 5.0 0.0 0.1 1.0 5.0

MNC ↑ 0.929 0.956 0.958 0.959 0.996 0.997 0.996 0.997
MSE ↓ 0.004 0.002 0.002 0.002 0.000 0.000 0.000 0.000

Table 4. Ablation study: effect of sparsity regularization in blind
deconvolution.

tails often penalizes such distortion metrics [4].

4.3. Ablation studies

We perform two ablation studies to verify our design
choices: 1) using the diffusion prior for the forward model
parameters, and 2) augmenting the diffusion prior with the
sparsity prior. Details on the experimental setup along with
further analysis can be found in Supplementary section C.
Diffusion prior for the forward model. One may ques-
tion why the score function for the kernel is necessary in the
first place, since one could also estimate the kernel solely
through gradient descent using the gradient of the likeli-
hood. In fact, this corresponds to using the uniform prior
for the kernel distribution, which we compare against the
proposed diffusion prior (BlindDPS) in Fig. 6. We clearly
see that using the uniform prior yields heavily distorted re-
sult, with poorly estimated kernel. From this experiment,
we observe that using another diffusion process specifically
for the forward model is crucial for the performance.
Effect of sparsity regularization. One design choice
made in BlindDPS is the additional sparsity regularization
applied to kernels. Here, we analyze the effect of such reg-
ularization. In Table 4, we report on quantitative metrics
for the kernel, depending on the regularization weight λ.
Clearly, setting λ = 0.0 induces inferior performance espe-
cially for motion deblurring. When setting λ ≥ 0.1 how-
ever, we can see that one can achieve good performance
regardless of the chosen weight value. As diffusion pri-
ors have been shown to have surprisingly high generaliza-
tion capacity [15, 25], we choose a mild weight value of
λ = 1.0, which gives visually appealing results without
down-weighting the influence of diffusion priors too much.

5. Discussion and Related Works

This work follows the line of endeavors to develop
methods that can solve inverse problems through diffu-
sion models. Methods that are based on iterative projec-
tion onto convex sets (POCS) were the first to be devel-
oped, iterating between the denoising step, and the projec-
tion step [10,14,15,52,53]. Methods that attempt to approx-
imate posterior sampling via annealed Langevin dynamics
(ALD) [25], and singular value decomposition (SVD) [28]
were proposed, with the latter showing particular robustness
to noisy measurements.

The trend recently shifted towards leveraging the

7



Figure 5. Reconstruction of imaging through turbulence. (row 1): FFHQ 256×256, (row 2-3): ImageNet 256×256. (a) Measurement, (b)
ILVR [10], (c) MPRNet [61], (d) TSR-WGAN [26], (e) BlindDPS (ours), (f) Ground truth.

Figure 6. Ablation study: uniform prior vs. diffusion prior. (a)
Measurement, (b) uniform prior, (c) diffusion prior, (d) ground
truth.

denoised estimate via Tweedie’s formula at the inter-
mediate steps under various names — manifold con-
strained gradient (MCG) [13], gradient guidance [23], and
reconstruction-based method [29]. Diffusion posterior sam-
pling (DPS) [12] is the method that is the most similar to
ours, showing that such method is an approximation of the
posterior sampling process. However, none of the methods
so far considered blind inverse problem, and to the best of
our knowledge, we are the first to show that posterior sam-
pling with diffusion scales to blind settings.
Limitations and future directions. As BlindDPS per-
forms joint minimization on multiple factors (e.g. kernel,
tilt-map, image), it is typically less robust than the non-
blind reconstruction scheme. At times, the solution diverges
when the parameters are incorrectly tuned. For imaging

through turblence, it is often the case where the tilt map
is incorrectly estimated whereas the kernel and the ground
truth image are accurately estimated. Furthermore, as we
train and use specified diffusion score functions for each of
the component, inference speed is delayed, due to the addi-
tional forward/backward passes through the newly involved
score functions. When the forward functional involves esti-
mating additional parameters, the number of score functions
required will scale linearly, not being efficient with complex
functional forms. Finally, we note that our method is yet to
solve the truly blind case, where we do not know the func-
tional form of the forward mapping. Solving the truly blind
case would be an interesting direction of future studies.

6. Conclusion

In this work, we proposed BlindDPS, a framework for
solving blind inverse problems by jointly estimating the pa-
rameters of the forward measurement operator and the im-
age to be reconstructed. We theoretically show how we can
construct a system of reverse SDEs to approximate poste-
rior sampling for blind inverse problems, by using multiple
score functions designed to estimate each part of the com-
ponent. With extensive experiments, we show that Blind-
DPS establishes state-of-the-art performance on both blind
deblurring and imaging through turbulence, even when the
degradation and the measurement noise are heavy.
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Supplementary Material
A. Proofs

We first borrow the result from [12].

Proposition 1. For the case of VP-SDE or DDPM sampling whose the forward diffusion is given by

xt =
√
ᾱ(t)x0 +

√
1− ᾱ(t)z, z ∼ N (0, I), (22)

p(x0|xt) has the unique posterior mean at

x̂0 := E[x0|xt] =
1√
ᾱ(t)

(xt + (1− ᾱ(t))∇xt log pt(xt)). (23)

In our case, Proposition 1 holds for both the reverse conditional probability p(x0|xt) as well as p(k0|kt), as they are
both constructed from DDPM. Given the posterior mean x̂0, k̂0 that can be computed efficiently (i.e. via one forward pass
through the neural network) during the intermediate steps, our proposal is to find a tractable approximation for p(y|xt,kt).
Specifically, we propose the following approximation

p(y|xt,kt) ' p(y|x̂0, k̂0), where x̂0 := E[x0|xt] = Ex0∼p(x0|xt) [x0] (24)

k̂0 := E[k0|kt] = Ek0∼p(k0|kt) [k0] (25)

Now, to quantify the approximation error induced by eq. (24),(25), the following definition is useful.

Definition 1 (Jensen gap [20,51]). Let x be a random variable with distribution p(x). For some function f that may or may
not be convex, the Jensen gap is defined as

J (f,x ∼ p(x)) = E[f(x)]− f(E[x]), (26)

where the expectation is taken over p(x).

Using the Jensen gap defined in Definition 1, we attempt to achieve a meaningful upper bound on the gap. First, we have
the following

Proposition 2 (Jensen gap upper bound [20]). Define the absolute cenetered moment asmp := p
√

E[|X − µ|p], and the mean
as µ = E[X]. Assume that for α > 0, there exists a positive number K such that for any x ∈ R, |f(x)− f(µ)| ≤ K|x−µ|α.
Then,

|E[f(X)− f(E[X])]| ≤
∫
|f(X)− f(µ)|dp(X) ≤ K

∫
|x− µ|αdp(X) ≤Mmα

α. (27)

The following lemmas from [12] are also useful.

Lemma 1. Let φ(·) be a univariate Gaussian density function with mean µ and variance σ2. There exists a constant L such
that ∀x, y ∈ R,

|φ(x)− φ(y)| ≤ L|x− y|, (28)

where L = 1√
2πσ2

exp (− 1
2σ2 ).

Lemma 2. Let φ(·) be an isotropic multivariate Gaussian density function with mean µ and variance σ2I . There exists a
constant L such that ∀x,y ∈ Rd,

‖φ(x)− φ(y)‖ ≤ L‖x− y‖, (29)

where L = d√
2πσ2

e−1/2σ2

.
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Theorem 1. Under the same conditions in [12], we have

∇xt log pt(y|xt,kt) ' ∇xt log p(y|x̂0(xt), k̂0(kt))

∇kt
log pt(y|xt,kt) ' ∇kt

log p(y|x̂0(xt), k̂0(kt)).

Proof. The proof of the theorem is inspired by and builds upon [12]. We first note that xt,kt ∀t ∈ [0, 1] are independent
(See Fig. A.1). Further, y and xt are conditionally independent on x0; y and kt are conditionally independent on k0. Then,
we have the following factorization

p(y|xt,kt) =

∫
p(y|x0,k0)p(x0|xt)p(k0|kt) dx0dk0 (30)

= Ex0∼p(x0|xt),k0∼p(k0|kt)[f(x0,k0)], (31)

where f(x0,k0) = h(k0∗x0), with h(µ) denoting the density function of an isotropic multivariate Gaussian density function
with mean µ, and variance σ2I . Our proposal is to use the Jensen approximation

p(y|xt,kt) ' p(y|E[x0,k0]) = p(y|x̂0, k̂0), (32)

where the last equality comes from the independency of x0 and k0. Now we derive the closed-form upper bound of the
Jensen gap. For simplicity in exposition, let us define K0x0 ≡ k0 ∗ x0,≡X0k0, where K0,X0 are block Hankel matrices
that represent the convolution operation in matrix multiplication. Further, we denote ¯‖K0‖ := Ek0∼p(k0|kt)[‖K0‖]. Our
Jensen gap reads

J (f, p(x0|xt)p(k0|kt)) = |Ex0,k0
[f(x0,k0)]− f(Ex0

[x0],Ek0
[k0])| (33)

≤ |Ek0,x0
[f(x0,k0)]− Ek0

[f(Ex[x0],k0)]|︸ ︷︷ ︸
1©

+ |Ek0
[f(Ex0

[x0],k0)]− f(E[x0],E[k0])|︸ ︷︷ ︸
2©

, (34)

with

1© = |Ek0
[Ex0

[f(x0,k0)]− f(Ex0
[x0],k0)]| (35)

(a)
≤ Ek0

[∫
|h(k0 ∗ x0)− h(k0 ∗ x̂0)|dP (x0|xt)

]
(36)

(b)
≤ Ek0

[
d√

2πσ2
e−1/2σ2

∫
‖K0x0 −K0x̂0‖dP (x0|xt)

]
(37)

≤ Ek0

[
d√

2πσ2
e−1/2σ2

‖K0‖
∫
‖x0 − x̂0‖dP (x0|xt)

]
(38)

(c)
≤ Ek0

[
d√

2πσ2
e−1/2σ2

‖K0‖m1,x0

]
(39)

(d)
≤ d√

2πσ2
e−1/2σ2

‖K̄0‖m1,x0
, (40)

where (a) is from Proposition. 2, (b) is from Lemma. 2, and (c-d) are from the definitions. Moreover,

2© ≤
∫
|h(k̂0 ∗ x̂0)− h(k0 ∗ x̂0)|dP (k0|kt) (41)

≤ d√
2πσ2

e−1/2σ2

∫
‖X̂0k0 − X̂0k̂0‖dP (k0|kt) (42)

≤ d√
2πσ2

e−1/2σ2

‖X̂0‖m1,k0
. (43)

Hence

J (f, p(x0|xt)p(k0|kt)) ≤
d√

2πσ2
e−1/2σ2

(
‖K̄0‖m1,x0 + ‖X̂0‖m1,k0

)
. (44)
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where

m1,x0
:=

∫
‖x0 − x̂0‖dP (x0|xt) (45)

m1,k0 :=

∫
‖k0 − k̂0‖dP (k0|kt) (46)

We have derived that the approximation (32) has the Jensen gap upper bounded by (44). Finally, taking the derivative of the
log to (32), we have that

∇xt
log pt(y|xt,kt) ' ∇xt

log p(y|x̂0(xt), k̂0(kt))

∇kt
log pt(y|xt,kt) ' ∇kt

log p(y|x̂0(xt), k̂0(kt)).

Note that the approximation error from the Jensen gap approaches to zero as the noise level σ increase sufficiently.
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Figure A.1. Probabilistic graph of BlindDPS for blind deblurring.

B. BlindDPS

B.1. Imaging through turbulence

In terms of inverse problem solving, the tilt-blur model
is often used [6, 7, 50], as the model is simple but fairly
accurate. Specifically, we have

p(y|x0,k0,φ0) := N (y|k0 ∗ Tφ0(x0), σ2I). (47)

For details in the forward model that is used for our exper-
iments, see Supplementary Section E. Note that the three
factors are all independent, i.e.

p(x0,k0,φ0|y) ∝ p(y|x0,k0,φ0)p(x0)p(k0)p(φ0).

Then, from Remark 1, we can again construct a system of
reverse SDEs (See Fig. B.1) analogous to the blind deblur-
ring case ((17),(18)):

dx = (−β(t)

2
x− β(t)[∇xt

log p(y|x̂0(xt), k̂0(kt), φ̂0(φt))

+ siθ∗(xt, t)])dt+
√
β(t)dw̄, (48)

dk = (−β(t)

2
k − β(t)[∇kt

log p(y|x̂0(xt), k̂0(kt), φ̂0(φt))

+ skθ∗(kt, t)])dt+
√
β(t)dw̄, (49)

dφ = (−β(t)

2
k − β(t)[∇φt

log p(y|x̂0(xt), k̂0(kt), φ̂0(φt))

+ stθ∗(φt, t)])dt+
√
β(t)dw̄, (50)

where stθ∗ is the score function trained to model the distri-
bution of the tilt maps. Then, we can construct a similar
method as shown in Algorithm 2 based on ancestral sam-
pling analogous to Algorithm 1. Note that for solving imag-
ing through turbulence, we do not use the `0 sparsity prior.

y

x0 xt

k0 kt

φ0 φt

p(y|x0,k0,φ0)

p(xt|x0)

p(x0|xt)

p(kt|k0)

p(k0|kt)

p(φt|φ0)

p(φ0|φt)

Figure B.1. Probabilistic graph of BlindDPS for imaging through
turbulence.

Algorithm 2 BlindDPS — Imaging through turbulence

Require: N , y, α, {σ̃i}Ni=1

1: xN ,kN ,φN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ŝi ← siθ∗(xi, i)
4: ŝk ← skθ∗(ki, i)
5: ŝk ← stθ∗(φi, i)
6: x̂0 ← 1√

ᾱi
(xi +

√
1− ᾱiŝi)

7: k̂0 ← 1√
ᾱi

(ki +
√

1− ᾱiŝk)

8: k̂0 ← PC(k̂0)

9: φ̂0 ← 1√
ᾱi

(φi +
√

1− ᾱiŝt)
10: zi, zk, zt ∼ N (0, I)

11: x′i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃izi

12: k′i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
ki +

√
ᾱi−1βi

1−ᾱi
k̂0 + σ̃izk

13: φ′i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
φi +

√
ᾱi−1βi

1−ᾱi
φ̂0 + σ̃izt

14: xi−1 ← x′i−1 − α∇xi
‖y − k̂0 ∗ Tφ0

(x̂0)‖2
15: ki−1 ← k′i−1 − α∇ki

‖y − k̂0 ∗ Tφ0
(x̂0)‖2

16: φi−1 ← φ′i−1 − α∇φi‖y − k̂0 ∗ Tφ0(x̂0)‖2
17: end for
18: return x0,k0,φ0

C. Detailed Ablation Studies
C.1. Diffusion prior for the forward model

Let us revisit the Bayes’ rule in the context of diffusion
models for posterior sampling in blind deconvlution:

∇xt
log p(xt,kt|y) = ∇xt

log p(y|xt,kt) +∇xt
log p(xt)

∇kt
log p(xt,kt|y) = ∇kt

log p(y|xt,kt) +∇kt
log p(kt).

We consider the case where we construct the diffusion prior
for the image x, but not for the kernel k. In fact, this setting
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Algorithm 3 Diffusion Posterior Sampling — Uniform
prior

Require: N , y, αx, αk{σ̃i}Ni=1, λ, σinit

1: xN ∼ N (0, I)
2: kN ∼ GaussianKernel(σinit)
3: for i = N − 1 to 0 do
4: ŝi ← siθ∗(xi, i)
5: x̂0 ← 1√

ᾱi
(xi +

√
1− ᾱiŝi)

6: ki ← PC(ki)
7: zi ∼ N (0, I)

8: x′i−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃izi

9: xi−1 ← x′i−1 − αx∇xi
‖y − ki ∗ x̂0‖2

10: Lk ← ‖y − ki ∗ x̂0‖2 + λ`0(ki)
11: ki−1 ← ki − αk∇ki

Lk
12: end for
13: return x0,k0

is similar to the concurrent work of Levac et al. [34], where
the authors propose to use a score function only for the im-
age, and not for the parameters for the motion artifact gen-
erating forward model. Note that the blind forward model
setting here is considerably simpler than our method, since
the parameter κ to be estimated is a scalar. In this regard,
the authors propose to use a uniform prior for the unknown
parameter κ, which makes the gradient of the prior to be
simply 0, i.e. ∇κt

log p(κt) = 0. If we apply such uniform
prior to our setting, our discretized update rule reads

∇xi
log p(xi,ki|y) ' siθ∗(xi, i)−

1

σ2
∇xi
‖y − ki ∗ x̂0(xi)‖22

∇ki
log p(xi,ki|y) ' − 1

σ2
∇ki
‖y − ki ∗ x̂0(xi)‖22.

Additionally, similar to BlindDPS, one can further augment
sparsity to the kernel estimation by using e.g. `0 regular-
ization. Combined with the ancestral sampling steps, we
arrive at Algorithm 3. Note that we chose Gaussian ker-
nel as an initialization, but other choices are also feasible.
The main difference between BlindDPS (Algorithm 1) and
Algorithm 3 comes from the the complexity of the priors
used. In order to quantify the performance gap, we chose
100 images from the FFHQ validation set, and compared
the result of Algorithm 3 against BlindDPS. We performed
grid search to find the optimal parameters αx, αk, λ, which
were set to αx = 0.3, αk = 0.3, and λ = 5.0.

Representative results can be seen in Fig. 6, and quan-
titative results can be found in Table C.1. Clearly, uniform
prior far underperforms against the diffusion prior proposed
in this work. We can conclude that while simple priors such
as uniform prior may be a feasible option for scalar param-
eters, as the one in [34], much care should be taken when
applied to higher dimensional parameters such as blind de-
convolution.

Image Kernel

Method LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ MNC ↑
BlindDPS (ours) 0.247 23.65 0.786 0.002 0.958
Uniform prior [34] 0.566 11.72 0.369 0.163 0.844

Table C.1. Ablation study: uniform prior vs. diffusion prior
(BlindDPS).

C.2. Effect of sparsity regularization

To check the effect of sparsity regularization in (20), we
perform an ablation study by varying λ from 0.0 to 5.0.
Specifically, we use l1 sparsity regularization with differ-
ent λ for 100 blurred images taken from validation set for
FFHQ, with forward model and blur kernels adjusted to be
identical to those of the main experiment (section E).

C.3. Progress of estimation

As discussed in section 3 of main text, the proposed
method admits a natural Gaussian scale-space evolution of
estimation, when visualized in the denoised representations
x̂0, k̂0. To quantify the trend in which the estimates evolve,
we measure the MSE against the ground truth image and
the kernel, and average the trend over 100 of the test data.
We summarize the result in Fig. C.1a, C.1b. Here, we see
that the MSE value drops to the minimum value at about
400/1000, 200/1000 iterations, which is relatively early in
the whole reverse diffusion process. For the rest of the steps
(especially for the images), the remaining high frequency
details are in-filled, boosting the perceptual quality.

D. Extended Related Works
In this section, we discuss related works categorized into

two applications that we tackle - blind deblurring, and imag-
ing through turbulence.

D.1. Blind deblurring

We first review the optimization-based (model-based)
methods that were extensively studied. The seminal work
of Chan et al. [8] introduced the total variation (TV) prior,
which enhances the gradient sparsity of both the image and
the kernel. The scheme has been developed and re-invented
over the years [35], yielding better practices to obtain sta-
ble results [46]. To promote sparsity of both the image
and the kernel, regularizations based on `0 penalty [42],
`p, 0 < p < 1 penalty [64] based on the generalized it-
erative shrinkage algorithm (GISA) [63], `1, `2 [31] were
proposed. Later on, it was shown that non-blurry natural
images have sparse “dark channel” [44], where the dark
channel is computed as the union of minimum values in
patch occurrences. Promoting sparsity of the dark chan-
nel [45] has shown to be an effective method for perform-
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(a) Progress of x̂0(xt) (b) Progress of k̂0(kt)

Figure C.1. Progress of estimation error averaged over 100 test set in blind deconvolution. Blue line: mean value, shaded area: ±1σ.
Measured with MSE against the ground truth.

ing blind deconvolution. When the regularization functions
are chosen, one typically performs alternating optimization
strategies [5] to solve the problem. It should be noted that
it is often the case where the optimization strategy is non-
trivial, and involves many tricks such as multi-scale opti-
mization [43], and painful parameter tuning for specific in-
put images. Wrong choice of parameter/optimization strat-
egy typically results in heavily compromised performance.

In recent years, deep learning (DL) based methods have
been largely developed. One can categorize DL methods
into 1) explicit kernel estimation methods, where the net-
work is designed to both deblur the image, and to estimate
the exact kernel; 2) amortized inference, where the estima-
tion of kernel does not take place. For the first type of meth-
ods, convolutional neural networks (CNN) were adopted for
seperate modules, estimating the kernel and the deblurred
image, respectively [49, 54, 59]. Advancing the conven-
tional model-based priors, discriminative priors [36] and
deep image priors (DIP) [48] were proposed, showing im-
proved performance. While deep priors typically improves
the performance, one should note that they are also often
unstable, leading to undesirable solutions: both adversarial
training and jointly training two deep image priors are hard
to handle.

More recently, learning the inverse mapping without ex-
plicitly estimating the kernel has gained popularity. For
these methods, neural network is trained through super-
vised learning with paired clean and blurry images. Es-
pecially, DeblurGAN [32] used the perceptual loss that
helps to maintain contents and adversarial loss that mini-
mizes the Wasserstein distance between the clean images
and reconstructed images. DeblurGAN-v2 [33] focused
on handling multi-scale features to solve the blind deblur-
ring problem. They adopted Feature Pyramide Network

(FPN) and proposed double-scale discriminators, where
each discriminator measures the Wasserstein distance be-
tween clean images and reconstructed images at global and
local patch level, respectively. Meanwhile, MPRNet [61]
adopted a multi-stage learning method that decomposes
the given problem into sub-problems and solves each one
through a lightweight sub-network including a supervised
attention module that gives weight to local features. As
a result, blurry images are progressively restored. On
the other hand, transformer based methods has been pro-
posed and shown notable performance on deblurring task.
Specifically, IPT [9] pretrained transformer on multiple im-
age processing tasks and fine-tune the transformer on each
tasks, Uformer [57] proposed LeWin transformer block for
locally-enhanced self attention and multi-scale modulator,
and Restormer [60] proposed two specialized transformer
modules called MDTA and GDFN with progressive training
scheme that enhances the image restoration performance on
different spatial resolutions. While often achieving state-
of-the-art performance, these methods tend to compromise
flexibility, modularity, and generalization capacity. For in-
stance, the model cannot handle degradations that deviate
from the traning data.

D.2. Imaging through turbulence

Although the correct estimation model for imaging
through turbulence is tilt-then-blur [7], for inverse problem
solving, the blur-then-tilt model is more often used. This
is mainly due to the ease of applying off-the-shelf blind
deblurring methods once the tilt is mitigated through, e.g.
optical flow [38]. While in our work, we only consider sin-
gle frame turbulence mitigation for simplicity, it is usually
the case where we have multiple temporal frames that are
degraded by random phase distortions. Hence, removing
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the tilt proceeds by e.g. temporal averaging [62], varia-
tional model [58], frame selection [1], etc. Moreover, when
dealing with sequence of images, the “Lucky image fusion”
step is often performed to find the reference image with the
least amount of phase distortion. For details in such step,
see, e.g. [19]. Once the distortion (tilt) is mitigated, the
deblurring step is often performed with off-the-shelf algo-
rithms [1,58,62]. However, as most off-the-shelf deblurring
algorithms do not take into account the kernel priors specif-
ically for turbulence, a more specified algorithm leveraging
basis expansion [40] was proposed.

Similar to deblurring methods, various DL based meth-
ods have been proposed. Utilizing CNN to estimate the
phase distortion map [39] was proposed. Moreover, super-
vised learning based on pairs of simulated atmospheric tur-
bulence images have been proposed over the years. Trans-
fer learning approach from pre-trained deblurring network
was proposed [21]. Variants of generative adversarial net-
work (GAN) based methods were also proposed [26, 47],
leveraging the adversarial learning scheme to enhance the
visual quality of the reconstructions. Recently, a method
that uses physics-driven transformer architecture dubbed
TurbNet [41] was proposed. To the best of our knowledge,
none of the methods in the literature considered using unsu-
pervised reconstruction scheme by utilizing the generative
prior, as in our method. Although our method is developed
upon a rather simplified forward model of imaging through
turbulence, we believe our work establishes a proof of con-
cept, and opens up a new are regarding turbulence recon-
struction.

E. Inverse problem setting
In this section, we briefly summarize how our forward

model is constructed.

E.1. Blind deblurring

The forward model is given as

y = k0 ∗ x0 + n, n ∼ N (0, σ2I), (51)

where σ = 0.02 is set as the measurement noise level. The
size of the kernel is set to 64× 64. For motion blur kernels,
we use the random kernel generator from2 with intensity
value set to 0.5.

E.2. Imaging through turbulence

The forward model is given as

y = k0 ∗ Tφ0(x0) + n, n ∼ N (0, σ2I), (52)

where φ is the tilt vector field that has identical size of the
given image (i.e. in our case 256×256). Specifically, the tilt

2https://github.com/LeviBorodenko/motionblur/
blob/master/motionblur.py

vector field is generated with the algorithm proposed in [6].
The parameters are set to M = 500, N = 32, σ = 1.0,
with all the other parameters set same to the baseline. The
blur kernel k0 is taken to be isotropic Gaussian kernel with
standard deviation of 0.4 (FFHQ), and 0.2 (ImageNet). The
proposed algorithm for solving imaging through turbulence
is presented in Algorithm. 2.

F. Experimental Details
F.1. Training

We take pre-trained score function for the FFHQ dataset,
and the ImageNet dataset, following the settings of [12].
When training the score function for kernels, we create a
database of that consists of 60k 64 × 64 kernels. Among
them, 50k motion blur kernels were generated from3, by
sampling the intensity value I ∼ Unif(0.2, 1.0). The
other 10k Gaussian blur kernels were generated with ran-
dom standard deviation σ ∼ Unif(0.1, 5.0).

For training the score function for kernel / tilt-map, we
use the U-Net architecture from guided-diffusion4,
and train the models using base configurations. The models
were trained with a single RTX 3090 GPU for 3.0M / 1.5M
steps, which took about one day / two days, respectively.

F.2. Compute time

As stated in the limitations, the number of score func-
tions that are used at inference time scales linearly with
the number of components involved in the forward model.
For blind deblurring, two neural networks are used (image,
kernel), and for imaging through turbulence, three neural
networks are used (image, kernel, tilt map). In order to
quantify additional compute cost in each of the situation,
we measure the wall-clock time to reconstruct a single im-
age with a single RTX 2080ti GPU. DPS [12]: 132.39 sec.
BlindDPS—Blind deblurring(2 score functions): 180.22
sec. BlindDPS—Imaging through turbulence(3 score func-
tions): 220.76 sec.

F.3. Comparison methods

Pan-DCP [45]. The method utilizes the dark channel prior
as the regularization function for images. We use the official
implementation5, with the parameters advised for facial blur
images. We list the specific parameters below. Optimiza-
tion is performed in a coarse-to-fine strategy in 8 different
stages.

• λdark = 4e− 3

• λgrad = 4e− 3

3https://github.com/LeviBorodenko/motionblur
4https://github.com/openai/guided-diffusion
5https://jspan.github.io/projects/dark-channel-

deblur/index.html
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• λtv = 1e− 3

• λl0 = 5e− 4

Pan-`0 [42]. The method regularizes `0 regularization for
both the image and the kernel. We use the official imple-
mentation6, with the parameters set as below. Optimization
and post-processing is performed similar to Pan-DCP.

• λpixel = 4e− 3

• λgrad = 4e− 3

• λtv = 1e− 3

• λl0 = 2e− 3

SelfDeblur [48]. We use the default setting of YCbCr de-
blurring that selfdeblur uses, with static learning rate of 0.01
for 2500 steps. Optimization is performed by minimizing
the MSE for the first 500 steps, and then switching the loss
to 1− SSIM(·, ·).
MPRNet [61]. We use the official implementation7, with
the parameters, learning rate decay and neural network ar-
chitectures advised for the deblurring task. For both FFHQ
and AFHQ, we train the model for 30k iterations with a
batch size of 3. For a fair comparison with the proposed
method, half of the input image consists of gaussian blurred
images and the other half image consists of motion blurred
image.
DeblurGANv2 [33]. We use the official implementa-
tion8, by following the default settings for parameters, data
augmentation strategies and neural network architectures.
Specifically, we train the model by minimizing sum of pixel
distance loss, WGAN-gp adversarial loss and perceptual
loss with weight parameters as below. Inception-ResNet-v2
is used as backbone of the generator. For both FFHQ and
AFHQ, we train the model for 1.5 million iterations with
a batch size of 1 and input image contains half Gaussian
blurred images and the other half motion blurred images for
fair comparison with the proposed method.

• λpixel = 5e− 1

• λadv = 6e− 3

• λperceptual = 1e− 2

ILVR [10]. We choose the following hyper-paremters:
down-scaling factor of 16, 1000 sampling steps, with the
latent guidance applied for 1000-100 sampling steps. We
use the same score functions that were used for BlindDPS.

6https : / / jspan . github . io / projects / text -
deblurring/index.html

7https://github.com/swz30/MPRNet
8https://github.com/VITA-Group/DeblurGANv2

TSR-WGAN [26]. The original work considers spatio-
temporal 3D data, whereas our inverse problem setting con-
siders single frame imaging through turbulence. Hence, we
design a U-Net like network architecture that consists of 2D
convolutions rather than leveraging 3D convolutions. Other
training configurations follow the default setting of [26].

Note that for methods that are capable of estimating
the kernel simultaneously (i.e. Pan-DCP, Pan-`0, SelfDe-
blur), only odd-sized kernels can be estimated, whereas our
ground truth kernels are even-sized. To match the discrep-
ancy, we estimate 65×65 sized kernel first, and then cut the
redundant row/column as the post-processing step. In prac-
tice, such discrepancy only affects the result marginally.

F.4. Data and Code availability

Our open source implementation will be made public
upon publication.

G. Further Experiments
Further experimental results on blind deblurring are

shown in Fig. G.1, G.2, G.3, G.4. Further experimen-
tal results on imaging through turbulence are shown in
Fig. G.5, G.6.

19

https://jspan.github.io/projects/text-deblurring/index.html
https://jspan.github.io/projects/text-deblurring/index.html
https://github.com/swz30/MPRNet
https://github.com/VITA-Group/DeblurGANv2


Figure G.1. Blind motion deblurring results on the FFHQ 256 × 256 dataset. (a) Measurement, (b) Pan-DCP [45], (c) MPRNet [61], (d)
SelfDeblur [48], (e) BlindDPS (ours), (f) Ground truth.
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Figure G.2. Blind motion deblurring results on the AFHQ 256 × 256 dataset. (a) Measurement, (b) Pan-DCP [45], (c) MPRNet [61], (d)
SelfDeblur [48], (e) BlindDPS (ours), (f) Ground truth.
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Figure G.3. Blind Gaussian deblurring results on the FFHQ 256× 256 dataset. (a) Measurement, (b) Pan-DCP [45], (c) MPRNet [61], (d)
SelfDeblur [48], (e) BlindDPS (ours), (f) Ground truth.
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Figure G.4. Blind Gaussian deblurring results on the AFHQ 256× 256 dataset. (a) Measurement, (b) Pan-DCP [45], (c) MPRNet [61], (d)
SelfDeblur [48], (e) BlindDPS (ours), (f) Ground truth.
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Figure G.5. Imaging through turbulence results on the FFHQ 256 × 256 dataset. (a) Measurement, (b) ILVR [10], (c) MPRNet [61], (d)
TSR-WGAN [26], (e) BlindDPS (ours), (f) Ground truth.
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Figure G.6. Imaging through turbulence results on the ImageNet 256 × 256 dataset. (a) Measurement, (b) ILVR [10], (c) MPRNet [61],
(d) TSR-WGAN [26], (e) BlindDPS (ours), (f) Ground truth.
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