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Abstract

Neuroimage processing tasks like segmentation, recon-
struction, and registration are central to the study of neu-
roscience. Robust deep learning strategies and architec-
tures used to solve these tasks are often similar. Yet, when
presented with a new task or a dataset with different vi-
sual characteristics, practitioners most often need to train
a new model, or fine-tune an existing one. This is a time-
consuming process that poses a substantial barrier for the
thousands of neuroscientists and clinical researchers who
often lack the resources or machine-learning expertise to
train deep learning models. In practice, this leads to a lack
of adoption of deep learning, and neuroscience tools being
dominated by classical frameworks.

We introduce Neuralizer, a single model that general-
izes to previously unseen neuroimaging tasks and modali-
ties without the need for re-training or fine-tuning. Tasks do
not have to be known a priori, and generalization happens
in a single forward pass during inference. The model can
solve processing tasks across multiple image modalities, ac-
quisition methods, and datasets, and generalize to tasks and
modalities it has not been trained on. Our experiments on
coronal slices show that when few annotated subjects are
available, our multi-task network outperforms task-specific
baselines without training on the task.

1. Introduction
Computational methods for the processing and analysis

of neuroimages have enabled a deep understanding of the
human brain. The field has also led to advanced patient
care by facilitating non-invasive methods of diagnosis and
treatment. Recent deep learning research promises to sub-
stantially increase the accuracy and speed of neuroimaging
analysis methods.

A drawback of most current deep-learning-based ap-
proaches is that each model is limited to solving the task
it has been trained on, on the type of data it has been
trained on. Generalization to new tasks and domains, such
as different acquisition protocols or new segmentation, is

Input Prediction
One Model 
for all Tasks

Context Set informs Task

Figure 1. Neuralizer can solve a broad range of image processing
tasks, including new ones not seen during training, with a single
model by conditioning the prediction on a context set of examples.
After training on a diverse set of tasks, the model can generalize
to new tasks in a single forward pass without re-training or fine-
tuning. The model is highly flexible, requiring no prior definition
of the set of tasks, and can be conditioned with context sets of any
length.

a main barrier to adoption [66]. Performing neuroimag-
ing tasks like segmentation, registration, reconstruction, or
motion correction requires different models for each pro-
cessing step, despite operating on the same input data and
methods exhibiting strong similarities in network architec-
ture [13,47,90]. Yet, designing and training models to solve
these tasks on each dataset is prohibitively expensive. To
train a deep learning model, a dataset needs to be compiled
and often manually annotated, and the network, training,
and data loading logic needs to be implemented. All these
steps generally require machine learning and neuroimaging
expertise. In addition, computational resources like special-
ized graphics processing hardware and software infrastruc-
ture needs to be available. These requirements are particu-
larly problematic in clinical research settings due to a high
cost of annotation and a lack of machine learning expertise
and hardware. The many closely related neuroimaging tasks
and image modalities and acquisition characteristics require
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Figure 2. Example neuroimaging tasks and modalities included in our dataset (top: input images, bottom: output images).

custom solutions, many of which are not available. As a
consequence, many works forgo using methods adapted to
their task and data characteristics, and instead use existing
methods even when their data acquisition falls outside of
the protocols used for building the tool [10, 36, 105]. As
neuroimaging tasks have much in common, generalization
is a promising proposal to reduce the number of models that
have to be trained.

Contribution

We introduce Neuralizer, a general-purpose neuroimag-
ing model that can solve a broad range of neuroimaging
tasks on diverse image modalities (Fig. 2), without the need
for task-specific training or fine-tuning. Neuralizer can
solve new tasks, unseen during training, using a set of ex-
amples of the new task at inference (Fig. 1)

Neuralizer involves a convolutional architecture (Fig. 3),
that takes as input a context set of examples that define the
processing task, and thus does not require prior specifica-
tion of the tasks. The method enables single-pass gener-
alization during inference and can process any number of
reference images in a single pass to inform the prediction.

As a first method tackling task generalization in neu-
roimaging, we focus on analyzing the capabilities of such
system and presenting general insights, and limit our ex-
periments to 2D. We evaluate our model by comparing
the single-pass generalization performance to task-specific
baselines conditioned on an equivalent amount of data.
We find that Neuralizer outperforms the baselines on tasks
where ≤ 32 labeled examples are available, despite never
training on the task. When generalizing to new segmenta-
tion protocols, Neuralizer matches the performance of base-
lines trained directly on the dataset.

2. Related Work
We give a short introduction to neuroimaging tasks, ter-

minology, and methods. We then provide an overview
of fundamental methods for adapting a model to multiple

domains, including multi-task learning, few-shot learning,
fine-tuning, and data synthesis.

2.1. Neuroimage analysis

Neuroimage analysis employs computational techniques
to study the structure and function of the human brain.
Common imaging techniques are structural magnetic res-
onance imaging (MRI), functional MRI, diffusion tensor
imaging (DTI), computed tomography (CT), and Positron
emission tomography (PET). Each imaging method can cre-
ate diverse images with different characteristics and con-
trasts, which are further diversified depending on the prop-
erties of the acquisition site [64, 116], device, protocol,
imaging sequence [60], and use of contrast agents [9, 38].

To analyze these images, a variety of processing tasks
are most often combined in a processing pipeline. Com-
mon processing tasks include anatomical segmentation [12,
18,22,23,32,87,103,109], skull stripping [51,51,57,92,99,
115], defacing [2,41], registration [5–7,10,20,29,47,49,58],
modality transfer [84, 85, 102], in-painting [43, 72, 73, 83,
113], super-resolution [21, 62, 77, 78, 110], reconstruction,
and de-noising [62, 74, 97], bias field removal [37, 63], sur-
face fitting [50] and parcellation [96, 104].

Multiple toolboxes provide a suite of interoperable
software components, most implementing classical op-
timization strategies. Widely used toolboxes include
Freesurfer [32], FSL [55, 100, 112], SPM [35], CIVET [3],
BrainSuite [95], HCP pipeline [106], and BrainIAK [61].
Deep-learning-based methods are starting to be included be-
cause of their improved accuracy and shorter runtime [13,
51]. While these methods provide solutions for common
neuroimaging applications, most are limited to a single task
and few modalities. Developers need to manually update
the pipelines to include new processing tasks and to support
a wider variety of image modalities. This process requires
extensive technical expertiese and computational resources,
often not available to the clinical neuroscientists focusing
on scientific questions.
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2.2. Multi-task learning

Multi-Task Learning (MTL) frameworks solve multiple
tasks simultaneously by exploiting similarities between re-
lated tasks [17]. MTL can improve performance and reduce
computational cost and development time compared to de-
signing task-specific solutions [27, 93]. In neuroimaging,
MTL networks were recently proposed for the simultaneous
segmentation and classification of brain tumors by training
a single network with separate prediction heads associated
with the different tasks [25, 40]. This strategy is challeng-
ing to scale as the number of tasks increases, requires prior
determination of the set of tasks, and importantly does not
enable generalization of the model to new tasks. With Neu-
ralizer, we build on these methods to achieve scalable MTL,
without the need for multiple network heads, and impor-
tantly with the ability to generalize to new tasks and modal-
ities.

2.3. Fine-tuning

To tackle problems in the limited data scenarios frequent
in medical imaging, neural networks can be pre-trained on
a related task with high data availability and then fine-tuned
for specific tasks. For example, a common approach in-
volves taking a Res-Net [45] trained on ImageNet [24] and
fine-tuning part of the network for a new task [52, 59, 107].
For medical imaging, networks pre-trained on large sets of
medical images are available [19], and fine-tuning them to
new tasks results in shortened training time and higher ac-
curacy [4, 76]. However, fine-tuning also requires machine
learning expertise and computational resources, most often
not available in clinical research. Additionally, in scenar-
ios with small datasets, fine-tuning models trained on large
vision datasets can be harmful [88].

2.4. Few-shot learning

Few-shot models generate predictions from just a few la-
beled examples [70, 89, 91, 111], or in the case of zero-shot
methods [14], none at all. Many of these methods require
training or fine-tuning. In computer vision, several methods
pass a query image, along with a set of support images and
labels as input to the model [70, 94, 101, 108]. Natural im-
age segmentation methods [71, 118] use single image-label
pairs [65, 117] as support or aggregate information from a
larger support set [67]. Recent few-shot learning methods in
the medical image segmentation setting [11, 30, 31] operate
on a specific anatomical region in a single image modal-
ity [44, 120]. Similar Prior-Data Fitted Networks (PFNs)
are fitted to multiple datasets at once to learn the training
and prediction algorithm [82]. During training, this strategy
draws a dataset, a set of data points and their labels from it,
masks one of the labels and predicts it. The resulting model
aims to generalize to new datasets. PFNs have only been

applied to low-dimensional and tabular data [48]. Our solu-
tion builds on ideas from these methods, but aims to solve a
much larger range of diverse image-to-image tasks on neu-
roimages of many modalities.

2.5. AutoML methods

AutoML tools can be used to automate the steps of
implementation, training, and tuning deep learning mod-
els, reducing the technical knowledge required of the user.
NN-UNet [53] automates the design and training of mod-
els for biomedical image segmentation, and has been suc-
cessfully applied to brain segmentation [26, 54, 75]. While
AutoML effectively reduces the technical requirements for
the implementation, massively parallel hardware is still re-
quired for performing the internal hyper-parameter search
and training the model. Additionally, AutoML methods re-
duce the flexibility in solution design, as they are often spe-
cific to a type of task or data structure.

2.6. Data augmentation and synthesis

Data augmentation increases the diversity of training
data by augmenting or modifying existing data [90, 119]. It
improves model robustness to input variability that may not
be available in the original training data. In neuroimaging,
arbitrary image modalities can be simulated by synthesis of
images without requiring any real data [13, 16, 47, 51, 98].
In meta-learning, data augmentation can further be used to
generate entirely new tasks [15, 69, 114]. We use data aug-
mentations and further expand existing methods by devel-
oping rich neuroimaging task augmentations for generaliza-
tion to unseen neuroimaging tasks.

3. Neuralizer
We introduce Neuralizer, a multi-task model for neu-

roimage analysis tasks. In this section, we first define the
training framework and adaptations necessary to operate on
a diverse range of tasks and input types. We then introduce
the model architecture, training, and inference strategies.

3.1. Generalizabe multi-task model

Let T represent a set of tasks, with a subset of tasks Tseen
seen during training. Each task consists of input-output
image pairs (xt, yt) from potentially multiple underlying
datasets with input and output spaces xt ∈ X , yt ∈ Y .

To enable generalization to unseen tasks, we condition
the model on a context set Ct = {(xt,i, yt,i)}Ni=1 of input-
output image pairs passed to the model alongside the predic-
tion task. The context set defines the desired task, and can
vary in size |Ct| = N and is re-sampled from the underly-
ing task-datasets for each input. Fig. 1 gives an example for
a modality transfer task.

We employ a neural network gθ(xt, Ct) = yt with
weights θ that applies the task defined by context set Ct

3
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Figure 3. Neuralizer consists of 7 Pairwise-Conv-Avg blocks (right), arranged in a U-Net-like [81, 90] configuration (left). Each Pairwise-
Conv-Avg block enables interaction between the input image and the image pairs present in the context set. The block consists of a
residual unit, pairwise convolution of each context member with the target, and an averaging of results across the context set to update the
representation. The architecture is invariant to context size N .

to the input neuroimage xt. We optimize the network using
supervised training with the loss

L(Tseen; θ) = Et∈Tseen

[
E(xt,yt,Ct)[Lt(yt, gθ(xt, Ct))]

]
,
(1)

where Lt is a task-specific loss function.

3.2. Design for diverse tasks

To process different tasks with a single model, we care-
fully select the loss function, neuroimage encodings, and
generation of the training set for each task type.

Loss function. Neuralizer solves both segmentation tasks
(e.g. anatomical segmentation and skull-stripping via
a brain mask), more general and image-to-image tasks
(e.g. denoising). We use the Soft Dice Loss [81] for
segmentation-like tasks, and the pixel-wise Mean Squared
Error MSE(yt, g(xt, Ct)) = 1

2σ2

∑
p[ytp − g(xt, Ct)p]

2

with balancing hyperparameter σ2 for other tasks. As the
network optimizes multiple tasks during training, the bal-
ance of the loss terms can dramatically affect the optimiza-
tion and resulting performance.

Input and output encoding. For Neuralizer to work on
both segmentation and image-to-image tasks, we facilitate
simultaneous input of multiple image modalities and masks.
We design the input space X to accept floating point value
images with three channels, and zero-pad any channels un-
necessary for a specific task. The output space Y follows
the same design but uses only one channel.

Training dataset creation. At each training iteration, we
first sample a task t from Tseen, selecting the task-specific
dataset (Tab. 1). From this dataset, we sample the input im-
age, ground truth output, and image pairs for the context set.

Table 1. Tasks, Modalities, Datasets, and Segmentation classes
used in this paper, and involved in training Neuralizer.

Tasks Modalities

Binary Segmentation T1-w.
Modality Transfer T2-w.
Super Resolution MRA
Skull Stripping PD
Motion Correction FLAIR
Undersampled Reconstruction ADC
Denoising & Bias correction DWI
Inpainting DTI (17 dir.)

Datasets Segmentation Classes

OASIS 3 [49, 79] Freesufer protocol, 31
classes [13, 32]BRATS [8, 9, 80]

IXI [1]
ATLAS R2.0 [68] Manually-annotated Hammers

Atlas, 96 classes [28, 39, 42]Hammers Atlas [42]
WMH Challenge [60]
ISLES2022 [86] Brainmasks [32, 51]

To increase the range of images that can be used to condi-
tion the trained model, the image modalities and acquisition
protocols of entries of the context set can differ from the in-
put image for some tasks. Supplemental section G contains
a detailed description of the training data generator.

3.3. Model architecture

Fig. 3 shows the Neuralizer network architecture,
adapted with the concurrently developed [15] – a method
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that focuses on solving broad segmentation tasks. As the
architecture is independent of the task, we omit the task sub-
script in this section.

The input image x and the image pairs of the context
set Ci = (xi, yi), i = 1, ..., N are first passed through an
embedding layer consisting of a single 1 × 1 convolution
with learnable kernels ex, eC , to obtain the representations
rx = x ∗ ex, rCi

= cat(xi, yi) ∗ eC where ∗ is the con-
volution operator. This combines each context image pair
to a joint representation rCi and maps all representations
to a uniform channel width c, which is constant through-
out the model. Next, we process the representations using
multiple Pairwise-Conv-Avg Blocks (explained below), ar-
ranged as a U-Net-like configuration [81,90] to exploit mul-
tiple scales. The output rout

x of the final Pairwise-Conv-Avg
Block is processed by a residual unit [45] and a final 1 × 1
conv layer to map to one output channel. All residual units
consist of two 3× 3 conv layers, a shortcut connection, and
GELU activation functions [46].

Compared to standard CNNs, Neuralizer uses a mecha-
nism to enable knowledge transfer from the context set to
the input image. We design the Pairwise-Conv-Avg Block
(Fig. 3, right) to model this interaction. The block maps
from representations of the target input rin

x and context pairs
rin
Ci

to output representations rout
x , rout

Ci
of the same size.

First, we process each input separately with a residual unit
to obtain rint

x = ResUnitx(r
in
x ) and rint

Ci
= ResUnitC(r

in
Ci
).

The residual units, which involve two convolutions, oper-
ate on the context representations and have shared weights.
Second, we pairwise concatenate the context representa-
tions with the target representation on the channel dimen-
sion: pi = cat(rint

x , r
int
Ci
). We combine the pairwise rep-

resentations and reduce the channel size back to c using a
1 × 1 convolution with learnable kernel kx, and update the
target representation by averaging across context members
rout
x = rint

x + 1
N

∑N
i=1 pi ∗ kx. The context representations

are updated with a separate kernel rout
Ci

= rint
Ci

+ pi ∗ kC . We
then re-size the outputs of a Pairwise-Conv-Avg Block be-
fore feeding them as input the next block. We experimented
with attention-based and weighted average approaches but
found that they did not lead to an increased generalization
to unseen tasks.

3.4. Task augmentations

To further diversify the training dataset, we employ task
augmentations [15], a group of transformations applied at
random to the input, output, and context images. The ob-
jective is to increase the diversity of tasks to discourage
the model from merely memorizing the tasks in the train-
ing data. A list of all task augmentations is summarized in
Tab. 2, with more detailed descriptions and visual examples
in Supplement C.

3.5. Inference

During inference, we supply an input image xi and a
context set Ci from the desired task. Given these inputs,
a simple feed-forward pass through the model provides the
prediction ŷ = g(x,C). To further increase accuracy at
test-time, we use context-set bootstrapping [15]. We also
increase the context set by sampling with replacement from
the context set, and add small affine augmentations.

4. Experiments

We first compare Neuralizer with task-specific networks,
which require substantial expertise and compute. We then
analyze the effect of the size of the context set, and the
multi-task generalization to unseen segmentation protocols
and image modalities. For this first method of large-scale
multi-task generalization in neuroimaging, we conduct the
experiments on 2D image slices.

4.1. Data

To create a diverse dataset encompassing a multitude
of different modalities, acquisition protocols, devices, and
tasks, we pool neuroimages from the public datasets OA-
SIS3 [49, 79], BRATS [8, 9, 80], Atlas R2.0 [68], Ham-
mers Atlas [42], IXI [1], ISLES2022 [86], and the White
Matter Hyperintensities Challenge [60]. We segment all
subjects with Synthseg [13, 32]. Based on the segmenta-
tion, we affinely align the images to the MNI 152 template
space [33,34], and resample to 1mm isometric resolution at
a size of 192 × 224 × 192mm. We perform manual qual-
ity control of the segmentation and registration by ensuring
no segmented areas fall outside of the cropped volume and
discard subjects failing this check (4 subjects). We extract
a coronal slice of 192× 192mm, bisecting the frontal Brain
stem, Hippocampus, Thalamus, and Lateral ventricles. We
rescale image intensities to the [0, 1] interval using dataset-
specific percentiles. For full head images, we create a brain
mask with Synthstrip [32, 51]. The final dataset contains
2,282 subjects with 15,911 images and segmentation masks
across 8 modalities. Subjects of the seven original datasets
are split into 80% for training and validation, 20% test, with
a minimum of 15 test subjects per dataset.

Table 2. Task Augmentations

Task Augmentations

IntensityMapping SyntheticModality
SobelFilter MaskInvert
MaskContour MaskDilation
PermuteChannels DuplicateChannels

5
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Figure 4. Performance of multi-task Neuralizer and the task-specific baselines on each task, averaged across all modalities in the test set.
The tasks being evaluated were included in the training of Neuralizer-seen (orange), held out in Neuralizer-unseen (blue), and specifically
trained on by each task-specific baseline (gray). The x-axis is the size of the train/context set, and the y-axis is the Dice/PSNR score. Some
points on the x-axis are omitted for better visibility. ‘All’ refers to all available train data for the task, ranging from 249 to 2,282 subjects
depending on the task. The bars denote standard deviation across modalities. We extract results for T1 scans in Supplement D.

4.2. Models

Neuralizer-seen. This Neuralizer model includes all
tasks available during training. We use this model to evalu-
ate the performance on unseen scans from tasks and modali-
ties that have been included in the training. The model uses
the 4-stage architecture shown in Fig. 3 with 64 channels
per layer. During training, the context size |Ci| is sampled
from U{1,32} at each iteration.

Neuralizer-unseen. To evaluate Neuralizer performance
on tasks and modalities it has not been trained on, we train a
family of Neuralizer models where a single task or modality
is excluded from the training set. The model architecture of
Neuralizer-unseen is identical to Neuralizer-seen.

Baseline-seen. As no established baseline for multi-task
and multi-modality models in neuroimaging can tackle the
number of tasks we aim for, we compare Neuralizer to
an ensemble of task-specific U-Nets [81, 90]. However,
training one model for each task and modality requires
overwhelming computational resources. To reduce the
computational requirement, we follow previous modality-
agnostic models [13, 51] and train each model on multiple

input modalities. This lowers the number of models to be
trained to one per task, segmentation class, and modality-
transfer output modality. To compare Baseline-seen with
Neuralizer-unseen given an equal amount of data, we train
baselines with training set sizes of {1, 2, 4, 8, 16, 32, all}
and employ standard data augmentation.

We use a 4-stage U-Net architecture with one residual
block per layer. The channel width is tuned experimentally
for each training dataset size. We select 256 channels when
all data is available for training, and 64 channels otherwise.
Using larger U-Nets resulted in overfitting and lower perfor-
mance. Supplement H summarizes model parameter counts
and inference costs.

4.3. Training

We use supervised training, task-specific loss functions,
and weigh the MSE loss by selecting σ2 = 0.05, resulting
in the loss terms being of similar magnitude. All models are
trained with a batch size of 8, a learning rate of 10−4, and
the ADAM optimizer [56]. To speed up training, we under-
sample tasks that the model learns quickly, with sampling
weights given in Supplement I.

In addition to the task augmentations, we use data aug-
mentations via random affine movements, random elastic
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Figure 5. Results averaged across tasks, expressed as relative per-
formance compared to the baseline trained on all data. The tasks
being evaluated were included in the training of Neuralizer-seen
(orange), held out in Neuralizer-unseen (blue), and specifically
trained on by each task-specific baseline (gray). The x-axis is the
size of the train/context set, and the y-axis is the relative score.
Some points on the x-axis are omitted for better visibility. ‘All’
refers to all available data for the task, ranging from 249 to 2,282
subjects depending on the task. Bars: standard deviation across
tasks/modalities.

deformations, and random flips along the sagittal plane.
For Baseline-seen, we reuse the augmentations but remove
those that introduce uncertainty in the desired output. The
training time for Neuralizer is 7 days on a single A100 GPU.
The training time of the baseline models is capped at 5 days.
All models use early stopping, ending the training after 25
epochs exhibiting no decrease in validation loss. The model
with the lowest validation loss is used for further evaluation
on the test set.

4.4. Evaluation

We evaluate the Dice coefficient for the segmentation
and skull stripping tasks, and the Peak Signal-to-Noise Ra-
tio (PSNR) for the image-to-image tasks on the test set. As
the low-data regime is of particular interest, we measure
performance as a function of context set size for the Neu-
ralizer models and use training set size as an analog for the
U-Net models. We evaluate context sets of up to 32 sub-
jects. Larger context sets are possible but come at a linear
cost in memory.

4.5. Experiment 1: Baseline Comparison

To assess if the proposed multi-task approach is competi-
tive with task-specific models, we evaluate the performance
and runtime of Neuralizer-seen, Neuralizer-unseen, and
Baseline-seen on the test-set of each task. For Neuralizer-
unseen, we withhold image modalities using a leave-one-
out strategy during training and evaluate on the unseen
modalities at test time.

Results. We display the results by task, averaged across
modalities in Fig. 4. We also provide an evaluation of us-
ing just the T1 modality in Supplement D, since many task-
specific networks in neuroimage analysis literature focus
on T1 images. We further aggregate performance across
all tasks in Fig. 5, and provide tabular results in Supple-
ment E. Both Neuralizer models outperform most task-
specific baselines trained on up to 32 samples. When train-
ing the baselines on all available data, the baselines outper-
form Neuralizer-seen by 2 percentage points in relative per-
formance, and Neuralizer-unseen by 3 percentage points.
The loss in performance when generalizing to an unseen
modality (between Neuralizer-seen and Neuralizer-unseen)
is less than 2 percentage points for all context set sizes.

Training the baseline model to convergence on 32 sam-
ples took on average 28.2 ± 16.6 hours per task, using one
A100 GPU. Since Neuralizer only requires inference for a
new task, it is orders of magnitude faster, requiring less than
0.1 seconds on a GPU and less than 3 seconds on a CPU.

We provide qualitative samples of the predictions from
Neuralizer-seen model in Supplement A, Figures 6-8.

4.6. Experiment 2: Context set size analysis

We assess the few-shot setting that is prevalent in neu-
roimage analysis, where few annotated images are often
available for a new task. We evaluate performance as
a function of the number of labeled samples. For Neu-
ralizer, we evaluate the model with context-set sizes of
{1, 2, 4, 8, 16, 32} unique subjects from the test set. For the
baseline, we trained models with reduced training set sizes
of the same amount of subjects. To reduce the effect of ran-
dom training subject selection, we train three separate base-
lines with n = 1, two baselines with n = 2, and average
results of models with the same n.

Results. Tab. 4 and Figs. 4, 5 illustrate the results. For all
models, prediction accuracy increases with the availability
of labeled data, with diminishing returns. For both Neural-
izer models, a context set size of one achieves more than
90% of the performance attainable with all data. For most
tasks, the baseline performs overall worse than both Neu-
ralizer models when ≤ 32 labeled samples are available but
achieves the best overall performance on larger datasets.

4.7. Experiment 3: Generalization to a new seg-
mentation protocol

The Hammers Atlas dataset [28,39,42] provides an alter-
native anatomical segmentation protocol to the widely-used
Freesurfer segmentation available for most subjects in the
dataset. The shape, size, and amount of annotated regions
in the protocols differ drastically. A different image acqui-
sition site also leads to differences in visual characteristics.
We use the Hammers Atlas dataset to evaluate Neuralizer-
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Model Task Seen Segmentation Class (Hammers Atlas) Mean (std)

Hip PAG STG MIG FuG Stm Ins PCG Tha CC 3V PrG PoG ALG

Baseline-seen 3 .88 .86 .93 .92 .79 .87 .82 .87 .90 .80 .68 .83 .77 .82 .84 (.07)
Neuralizer-seen 3 .88 .86 .92 .92 .76 .88 .83 .85 .90 .82 .73 .86 .77 .81 .84 (.07)
Neuralizer-unseen 7 .88 .87 .93 .91 .78 .87 .82 .85 .90 .81 .72 .85 .78 .81 .84 (.06)

Table 3. Segmentation of the Hammers Atlas dataset. For Neuralizer-unseen, this dataset and segmentation protocol is withheld from
training. Evaluation of major labels located in the center and right of the coronal slice. See Supplement F for class abbreviations.

unseen by entirely withholding the dataset and its annota-
tions from training. We evaluate the Dice coefficient of
the 14 major anatomical segmentation classes present in the
center and right half of the coronal slice.

Results. Tab. 3 illustrates the results. Neuralizer-unseen
performs similarly to Neuralizer-seen and the baseline,
while not requiring lengthy re-training or fine-tuning on the
Hammers Atlas dataset, and not having seen the segmenta-
tion protocol. All three models achieve a mean Dice coef-
ficient of 0.84. The largest performance difference is in the
third ventricle class, where both Neuralizer models outper-
form the baseline by at least 0.04 Dice. The Freesurfer seg-
mentation protocol included in the training set of the Neu-
ralizer models also contains a third ventricle class.

5. Discussion

Our experiments using modality and segmentation class
hold-outs show that Neuralizer can generalize well to un-
seen neuroimaging tasks. Across all context set sizes, the
generalization loss between seen and unseen modalities and
segmentation classes is less than 2 percentage points across
Experiments 1 and 2. On the smaller held-out Hammers-
Atlas segmentation dataset, we find that Neuralizer can gen-
eralize to unseen tasks with similar performance. These re-
sults show promise that a single Neuralizer model can per-
form multiple neuroimaging tasks, including generalization
to new inference tasks not seen during training.

In settings with 32 or fewer labeled example images,
Neuralizer-unseen outperforms task-specific baselines de-
spite never having seen the task or modality at train time,
and taking nearly no effort or compute compared to the
baselines which require substantial expertise, manual la-
bor, and compute resources. The performance difference is
largest when only one labeled subject is available, but still
present at 32 subjects (Fig. 5). Neuralizer provides a per-
formance advantage on smaller datasets likely by exploit-
ing neuroimaging similarities across the many other neu-
roimaging tasks and datasets available in training.

When training the baselines on all available data, they
can outperform Neuralizer-seen and Neuralizer-unseen by
at most 3 percentage points. The inflection point of identi-

cal performance between Neuralizer and the baselines is not
covered by the range of context set sizes chosen for train-
ing and evaluation due to prohibitive computational costs
and is an interesting direction of study. When large anno-
tated datasets are available, the baselines performed best on
most tasks. However, training task-specific models comes
at a significant cost. As a first step in the proposed prob-
lem formulation, Neuralizer offers an alternative with near
equal performance, while only requiering seconds to infer
any task from the context set.

Limitations

We made simplifying assumptions in this first paper
demonstrating the potential of multi-task generalization in
neuroimaging. The experiments are conducted on 2D data
slices. In large part, we did this since running the hundreds
of baselines in 3D would be infeasible on our compute clus-
ter. Entire volumetric data also impose a challenging mem-
ory requirement on Neuralizer models. To tackle 3D data in
the future, we plan to process multiple slices at a time.

We affinely aligned the neuroimages of the context set to
the target image. Early in Neuralizer development, we tried
training on non-aligned inputs but found that it deteriorated
performance. The need for affine alignment provides an ob-
stacle to adoption. While existing affine-alignment tools are
fast and can be employed, we also believe that this require-
ment can be removed with further development.

We originally experimented with tumor and lesion seg-
mentation tasks but found this to be a more challenging sce-
nario. Lesions are spatially heterogeneous, making learning
from the context set much harder. We excluded tumor and
lesion segmentation masks from the experiments, but plan
to study this setting in the future.

While we demonstrate the proposed ideas on a broad
range of tasks and modalities, neuroimage analysis can in-
volve more domains, tasks, and populations, like image reg-
istration, surface-based tasks, CT image domains, and pedi-
atric data. We plan to extend Neuralizer to tackle these in
the future.

8



6. Conclusion
Neuralizer performs accurate rapid single-pass, multi-

task generalization, and even outperforms task-specific
baselines in limited data scenarios. Even when a large
amount of annotated data is available, Neuralizer often
matches baseline performance despite not training on the
data. Neuralizer provides clinical researchers and scientists
with a single model to solve a wide range of neuroimag-
ing tasks on images of many modalities, and can be easily
adapted to new tasks without the prohibitive requirement of
retraining or fine-tuning a task-specific model. We believe
this will facilitate neuroscience analyses not currently pos-
sible.
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Jan E. Nordvik, Gilsoon Park, Amy Pienta, Fabrizio Piras,
Shane M. Redman, Kate P. Revill, Mauricio Reyes, An-
drew D. Robertson, Na Jin Seo, Surjo R. Soekadar, Gian-
franco Spalletta, Alison Sweet, Maria Telenczuk, Gregory
Thielman, Lars T. Westlye, Carolee J. Winstein, George F.
Wittenberg, Kristin A. Wong, and Chunshui Yu. A large,
curated, open-source stroke neuroimaging dataset to im-
prove lesion segmentation algorithms. Scientific Data,
9(1):1–12, jun 2022. 4, 5

[69] Jialin Liu, Fei Chao, and Chih-Min Lin. Task Augmenta-
tion by Rotating for Meta-Learning. feb 2020. 3

[70] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-Shot Unsuper-
vised Image-to-Image Translation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10551–10560, 2019. 3

[71] Weide Liu, Chi Zhang, Guosheng Lin, and Fayao Liu. CR-
Net: Cross-Reference Networks for Few-Shot Segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4165–
4173, 2020. 3

[72] Xiaoxiao Liu, Marc Niethammer, Roland Kwitt, Nikhil
Singh, Matt McCormick, and Stephen Aylward. Low-Rank
Atlas Image Analyses in the Presence of Pathologies. IEEE
Transactions on Medical Imaging, 34(12):2583–2591, dec
2015. 2

[73] Xiaofeng Liu, Fangxu Xing, Chao Yang, C. C.Jay Kuo,
Georges El Fakhri, and Jonghye Woo. Symmetric-
Constrained Irregular Structure Inpainting for Brain MRI

Registration with Tumor Pathology. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics),
12658 LNCS:80–91, 2021. 2

[74] Michael Lustig, David L. Donoho, Juan M. Santos, and
John M. Pauly. Compressed sensing MRI: A look at how
CS can improve on current imaging techniques. IEEE Sig-
nal Processing Magazine, 25(2):72–82, 2008. 2

[75] Huan Minh Luu and Sung Hong Park. Extending nn-UNet
for Brain Tumor Segmentation. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics),
12963 LNCS:173–186, 2022. 3

[76] Kushagra Mahajan, Monika Sharma, and Lovekesh Vig.
Meta-DermDiagnosis: Few-Shot Skin Disease Identifi-
cation Using Meta-Learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 730–731, 2020. 3
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Supplementary Material for
Neuralizer: Neuroimage Analysis without Re-Training
A. Samples

We provide examples of model inputs – target image and context set – and Neuralizer-seen predicted outputs. The inputs
are sampled at random from the test dataset. The context set length is sampled from the discrete random uniform distribution
U{1,32}. To reduce visual clutter, we display up to eight context image pairs and omit the rest in the visualization. We also
only show one channel, excluding additional inputs like multiple modalities, or the binary mask for in-painting tasks. We
provide a collection of images from the first 50 samples from the test dataset. We only excluded examples to avoid duplication
of tasks.

Target Input Model Prediction Context Set

Figure 6. Sample Neuralizer-seen predictions. Left: Target input (magenta frame) and model prediction (blue frame). Right: context set
supplied to inform the task (grey frame). We provide more samples on the next pages.
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Target Input Model Prediction Context Set

Figure 7. Sample Neuralizer-seen predictions (continued). Left: Target input (magenta frame) and model prediction (blue frame). Right:
context set supplied to inform the task (grey frame).
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Target Input Model Prediction Context Set

Figure 8. Sample Neuralizer-seen predictions (continued). Left: Target input (magenta frame) and model prediction (blue frame). Right:
context set supplied to inform the task (grey frame).
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B. Train samples
We provide samples from the train set, including data and task augmentations, and show all three input channels. Further

examples of the visual diversity possible with task augmentations are shown in Fig. 11.

Target Input Model Prediction Context Set

Figure 9. Sample Neuralizer-seen predictions from the train set, with data and task augmentations. All three channels of the input are
shown. Left: Target input (magenta frame) and model prediction (blue frame). Right: context set supplied to inform the task (grey frame).
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C. Task augmentations
Task augmentations are randomized data augmentations applied to both input and target images or segmentation maps.

These change not only the appearance of the input image, but also the target and members of the context set, essentially
altering the task itself. We apply task augmentations not to create plausible neuroimaging tasks, but instead to expand the set
of tasks the model is exposed to during training. This prevents memorization of the training tasks, and aids generalization
to unseen tasks during inference. We first describe the task augmentations in C.1, then discuss their composition in C.2, and
finally provide examples in Fig. 11. Hyper-parameters for all augmentations are selected by visual inspection.

C.1. Task augmentations

We provide a description of each task augmentation. In addition to the task augmentations, we use data augmentations via
random affine movements, random elastic deformations, and random flips along the sagittal plane.

SobelFilter. A Sobel filter is applied to an intensity image.

IntensityMapping. The intensity of an image is remapped [47] To perform this operation, the image intensity values are
split into histogram bins, and each bin is assigned a new intensity difference value. To obtain new intensity values, we
compute a distance from the original intensity value to the two neighboring bin centers, using linear interpolation.

SyntheticModality. An intensity image is replaced with a synthetic one generated from an anatomical segmentation map
of the subject, using previous work [47]. Each anatomical segmentation class is randomly assigned an intensity mean and
standard deviation and the new synthetic modality image of the brain is generated according to these distributions. As our
anatomical segmentations do not cover the skull, we take an extra step to ensure skulls are present in the synthetic data: If
the original intensity image had a skull, the generated brain is overlaid onto the original image, thus keeping the skull.

MaskContour. We extract a contour of the binary mask in a segmentation task, which then represents the new target
segmentation mask. Contoured Masks are always dilated to a width of 3 voxels.

MaskDilation. The binary segmentation mask is dilated by 1 voxel.

MaskInvert. The binary segmentation mask is inverted.

PermuteChannels. The input images are represented by three channels. On each input during training, we permute the
input channels. This encourages the network to ignore the specific channel order.

DuplicateChannels. We overwrite empty input channels with the duplication of a non-zero channel. The augmentation is
applied to each empty channel with a probability p.

C.2. Composition and likelihood of task augmentations

We compose task and data augmentations during training. Some task augmentations can be combined (e.g. MaskDila-
tion and MaskInvert), while others are exclusive to each other (e.g. SobelFilter and SyntheticModality). To model these
dependencies, we define the default composition tree used for most tasks in Fig. 10. The augmentation groups “Mask Aug-
mentations”, “Intensity Augmentations”, “Channel Augmentations”, and “Spatial Augmentations” are applied in this order.
Augmentations in child nodes of “Compose” are applied left to right, while “OneOf” selects a single child augmentation to
apply. A node is applied with probability p stated on the node.

Some tasks use modified versions of this composition tree. As a safety feature, we do not use RandomFlip for
segmentation-related tasks, as this can lead to information leakage when evaluating on non-symmetric class-holdouts (in
our experiments presented here we always hold out the same anatomical class on both sides of the brain, but this has not al-
ways been the case during development). To simplify other tasks, we omit MaskContour and MaskDilate from the inpainting
task, and SobelFilter and SyntheticModality form the modality transfer task.
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Compose (p=1)

Compose (p=1)

Compose (p=1)

MaskInvert (p=0.4)

MaskDilation (p=1)

MaskContour (p=1) MaskDilation (p=1)

OneOf (p=1)

OneOf (p=2/3) SyntheticModality (p=1)SobelFilter (p=0.5)

PermuteChannels (p=1) DupliateChannels (p=0.2)

IntensityMapping (p=0.75)

Compose (p=1)

RandomFlip (p=0.5)AffineTransform (p=1) ElasticDeformation (p=1)

Mask Augmentations Intensity Augmentations

Channel Augmentations Spatial Augmentations

Figure 10. Default composition of augmentations used for most tasks during training. We use “Compose” and “OneOf” nodes to model
these restrictions. Augmentations in child nodes of “Compose” are applied left to right, while “OneOf” selects a single child augmentation
to apply. A node is applied with probability p.

C.3. Examples of task augmentations

Fig. 11 provides visual examples of task augmentations applied to a segmentation and bias correction task.
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Target Task Augmentations (Examples)

Figure 11. Examples of task augmentations, designed to increase the diversity of neuroimaging tasks seen by the model during training. We
show non-augmented target input and output image of T1 modality on the left. We show examples of random data- and task-augmentations
applied to the target during training on the right. The augmented target input is represented by up to three channels of real and synthetic
modalities of the subject. The target output is augmented with synthetic image modalities and alterations to the segmentation mask. The
same augmentations are applied to the context set.
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D. Evaluation on T1 modality
We aggregated scores across all modalities in Fig. 4. To aid comparison to existing literature, which most often focuses on

T1 images, we provide the same evaluation, performed on just the T1 modality here. Some tasks are easier on T1 data, thus
improving scores. For small dataset sizes of 1 or 2 subjects, the baselines sometimes underperform on the T1 modality. This
is often because images of the T1 modality may not always present in small training sets. For sizes of 4 subjects and larger,
the T1 modality is always included in the training set.
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Figure 12. Performance of multi-task Neuralizer and the task-specific baselines on each task, T1 modality only. The tasks being evaluated
were included in the training of Neuralizer-seen (orange), held out in Neuralizer-unseen (blue), and specifically trained on by each task-
specific baseline (gray). The x-axis is the size of the train/context set, and the y-axis is the Dice/PSNR score. Some points on the x-axis are
omitted for better visibility. ‘All’ refers to all available train data for the task, ranging from 249 to 2,282 subjects depending on the task.
The bars denote the standard deviation across subjects.
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32 .84± .07 24.4± 2.1 32.1± 2.7 .98± .00 30.0± 2.6 34.2± 2.6 30.8± 3.9 36.4± 3.3
16 .83± .07 24.2± 2.1 32.7± 3.1 .98± .00 29.9± 2.6 34.1± 2.7 30.3± 3.6 36.0± 2.7

8 .82± .08 23.8± 2.0 32.6± 3.2 .98± .00 29.9± 2.6 34.2± 2.6 30.7± 3.7 35.8± 2.8
4 .81± .08 23.3± 1.9 32.2± 3.2 .98± .01 29.9± 2.6 34.1± 2.7 30.7± 3.9 35.2± 2.5
2 .78± .09 22.9± 2.0 32.1± 2.4 .98± .01 29.6± 2.5 34.0± 2.6 29.7± 3.4 35.2± 2.6
1 .74± .11 22.1± 2.0 31.9± 2.9 .97± .01 29.7± 2.5 33.9± 2.5 30.0± 3.9 34.5± 2.7

Table 4. Model scores (Dice for segmentation and skull-stripping, PSNR for other tasks) for each model and task as a function of the
available subjects for training (U-Net) or context set (Neuralizer). Higher values are better. We average scores across all test subjects,
eight modalities, and four segmentation classes (Cerebal cortex, Lateral ventricle, Thalamus, Hippocampus). Standard deviation across
modalities and segmentation classes.
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F. Class names for Hammers Atlas dataset (experiment 3)
We provide label names and indices for the tissue classes in Tab. 3, re-compiled from [28, 39, 42].

Abbreviation Class Index Class Name

Hip 2 Hippocampus
PAG 10 Parahippocampal and ambient gyri
STG 12 Superior temporal gyrus
MIG 14 Middle and inferior temporal gyri
FuG 16 Lateral occipitotemporal gyrus (fusiform gyrus)
Stm 19 Brainstem
Ins 20 Insula
PCG 26 Gyrus cinguli, posterior part
Tha 40 Thalamus
CC 44 Corpus callosum
3V 49 Third ventricle
PrG 50 Precentral gyrus
PoG 60 Postcentral gyrus
ALG 94 Anterior long gyrus

Table 5. Hammers Atlas label abbreviations.
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G. Training dataset creation
We dynamically generate input image xt, ground truth output yt, and context set {(xt,j , yt,j)}Nj=1 from a collection of

underlying datasets (Tab. 1) during training.
In every training iteration, we first sample a task t from Tseen. Next, one of the underlying datasets is selected to generate

the sample (x, y). Due to the makeup of the datasets, not every task can be performed on every dataset. For example, a dataset
involving a single modality can not naturally be used to generate a modality transfer task. From the list of valid datasets, we
sample the datasets for the input and context images independently, with a 1/3rd chance of all context images coming from
the same dataset as the input, 1/3rd chance that context datasets are sampled at random from the valid datasets, and 1/3rd
chance that the context does not contain any subjects of the input dataset.

After the selection of task and dataset, we create the input and output images. This creation varies by task. We draw the
subjects from each dataset at random, but exclude the input subject to re-occur as a context set member. For most tasks, we
sample a subset of between one to three image modalities from the subject. For the segmentation task, we join a random
subset of available segmentation classes into a binary target mask. For reconstruction and denoising tasks, noise and artifacts
in the input images are simulated according to [97]. For the modality transfer task, we select a separate target modality. For
the inpainting task, we create a random binary mask from Perlin noise mask these areas from the input image. For skull
stripping, the target is a binary brain mask. For tasks other than segmentation and modality transfer, the modality of context
images can vary from the input image.
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H. Inference cost and model size
We provide model parameter counts and inference costs. We use a Baseline U-net with 64 channels for experiments with

limited data set sizes, and a U-Net with 256 channels for experiments on all data. For Neuralizer, we use the same model in
all experiments, but the inference cost increases linearly with the size of the context set.

Table 6. Model size and inference cost.

Model inference FLOP (g) Parameters (m)

Baseline, 64 channels 20.7 0.62
Baseline, 256 channels 329.7 9.84
Neuralizer, 1 ctx image 39.1 1.27
Neuralizer, 32 ctx images 610.5 1.27
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I. Task weights
To speed up training, we use weighted sampling of tasks during training. Task weights are shown in Tab. 7. These values

have been tuned experimentally. Tasks that converge fast and achieve high-quality results are given a lower weight. Tasks
that take longer to converge or are given a higher weight.

Table 7. Task weights during training.

Task Weight

Binary Segmentation 2.0
Modality Transfer 2.0
Superresolution 1.0
Skull Stripping .5
Motioncorrection Reconstruction .5
Denoising & Bias correction .5
k-space Undersampling Recon. 1.0
Inpainting 1.0
Simulated Modality Transfer 1.0
Masking .5
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