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Abstract

In theory, vector quantization (VQ) is always better than
scalar quantization (SQ) in terms of rate-distortion (R-
D) performance [34]. Recent state-of-the-art methods for
neural image compression are mainly based on nonlinear
transform coding (NTC) with uniform scalar quantization,
overlooking the benefits of VQ due to its exponentially in-
creased complexity. In this paper, we first investigate on
some toy sources, demonstrating that even if modern neu-
ral networks considerably enhance the compression per-
formance of SQ with nonlinear transform, there is still an
insurmountable chasm between SQ and VQ. Therefore, re-
volving around VQ, we propose a novel framework for neu-
ral image compression named Nonlinear Vector Transform
Coding (NVTC). NVTC solves the critical complexity is-
sue of VQ through (1) a multi-stage quantization strategy
and (2) nonlinear vector transforms. In addition, we apply
entropy-constrained VQ in latent space to adaptively deter-
mine the quantization boundaries for joint rate-distortion
optimization, which improves the performance both theo-
retically and experimentally. Compared to previous NTC
approaches, NVTC demonstrates superior rate-distortion
performance, faster decoding speed, and smaller model
size. Our code is available at https://github.com/
USTC-IMCL/NVTC.

1. Introduction
Recent works based on nonlinear transform coding

(NTC) [5] have achieved remarkable success in neural im-
age compression [12, 35]. Unlike these traditional image
codecs that employ linear transform such as discrete co-
sine transform (DCT), NTC is constructed with the nonlin-
ear transform layers and optimized with data-driven tech-
niques, where the modern neural networks present excellent
capability in both encoding/decoding transform and entropy
estimation [12, 20, 36]. Most NTC methods apply scalar
quantization (SQ) to discretize the latent variables and use
the additive uniform noise to approximate the quantization
error during training [6]. However, in the era of 1990s, it

Figure 1. BD-rate vs. decoding time vs. model size on the
CLIC2021 validation set [1].

has already been known that vector quantization, in spite of
it exponentially increased complexity, is always better than
SQ in terms of rate-distortion (RD) performance [34]. It in-
spires us to design a novel neural image compression model
to fully leverages vector quantization.

Vector quantization (VQ) [18] is designed to map a con-
tinuous source distribution to a set of discrete vectors. The
discrete nature of VQ has been successfully applied in gen-
erative models to avoid the “posterior collapse” issue, in-
cluding these well-known image synthesis models such as
VQVAE [42], VQGAN [16] and text-to-image synthesis
models such as DALLE [37], latent diffusion [39]. How-
ever, if we go back to the basic requirement of quantiza-
tion, we will find that VQ offers unique advantages in terms
of rate-distortion performance, particularly the space-filling
advantage and the memory advantage [34].

Given a source distribution, the goal of quantization (no
matter SQ or VQ) is to determine the quantization centers
and boundaries, and then assign indices to denote these sep-
arated quantization regions/cells. Combining these regions
fills the whole space of source distribution. The space-
filling advantage of VQ against SQ is related to the sphere
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Figure 2. Quantization results for NTC (SQ with nonlinear transform) and ECVQ (entropy-constrained VQ) on 2-d distributions. Blue
lines represent quantization boundaries and orange points represent quantization centers (codewords). “Isotropic Gaussian” refers to a 2-d
isotropic Gaussian distribution. “Banana” and “Boomerang” are two different 2-d distributions. It is observed that NTC cannot achieve the
space-filling advantage (i.e. learning hexagon-like quantization cells for 2-d sources) even on an isotropic gaussian distribution. Moreover,
NTC’s decorrelation capability is insufficient as source correlation becomes more complex. For example, quantization boundaries collide
in the red circle of ”Boomerang”, leading to a performance drop. The corresponding BD-PSNR results are shown in Table 2.

packing problem in geometry [14, 21, 43]. If we compare
the quantization results of SQ and VQ, as shown in Fig-
ure 2, we will find that even for a simple isotropic Gaus-
sian distribution, SQ with nonlinear transform cannot learn
to approximate hexagon-like quantization cells, where the
hexagon is the polytope with the best space-filling proper-
ties in 2-d space. Under the high-rate assumption, the gain
of space-filling advantage is about 1.53 dB as the dimen-
sion approaches infinity [15, 34]. Following this conclu-
sion, we experimentally provide the BD-PSNR results by
comparing SQ with nonlinear transform to VQ on isotropic
Gaussian distributions in Table 1. In addition, to reduce
the redundancies of data distributions, existing NTC meth-
ods (SQ with nonlinear transform) rely on highly expen-
sive nonlinear transform [12,46,47] and context-based auto-
regressive entropy models [20,36]. However, different from
NTC methods, VQ has superior decorrelation ability, which
is known as the memory advantage of vector quantizers.
This advantage is more obvious when quantizing complex
source distributions, such as the Boomerang distribution in
Figure 2 (especially in the red circle area).

In this paper, we build a novel framework that applies
modern neural networks to leverage the space-filling ad-
vantages and memory advantages of VQ for image com-
pression. We propose nonlinear vector transform coding
(NVTC), which achieves encouraging rate-distortion per-
formance with relatively low coding complexity. Specifi-
cally, as shown in Figure 3, we introduce three key points
to design a practical VQ, including 1) a multi-stage prod-
uct VQ rather than a single-stage VQ to reduce the expo-
nentially increased complexity, 2) nonlinear vector trans-
form rather than scalar transform to remove redundancy be-
tween sub-vectors with fewer parameters, and 3) entropy-
constrained VQ rather than unconstrained VQ to achieve su-
perior R-D optimality and joint optimization of latent-space
VQ models.

For the first point, many well-known VQ variants have
been proposed in recent decades, such as product VQ [23,
40], multi-stage VQ [24], tree-structured VQ [11] and lat-
tice VQ [17]. Although tree-structured and lattice VQ offer
fast encoding speeds, they do not reduce the storage com-
plexity of codebooks or entropy-coding frequency tables In
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Figure 3. Three key points to design a practical vector quantizer. For VQ complexity (left), we suggest a hybrid VQ structure called
multi-stage product VQ which reduces the VQ complexity from O(2KR) to O(ML2

KR
ML ). For transform complexity (middle), we use

vector transform instead of scalar transform to remove inter-vector redundancy. For RD optimality (right), we find that ECVQ [13] is
essential for the joint rate-distortion optimization, which is neglected in previous works [2, 32, 42, 45]

.

this paper, we suggest a hybrid VQ structure that incorpo-
rates both product VQ and multi-stage VQ, as shown in the
left column of Figure 3. The quantization procedure com-
prises multiple stages, and each stage employs multiple in-
dependent low-dimension quantizers to compress the sub-
vectors of the input vector. As the number of stages and
subvectors increases, the proposed multi-stage product VQ
exhibits a significant decrease in complexity.

While the intra-vector redundancy (i.e. the redundancy
inside each subvector) can be removed by vector quantiza-
tion, the inter-vector redundancy (i.e. the redundancy be-
tween subvectors) is still overlooked. Therefore, our sec-
ond point focuses on efficiently eliminating inter-vector re-
dundancy. Transform VQ [26] introduces a linear trans-
form for decorrelation and performs product quantization
on the transformed coefficients. Similar coding structures
are observed in recent learning-based VQ methods [2, 45],
which are improved by learnable nonlinear transform with
superior decorrelation capabilities. However, the transform
used in these works is designed to decorrelate scalar compo-
nents, which is computationally inefficient for vector decor-
relation. The intra-vector redundancy, which is intended
to be removed by VQ, might be partially reduced in ad-
vance by the scalar transform. Therefore, certain parts of
the scalar transform could be eliminated to improve com-

putational efficiency. Motivated by the linear vector trans-
form [29, 31, 32], we propose a new VT variant that de-
couples a fully-connected scalar transform into two light-
weight parts: intra-transform and inter-transform. In the
middle of Figure 3, we provide a simple comparison be-
tween the scalar transform and the proposed vector trans-
form. We further stack the single-layer VT to build a pow-
erful nonlinear vector transform. The differences between
our VT and the linear VT are discussed in Section 4.1.

Regarding the third point, we emphasize that the quan-
tization process (either SQ or VQ) used in most previ-
ous methods [2, 5, 32, 42, 45] (including VQVAE) is not
entropy-constrained, which is theoretically suboptimal for
rate-distortion performance. In the right of Figure 3, we
provide a quantization illustration of unconstrained VQ
and entropy-constrained VQ (ECVQ [13]), where uncon-
strained VQ determines the quantization boundaries (blue
line) using the nearest neighbor search. ECVQ introduces
an additional rate bias − log pi

λ in the quantization process,
which shifts the quantization boundaries from the high-
probability region to the low-probability region. In other
words, ECVQ search the codewords with the best RD
performance, instead of just the neighboring codewords.
ECVQ provides an optimal VQ encoding process described
in Section 2. With the help of latent-space ECVQ, we de-
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sign a training strategy for joint RD optimization. Instead of
manually controlling the RD trade-off by varying codebook
size [45], our model can learn layer-adaptive bit allocation.

Our contributions can be summarized as 1) investigating
on VQ advantages over SQ with nonlinear transform based
on empirical results on some toy sources, 2) presenting a
VQ-based coding scheme named nonlinear vector trans-
form coding (NVTC) with three technical contributions that
effectively leverages VQ while keeping complexity low, and
3) demonstrating that NVTC offers superior rate-distortion
performance, faster decoding speed and smaller model size,
compared with previous neural image codecs.

2. Related Works & Background
The task of lossy coding aims to map the k-dimensional

Euclidean space Rk of a data source into a set of vectors
c = {ci ∈ Rk|i = 0, 1, ..., N − 1}. At the encoder side,
each sample vector x can be represented by a reproduction
vector x̂ = ci ∈ c. The vector index i is losslessly coded
by an entropy model P (i), which is an estimate of the prob-
ability distribution of the index. Both the vector set c and
entropy model P are known to the decoder. Thus, x̂ can be
reconstructed by the entropy decoded index i at the decoder
side. The average code length R, also called rate, is given
by the cross entropy between the actual distribution and the
estimated distribution: R = Ex[− logP (i)]. And the aver-
age distortion is Ex[d(x, x̂)] given a distortion metric d.

Unconstrained VQ. A vector quantizer [18] Q of di-
mension k and size N is defined as a mapping from Rk into
a finite set c = {ci ∈ Rk|i = 0, 1, ..., N − 1}. The set
c here is called codebook and the vector ci is called code-
word. Given a input vector x, the encoder E searches for
the best codeword ci and output the corresponding index
i = E(x) = argmini d(x, ci). With the input index i, the
decoder D looks up the codebook to produce the reproduc-
tion vector x̂ = D(i) = ci.

ECVQ. In unconstrained VQ, the input x is as-
signed to the codeword ci with the lowest distortion
d(x, ci). However, it is suboptimal for RD loss:
Ex[− logP (i) + λd(x,D(E(x)))], where λ is the La-
grange multiplier that controls RD trade-off. Entropy-
constrained vector quantization (ECVQ) [13] introduces
this Lagrangian formulation into the encoder function:
E(x) = argmini [− logP (i) + λd(x, ci)], which is ex-
actly the RD loss of a sample. It means that ECVQ al-
ways produces optimal quantization results for each sam-
ple, given the codebook and entropy model. In the middle
of Figure 3, we illustrate the differences between uncon-
strained VQ and ECVQ, where ECVQ shifts the quantiza-
tion boundaries (blue line) from the high-probability region
to the low-probability region.

NTC. Nonlinear transform coding (NTC) [5] is a non-
linear extension of transform coding [19], which simplifies

vector quantization as scalar quantization and decorrelates
data sources using transform and entropy model. NTC is the
most popular coding structure in recent methods for learned
image compression. The state-of-art NTC methods improve
the components of transform coding by designing powerful
nonlinear transforms [12,46,47], complex forward-adaptive
or backward-adaptive entropy models [7,20,35,36], and dif-
ferentiable scalar quantization [3, 44]. In our paper, we will
use NTC to denote SQ with nonlinear transform.

Latent-space VQ. Prior works such as transform
VQ [26] and vector transform coding [29, 31, 32] (VTC)
first propose to vector quantize the transform coefficients
decades ago. However, due to the high complexity of VQ
and the weak decorrelation capabilities of linear transform,
they draw less attention to the researchers compared to
transform coding [19]. Recently, VQ is known to be effec-
tive to address the “posterior collapse” issue in many gener-
ative models [16, 37, 42]. In these works, VQ is integrated
into an autoencoder network for quantizing the bottleneck
latents. Latent-space VQ is also considered in learned im-
age compression [2, 45]. [2] propose a soft relation of VQ
for end-to-end optimization, which is gradually annealed to
real VQ during training. [45] propose to replace the uni-
variate prior with vectorized prior in existing NTC meth-
ods, where a probabilistic vector quantizer is proposed to
estimate the prior parameters.

2d 4d 8d 16d

BD-PSNR (dB) -0.15 -0.31 -0.47 -0.71

Table 1. BD-PSNR (smaller is worse) of NTC over ECVQ on the
isotropic Gaussian distributions with different dimensions.

IG Banana Boomerang

BD-PSNR (dB) -0.15 -0.21 -0.58

Table 2. BD-PSNR (smaller is worse) of NTC over ECVQ on the
2-d distributions in Figure 2. IG means Isotropic Gaussian.

3. VQ Advantages on Toy Sources
Under high-rate assumptions, vector quantization has

three advantages over scalar quantization: space-filling ad-
vantage, shape advantage and memory advantage [34]. The
first advantage comes from the space-filling properties of
different polytopes which is independent of the source dis-
tribution, making it a fundamental advantage of VQ over
scalar quantization. The second advantage depends solely
on the shape of the marginal density function, regardless of
the correlation of vector components. The third one reveals
the decorrelation capability, which is the major advantage
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Figure 4. (Left) Overview of our proposed model for image compression. VT means vector transform and CEM means conditional entropy
model. Proj is a linear projection layer. CEM is described in Section 4.2. (Right) VT unit with depth-wise block FC. FC refers to a
fully-connected layer, and Channel FC is a fully-connected layer along the channel axis. See Section 4.1 for more details.

when dealing with highly correlated source data. The shape
advantage could be obtained by accurate entropy modeling.
Therefore, in this section, we focus on investigating whether
NTC effectively achieves the space-filling and memory ad-
vantages. More results can be found in the supplementary.

To verify the space-filling advantage, we first conduct
experiments on isotropic Gaussian distributions, where the
memory advantage of VQ does not exist. On the left of Fig-
ure 2 we visualize the quantization results on a 2d isotropic
Gaussian. It can be observed that NTC has rectangular-
like quantization cells, different from hexagon-like cells
in ECVQ. Hexagon has better space-filling efficiency than
rectangular in 2d space. The gain of space-filling advan-
tage increases as the source dimension grows higher. Under
the high-rate assumption, the approximate gain of space-
filling advantage is 1.53 dB as the dimension approaches
infinity [15, 34]. We also conduct experiments to verify
the empirical rate-distortion performance on 4d, 8d and 16d
isotropic Gaussian. As shown in Table 1, the BD-PSNR [9]
gain of ECVQ is surprisingly 0.71 dB on 16d isotropic
Gaussian, which is about 50% of the estimated gain (i.e.
1.53 dB) on infinite-dimensional distributions. Considering
that VQ complexity grows exponentially with dimension,
a 16-d vector quantizer is sufficient to achieve the space-
filling advantage under the current complexity constraints.

For memory advantage, we evaluate NTC and ECVQ on
several 2d correlated sources. In Figure 2 we show the re-
sults on two distributions: one is banana-like distribution
named “Banana” that comes from [5]; the other is named
“Boomerang” which has a larger bending angle than “Ba-
nana”. We find that the BD-PSNR gains of ECVQ on these
distributions are more significant than the gain of space-
filling advantage alone (i.e. 0.15 dB on 2d isotropic Gaus-
sian). Even if the local transformation of NTC is roughly or-

thogonalized [5], there are some failure cases in the highly
nonlinear density area (see red circle in Figure 2). In a word,
the potential gain of memory advantage is also significant
when the source density is complex.

4. Nonlinear Vector Transform Coding

The overview of the proposed method is shown in Fig-
ure 4. Following the structure of multi-stage product VQ
in Figure 3, NVTC comprises multiple quantization layers,
where quantization is performed sequentially from the left-
most layer to the rightmost layer. Motivated by the hierar-
chical structure in VAE-based methods [7,38], we integrate
Downscale/Upscale layers between the quantization layers
to facilitate global-to-local quantization. In other words,
NVTC first quantizes the global vector representation de-
rived from big image patches and then quantizes the local
vector representation derived from small image patches.

Let’s take a deeper look at the quantization layer l. Note
that Nl is the VQ size, kl is the VQ dimension and bl is the
block size. The vector representation yl has a spatial size
of Hl×Wl and a channel size of Cl. Each channel tensor is
considered as a subvector. The vector transform and product
vector quantizers Q

1:b2l
l are shared across different spatial

blocks of size bl× bl, and for each block, b2l sub-vectors are
processed.

Given yl+1 from layer l + 1, yl is obtained by yl =
fl(yl+1), where fl is vector transform layer that consists
of two vector transform units with a block size bl. With
the output ȳl of the layer l − 1, the residual vectors rl =
Lin1(yl − ȳl) are compressed by an entropy-constrained

product vector quantizer Q1:b2l
l with the conditional vector

prior Pl(·|ȳl). Lin1 is a linear projection layer that changes
the tensor shape from Hl × Wl × Cl to Hl × Wl × kl.
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Given the dequantized residual r̂l, the reconstructed vector
representations are obtained by ŷl = Lin2(r̂l) + ȳl with a
shape of Hl ×Wl × Cl, where Lin2 is a linear projection
layer. Then ŷl is transformed to ȳl+1 = fl(ŷl) and fed into
the next quantization layer l + 1.

4.1. Nonlinear Vector Transform

Vector transform (VT) is not simple nonlinear transform.
Although VQ is always superior to scalar quantization, the
high complexity hinders its practical application (such as
the huge number of codewords). Therefore, the method of
VT is designed to cooperate with VQ, which ensures the
complexity is acceptable. In our initial experiments, we
found that directly using the linear vector transform [30–32]
led to spatial aliasing and a significant performance drop.
We identified two primary reasons: 1) linear transform (e.g.,
block-DCT) cannot handle nonlinear inter-vector correla-
tions, and 2) intra-vector transform is crucial for obtaining
effective vector representations. Therefore, we propose a
novel vector transform unit comprising two components:
intra transform for nonlinear representation learning and in-
ter transform for inter-vector decorrelation. As shown in
the right of Figure 4, the intra transform consists of two
fully-connected (FC) layers along the channel axis and one
activation function. The inter transform contains a Depth-
wise Block FC layer that can be regarded as a block-DCT
combined with channel-wise learnable transform matrices.

4.2. Conditional Entropy Model

For a single-stage VQ of dimension k with codebook
size N , the entropy model P of the codeword index i is
a discrete probability distribution P (i) = pi, where pi > 0

and
∑N

i=1 pi = 1. Following previous work [2, 5], we pa-
rameterize pi with the Softmax function and unnormalized
logits w = (w1, w2, ..., wN ):

pi =
e−wi∑N
j=1 e

−wj

. (1)

For a multi-stage product VQ like NVTC, we propose a
conditional entropy model (CEM) to further remove the
inter-vector redundancy. Specifically, at layer l, CEM es-
timates the spatial-adaptive logits wl ∈ RHl×Wl×Nl by us-
ing the output ȳl ∈ RHl×Wl×Cl of layer l − 1 as:

wl = Φ(ȳl), (2)

where Φ is a neural network described in the supplemen-
tary material. Then the conditional probability Pl(·|ȳl) is
calculated by the Softmax function.

4.3. RD optimization with Latent-Space ECVQ

Due to the gradient of VQ being almost zero everywhere,
it is hard to end-to-end optimize both vector quantization
and nonlinear transform for the rate-distortion trade-off.

Some recent works for generative modeling like VQ-
VAE [16, 42] use the straight-through estimator (STE) to
pass gradients from the decoder transform to the encoder
transform, and introduce additional losses to optimize the
codebook. Recent works [2,45] for image compression uti-
lize Softmax or Gumbel Softmax to approximate the VQ
gradients. However, the joint RD trade-off is rarely consid-
ered in these works. For example, the rate-distortion trade-
off in [45] is controlled by varying codebook size, where a
larger codebook size corresponds to a higher bitrate. In this
paper, similar to VQVAE [42], we also use STE to pass gra-
dients through VQ. Then we propose a new rate-distortion
loss to optimize the methods with latent-space ECVQ. The
single-layer loss is as follows:

L =λEx[d(x, x̂)] + Ex[− logP (I)]

+ βEx[d1(y, ŷ)]
(3)

where y is the latent to be quantized, I is the codeword in-
dex from ECVQ, d is the pixel-space distortion metric, and
d1 is the latent-space VQ distortion metric. λ controls the
rate-distortion trade-off. β controls the trade-off between d
and d1. The encoding process of ECVQ has been described
in Section 2. For multi-layer NVTC, the loss is as follows:

L =λEx[d(x, x̂)] +
∑
l

Ex[− logPl(Il|ȳl)]

+ β
∑
l

Ex[d1(rl, r̂l)]
(4)

Algorithm 1 Progressive Initialization of NVTC

Require: Input x; The vector quantizers {Ql}Ll=1; En-
coder transform f1:L; Decoder Transform g1:L; Itera-
tion milestones T1:L, (Ti ≤ Tj when i < j).

1: for t← 1 to Tinit do
2: ȳ1 ← 0; transform x into y1:L using f1:L
3: for l← 1 to L do
4: if t > Tl then
5: ŷl ← Ql(yl − ȳl) + ȳl

6: else
7: ŷl ← ȳl

8: end if
9: ȳl+1 ← gl(ŷl)

10: end for
11: x̂← ȳL+1; update model using Equation 4.
12: if t mod δT = 0 then
13: reinitialize low-frequency codewords.
14: end if
15: end for

In practice, the initialization of VQ codebooks has a sig-
nificant impact on training efficiency [4, 25]. We find this
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Figure 5. Rate-distortion results on kodak (left) and CLIC2021 valid set (right). The proposed method achieves state-of-the-art compression
performance.

issue becomes more serious in the training of multi-stage
VQ. Therefore, instead of random initialization, we propose
a progressive initialization method shown in Algorithm 1.
For simplicity, we omit the notation of product VQ, linear
projection and Downscale/Upscale layers. During the ini-
tialization process, ECVQ is replaced with VQ, and the con-
ditional entropy model is removed. The vector quantizers
are initialized sequentially. To make full use of every code-
word, we randomly reinitialize low-frequency codewords
using high-frequency codewords for every δT iterations.

5. Experiments
5.1. Experiment Setup

Datasets. The image compression models were trained
on COCO [33] train2017 set, which contains 118,287 im-
ages. Training Images are randomly cropped into 256× 256
patches. For evaluation, we use Kodak dataset [28] which
contains 24 images with 768 × 512 pixels. We also eval-
uate our models on CLIC2021 validset [1] with 41 high-
resolution images with a size of about 2000× 1000. Details
regarding the toy sources are provided in the supplementary.

Metric. We measure the quality of reconstructed im-
ages using the peak signal-to-noise ratio (PSNR) in RGB
colorspace. The rate is measured by bits per pixel (bpp)
for evaluation and bits per dimension (bpd) for training.
The distortion metrics d and d1 in Equation 4 are the mean
squared error (MSE). We also use BD-rate/BD-PSNR [9] to
calculate the average rate-distortion performance gain.

Implementation details. Our image codec con-
sists of 16 quantization layers, where (L1, L2, L3) =

(6, 6, 4). The detailed configurations are described in
the supplementary. We train six models with λ ∈
{64, 128, 256, 512, 1024, 2048} for different RD points. β
is set equivalent to λ. We initialize the models using Algo-
rithm 1 with 0.6M iterations and then optimize the full mod-
els with 1.7M iterations. We use the Adam optimizer [27]
with a batch size of 8. The initial learning rate is set as 10−4,
which is reduced to 10−5 for the final 0.2M iterations.

5.2. Performance

RD curves. We compare our method with two tra-
ditional coding methods: BPG and VVC [10] (VTM-
18.2), and six learning-based methods including Zou-
CVPR22 [47], Zhu-ICLR22 [46], Zhu-CVPR22 [45],
Cheng-CVPR20 [12], Balle-ICLR18 [7] and Agustsson-
NIPS17 [2]. Among them, Zhu-CVPR22 [45] and
Agustsson-NIPS17 [2] are two latent-space VQ methods.
As shown in Figure 5, our method is on par with previous
methods on Kodak but surpasses them on CLIC 2021 valid-
set. Even if our method is trained on the COCO dataset with
a resolution of about 600 × 400, the generalization perfor-
mance on the high-resolution CLIC dataset is superior to
the previous latent-space VQ method [45].

BD-rate vs. model complexity. In Figure 1, we com-
pare the BD-rate, decoding time, and model parameters of
different methods on CLIC 2021 validset. The BD-rate is
computed over VTM 18.2, and the reported time is the aver-
age decoding time per image across the entire dataset. For a
fair comparison, we evaluate the model complexity at high
rate points (larger than 0.5 bpp on CLIC) except for Zhu-
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Time (ms)
NVT CEM VQ EC Total

Kodak Encode 48 30 12 24 114
Decode 23 13 4 28 68

CLIC Encode 270 121 63 89 543
Decode 154 38 14 101 307

Table 3. Encoding & decoding time. NVT refers to the nonlinear
vector transform including VT Units and Downscale/Upscale lay-
ers. CEM is the conditional entropy model. EC refers to entropy
encoding/decoding with one CPU core. GPU is GTX 1080Ti.

CVPR221 [45] and Guo-TCSVT212 [20]. All methods run
with one GTX 1080Ti GPU and one CPU core, based on
their official code or public reimplementations [8]. It can
be observed that our method has the best rate-distortion-
complexity performance. More importantly, compared to
the recent VQ-based approach Zhu-CVPR2022 [45] that
relies on computationally expensive scalar transform and
unconstrained VQ, our method has a significantly reduced
model size (about 5× smaller), faster decoding speed and
better RD performance. The BD-rate of our method against
Zhu-CVPR2022 is -10.9% on CLIC.

In Table 3, we provide detailed results regarding the en-
coding/decoding time of our method. It is worth noting that
the encoding time is approximately twice the decoding time,
which mainly stems from two factors: 1) the encoder needs
to run with most of the VT units, where the decoder only
has to execute the decoder VT units; 2) The computational
gap between ECVQ encoding and decoding. We provide a
more detailed explanation in the supplementary.

5.3. Ablation Study and Analysis

BD-rate Decoding Model
time (ms) parameters (M)

Full model 0.0% 307 12.8
A1: w/o VT 7.3% 405 49.6
A2: w/o ECVQ 23.9% 268 11.5
A3: w/o init 17.1% 307 12.8

Table 4. Ablation study on CLIC 2021 validset. BD-rate is com-
puted over the full models (smaller is better).

Vector transform. To investigate the impact of the pro-
posed VT, we replace the VT unit with the convolutional
resblock used in previous image coding methods [12, 45].
The result in Table 4 (“A1: w/o VT”) shows that VT pro-
vides a better decorrelation ability with less complexity.

Latent-space ECVQ. As mentioned before, compared
to ECVQ, the unconstrained VQ is theoretically suboptimal

1The authors only release one low-rate model. Therefore we report the
estimated results based on the description in their paper.

2The results are provided by the authors.

Figure 6. Layer-adaptive bit allocation results. We report the aver-
age percentage of bits of different quantization layers on Kodak.

in source space. To verify the effectiveness of ECVQ in la-
tent space, we replace ECVQ with the unconstrained VQ in
previous works [2,45], and retrain our model. We manually
adjust the codebook size to control the rate-distortion trade-
off. As shown in Table 4 (“A2: w/o ECVQ”), unconstrained
VQ brings a significant performance drop.

Progressive initialization. To evaluate the impact of the
progressive initialization in Algorithm 1, we optimize the
full model with randomly initialized parameters. As shown
in Table 4 (“A3: w/o init”), random initialization causes a
large performance drop. We find that only a part of code-
words is activated for quantization, and the other codewords
are ignored by ECVQ due to their extremely low probabil-
ity. ECVQ with random initialization is more likely to make
codewords “dead”, restricting its performance at high rate.

Layer-adaptive bit allocation. Note that our model
consists of 16 quantization layers, which are joint optimized
for the target RD trade-off. To investigate the bit allocation
of our model, we show the percentage of bits of each layer
in Figure 6. It can be observed that the model allocates more
bits to high-resolution layers as λ increases.

For more results, analysis and visualization, please refer
to the supplementary.

6. Conclusion
In this paper, we demonstrate the superiority of VQ over

SQ with nonlinear transform based on empirical results on
some toy sources. We propose a novel VQ-based coding
scheme named nonlinear vector transform coding to make
better use of VQ while keeping complexity low. Specif-
ically, three technical points are proposed, including 1) a
multi-stage quantization strategy, 2) nonlinear vector trans-
forms and 3) RD optimization with entropy-constrained VQ
in latent space. Our method and these analyses shed light in
utilizing VQ for better neural network-based compression.
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A. On Toy Sources
We investigate the advantages of ECVQ on 11 different

source distributions with varied dimensions. Among them,
we show the 8 two-dimentional distributions in Figure 8, in-
cluding Isotropic Gaussian, Banana, Boomerang, Laplace,
Gaussian Mixture, Sphere0, Shpere50 and Shpere99.

The details about the architecture of codecs are described
in Section A.1. The experimental results and analysis are
provided in Section A.2.

A.1. Architecture

We implement three different codecs for comparison:
VQ/ECVQ, SQ with nonlinear transform (NTC), and
VQ/ECVQ with nonlinear transform (NT-VQ/NT-ECVQ).

VQ/ECVQ. As mentioned in the main paper, the encoder
function of VQ with dimension k and size N is as follows:

i = argmin
i

d(x, ci), (5)

where d is a distortion metric and ci is a codeword of the
codebook c = {ci ∈ Rk|i = 0, 1, ..., N − 1}. The decoder
function is a lookup operation: x̂ = ci. The codeword
probability P (i) = pi is parameterized with the Softmax
function and unnormalized logits w = (w1, w2, ..., wN ):

pi =
e−wi∑N
j=1 e

−wj

. (6)

The rate loss is Ex[− log pi] and the distortion loss is
Ex[d(x, x̂)]. The encoder function of ECVQ is improved
as follows:

i = argmin
i

[− log pi + λd(x, ci)] , (7)

where λ controls the RD trade-off.

NTC. The architecture of NTC for toy sources is shown
in Figure 9. Input x is transformed into latents y = ga(x)
by a analysis transform ga, which is then quantized by a
uniform scalar quantizer (rounding to integers). The quan-
tized latent ŷ = ⌊y⌉ is then mapped back to the recon-
struction x̂ = gs(ŷ) by a synthesis transform gs. In train-
ing, the rounding operation approximated by adding uni-
form noise [5,7]. We use the factorized prior [7] for entropy
modeling. The overall loss is as follows:

L = Ex[− logP (ŷ)] + λExd(x, x̂). (8)

NT-VQ/NT-ECVQ. To verify the effectiveness of ECVQ
in latent space, we replace the uniform scalar quantization

of NTC with VQ/ECVQ, named NT-VQ/NT-ECVQ. For
NT-VQ, the encoding function is as follows:

i = argmin
i

d1(ga(x), ci), (9)

and the encoding function for NT-ECVQ is:

i = argmin
i

[− log pi + λd1(ga(x), ci)] . (10)

We have y = ga(x), ŷ = ci and x̂ = gs(ŷ). To jointly
optimize the transform and VQ codebook, we employ the
straight-through estimator (STE) used in previous works [2,
42]:

dŷ

dy
= 1, (11)

and propose a new rate-distortion loss for latent space VQ:

L = Ex[− log pi] + λExd(x, x̂) + βExd1(y, ci), (12)

where d is the source-space distortion metric, and d1 is
the latent-space VQ distortion metric. λ controls the rate-
distortion trade-off. β controls the trade-off between d and
d1. In practice, both d and d1 are measured by MSE, and β
is equal to λ.

A.2. Experiments

In Figure 10 we provide the RD curves. We show the
visualization of quantization results in Figure 11.

Space-filling advantage. As mentioned in the main pa-
per, the space-filling advantage increases with dimension
(see the RD results of 2-d, 4-d, 8-d and 16-d isotropic Gaus-
sian distributions in Figure 10).

Memory advantage. The benefits of memory advantage
are significant in the distributions of Boomerang, Gaussian
Mixture, Sphere0, Sphere50, and Sphere99. All these dis-
tributions have highly nonlinear correlations.

ECVQ vs. VQ. ECVQ is better than VQ on all the dis-
tributions. An observation is that the gap between VQ and
ECVQ is very small on the sphere-like uniform distributions
(Sphere0, Sphere50, Sphere99). It is probably because the
probabilities of quantization centers on uniform distribution
are similar to each other, which decreases the impact of rate
bias in ECVQ encoding. Another observation in Figure 11
is that the quantization cells/regions of VQ in high prob-
ability area are much smaller than that in low probability
area. In contrast, in ECVQ, the quantization regions in dif-
ferent density area have similar sizes. The reason is that the
quantization boundaries in ECVQ shift from high probabil-
ity region to low probability region, enlarging the size of
high-probability region.
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ECVQ vs. NT-ECVQ. In Figure 11, a major difference
between the ECVQ and NT-ECVQ is that NT-ECVQ warps
the source space by nonlinear transform, making the quan-
tization boundaries into curves. Moreover, as shown in Fig-
ure 10, NT-ECVQ optimized with Equation 12 has a com-
parable RD performance to ECVQ, demonstrating the ef-
fectiveness of the proposed training loss.

NT-ECVQ vs. NT-VQ. We have verified the effective-
ness of entropy-constrained quantization in source space.
What about the effectiveness in latent space? Can nonlin-
ear transform learn to approximate the shift of quantization
boundaries in ECVQ? By comparing the performance of
NT-ECVQ and NT-VQ, we show that ECVQ is also impor-
tant in latent space. Despite nonlinear transform approxi-
mate ECVQ well on 1-d distributions [5], it frequently fails
on 2-d distributions at most of the rate points. As shown
in Figure 11, the shift of quantization boundaries is not ob-
served in the quantization results of NT-VQ.

B. On Neural Images

B.1. Baseline

BPG The RD results of BPG is obtained from Compres-
sAI [8] by running the following command:

python -m compressai.utils.bench bpg [dataset]

-q 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

VTM-18.2 The software VTM-18.2 is downloaded from
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM.
We first convert the RGB images into YUV444:

ffmpeg -i [IMGfile] -pix fmt yuv444p [YUVfile]

We then encode the YUV file into bitstream:

EncoderAppStatic -i [YUVfile] -c [CFGfile] -q [QP]

-o [OUTfile] -b [BINfile] -wdt [W] -hgt [H] -fr 1 -f 1

--InputChromaFormat = 444 --InputBitDepth = 8

--ConformanceWindowMode = 1

And the decoding command is:

DecoderAppStatic -o [OUTfile] -b [BINfile] -d 8

Finally, we convert the reconstructed YUVfile into RGB
images for evaluation:

ffmpeg -s [W]x[H] -pix fmt yuv444p -i [OUTfile]

[IMGfile]

Learning-based methods The results of Cheng-
CVPR20 [12], Minnen-NIPS2018 [35] and Balle-
ICLR18 [7] are evaluated based on the reimplementation
from CompressAI [8]. The complexity results of Zou-
CVPR22 [47] and Zhu-CVPR22 [45] are evaluated based
on their official implementation. The other results are
obtained from the paper or the authors.

B.2. Architecture

Downscale & upscale layers. The detailed architecture
of Downscale and Upscale layers are shown in Figure 12.
We use Pixel Shuffle [41] instead of strided convolution for
upsampling. Downscale-B is enhanced with Resblocks for
learning nonlinear vector representation.

Conditional entropy model (CEM). The architecture of
CEM at layer l is shown in Figure 13. CEM consists of
three parts: 1) an entropy parameter module that generates
the prior parameters el, 2) a vector quantizer that maps el
into a finite set, and 3) conditional logit prior that outputs
discrete probability distribution given the prior parameters
el or êl. The use of VQ in CEM ensures that all possi-
ble probability distributions in a layer can be indexed by a
distribution table. This distribution table is known to both
encoder and decoder after training. Instead of generating
probability distributions dynamically, we simply lookup the
distribution table with the VQ index for a much faster en-
tropy coding process (about 6x faster). Currently, the VQ
in CEM brings about 0.15dB drop, which can be further op-
timized in the future. In practice, we first train the model
without the VQ in CEM, and then finetune the full model.

Model configurations We provide the detailed model
configurations in Table 5. For layer l, Hl × Wl × Cl is
the feature size. bl is the block size used in the VT units
and product VQ. Nl and kl are the VQ codebook size and
VQ dimension, respectively. Tl is the iteration milestones
for progressive initialization. Besides, δT is set to 10k.

B.3. Experiments

In this section, we provide additional ablation studies,
model properties and visualization of reconstruction. For
ablation studies, we provide the BD-rate in Table 6 and the
RD curves in Figure 7. BD-rate is calculated using the soft-
ware from https://github.com/Anserw/Bjontegaard metric.
All models are optimized with 128 × 128 image patches.

The number of quantization layers. As mentioned in
the main paper, the number of quantization layers influence
the rate-distortion-complexity trade-off. The full model
consists of 16 quantization layers with (L1, L2, L3) =
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Layer Hl Wl Cl bl Nl kl Tl

1

H
16

W
16

192 4

512 16 0.0M

2
3
4
5
6
7

H
8

W
8

256 8 0.2M

8
9

10
11
12
13

H
4

W
4

128/256 4 0.4M14
15
16

Table 5. Detailed configurations of different quantization layers.

BD-rate Parameters (M)
Full model 0.0% 12.8
A4: L=3+3+2 7.7% 8.7
A5: L=0+6+4 6.8% 8.9
A6: L=0+0+4 27.1% 5.8
A7: w/o depth-wise 29.4% 9.5
A8: w/o CEM in EC 39.6% 12.8

Table 6. Ablation study on Kodak. BD-rate is computed over the
full models (smaller is better).

Figure 7. Ablation study on Kodak dataset.

(6, 6, 4). We change (L1, L2, L3) to (3, 3, 2), (0, 6, 4) and

(0, 0, 4) and train 3 model variants, which is named “A4:
L=3+3+2”, “A5: L=0+6+4” and “A6: L=0+0+4”, respec-
tively. It can be observed that 1) the models with fewer
quantization layers perform worse at high rate points, and
2) the low-resolution quantization layers (numbered by L1

or L2) which capture global correlation have a significant
impact at all rate points.

Depth-wise Block FC vs. Block FC. We investigate the
impact of the proposed Depth-wise Block FC layer. We
build a variant named Block FC where all channels use the
same transformation matrix. Block FC is similar to Block-
DCT with a learnable transformation matrix. The perfor-
mance of Block FC (noted as “A7: w/o depth-wise”) is
much worse than the full model.

CEM in entropy coding. CEM plays an important role
in removing inter-vector redundancy across different quan-
tization layers. We investigate rate savings when disabling
CEM in entropy coding. Instead of retraining the whole
model, we simply replace the CEM in a trained model with
the unconditional entropy model (UEM) shown in Equa-
tion 6. Then UEM is optimized using the rate loss only
for entropy coding. The results (“A8: w/o CEM in EC”)
demonstrate the significant rate savings of CEM, which is
not considered in previous works [2, 45] with VQ.

Subjective comparison. In Figure 14 and Figure 15, we
provide the subjective comparison between our method and
VVC. Our reconstruction has a slightly better subjective
quality with a smaller bpp.
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(a) Isotropic Gaussian (b) Banana (c) Boomerang (d) Laplace

(e) Gaussian Mixture (f) Shpere0 (g) Shpere50 (h) Shpere99

Figure 8. Visualization of 2-d sources. Yellow means high probability density and purple means low probability density.

Figure 9. Architecture of NTC on toy sources. “FC (E)” refers to a fully-connected layer with E output channels. F is equal to the data
dimension k. E = 128 for 2-d distributions, and E = 384 for 4-d, 8-d and 16-d distributions. “UQ” is the uniform scalar quantization.
“GELU” is the Gaussian Error Linear Units [22].
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Figure 10. RD curves on toy sources.
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Figure 11. Visualization of quantization results.
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Figure 12. Architecture of Downscale and Upscale layers. “Conv (C, ks)” refers to a convolutional layer with C output channels and a
kernel size of ks. “Conv (*, 1)” refers to a 1× 1 convolutional layer with “*” output channels which adaptively changes for requirements.
Pixel Unshuffle is a space-to-depth layer (for downsampling) and Pixel Shuffle is a depth-to-space layer (for upsampling) [41]. (Right)
“Resblocks (C, ks)” refers to the Resblock layer consisting of multiple “Conv (C, ks)”. C is set to 192 for all rate points.

Figure 13. Architecture of Conditional Entropy Model (CEM).

17



(a) Ours. Bpp=0.2626, PSNR=35.23dB.

(b) VVC. Bpp=0.2761, PSNR=35.32dB.

Figure 14. Comparison between the proposed method and VVC on “Kodim07.png”.

18



(a) Ours. Bpp=0.6574, PSNR=31.45dB.

(b) VVC. Bpp=0.7051, PSNR=31.60dB.

Figure 15. Comparison between the proposed method and VVC on “Kodim05.png”.
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