
TempSAL - Uncovering Temporal Information for Deep Saliency Prediction

Bahar Aydemir, Ludo Hoffstetter, Tong Zhang, Mathieu Salzmann, Sabine Süsstrunk
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Abstract

Deep saliency prediction algorithms complement the ob-
ject recognition features, they typically rely on additional
information, such as scene context, semantic relationships,
gaze direction, and object dissimilarity. However, none of
these models consider the temporal nature of gaze shifts
during image observation. We introduce a novel saliency
prediction model that learns to output saliency maps in se-
quential time intervals by exploiting human temporal atten-
tion patterns. Our approach locally modulates the saliency
predictions by combining the learned temporal maps. Our
experiments show that our method outperforms the state-of-
the-art models, including a multi-duration saliency model,
on the SALICON benchmark. Our code will be publicly
available on GitHub1.

1. Introduction

Humans have developed attention mechanisms that al-
low them to selectively focus on the important parts of a
scene. Saliency prediction algorithms aim to computation-
ally detect these regions that stand out relative to their sur-
roundings. These predictions have numerous applications
in image compression [34], image enhancement [48], im-
age retargeting [1], rendering [40], and segmentation [26].

Since the seminal work of Itti et al. [16], many have de-
veloped solutions using both handcrafted features [5] and
deep ones [7,15,24,31,43,45]. Nowadays, employing deep
neural networks is preferred in saliency prediction as they
outperform bottom-up models. These methods typically de-
pend on pretrained object recognition networks to extract
features from the input image [28]. In addition to these
features, scene context [44], object co-occurrence [47], and
dissimilarity [2] have been exploited to improve the saliency
prediction. However, while these approaches model the
scene context and objects, they fail to consider that humans
dynamically observe scenes [46]. In neuroscience, the inhi-
bition of return paradigm states that a suppression mecha-

1https://baharay.github.io/tempsal/

Figure 1. An example of how human attention shifts over time.
We show the input image and the corresponding image saliency
ground truth from the SALICON [18] dataset. Notice that in T1,
the cook is salient, while in T2 and T3, the food on the barbe-
cue becomes the most salient region in this scene. We can predict
saliency maps in these sequential time intervals as well as com-
bine them into a refined single image saliency map for the whole
observation duration.

nism reduces visual attention towards recently attended ob-
jects [36] and encourages selective attention to novel re-
gions. Motivated by this principle, we develop a saliency
prediction model that incorporates temporal information.

Fosco et al. [12] also exploit temporal information in
saliency prediction, but they consider snapshots containing
observations up to 0.5, 3, and 5 seconds, thus not leverag-
ing saliency trajectory but rather saliency accumulation. By
contrast, here, we model consecutive time slices, connect-
ing our approach more directly with the human gaze and
thus opening the door to automated visual appeal assess-
ment in applications such as website design [29], advertise-
ment [33] and infographics [11].

To achieve this, we show that when viewing images, hu-
man attention yields temporally evolving patterns, and in-
troduce a network capable of exploiting this temporal in-
formation for saliency prediction. Specifically, our model
learns time-specific predictions and is able to combine them
with a conventional image saliency map to obtain a tempo-
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rally modulated image saliency prediction. As evidenced
by our experiments, this consistently boosts the accuracy of
the baseline network, enabling us to outperform the state-
of-the-art models on the SALICON saliency benchmark. In
particular, we outperform image saliency prediction models
by 2.9% and 1.8% in the standard IG and KLD metrics, re-
spectively, and the multi-duration model of [12] by 35.7%
and 68% in IG and KLD, respectively.

We summarize our contributions as follows:

• We evidence the presence of temporally evolving pat-
terns in human attention.

• We show that temporal information in the form of a
saliency trajectory is important for saliency prediction
in natural images, providing an investigation of the
SALICON dataset for temporal attention shifts.

• We introduce a novel, saliency prediction model,
namely TempSAL, capable of simultaneously predict-
ing conventional image saliency and temporal saliency
trajectories.

• We propose a spatiotemporal mixing module that
learns time dependent patterns from temporal saliency
maps. Our approach outperforms the state-of-the-art
image saliency models that either do not consider tem-
poral information or encode it in a cumulative manner.

2. Related work
2.1. Saliency prediction for natural images

Early saliency prediction methods were biologically in-
spired and bottom up. In particular, Itti et al. used color, in-
tensity, and orientation contrast [16]. Goferman employed
global and local contrast as contextual cues [13]. Judd et
al. [21] further incorporated mid-level and high-level se-
mantic features, using horizon, face, person, and car detec-
tors. Later, Vig et al. [43] showed that deep neural networks
can be applied to saliency prediction. Yet, saliency predic-
tion lacks the large scale annotated datasets that are avail-
able for image classification tasks [9], which prevents train-
ing robust models. To overcome this, Kummerer et al. [23]
showed that using pretrained object recognition networks
significantly improves saliency predictions. Subsequent
state-of-the-art models such as EML-Net [17], DeepGaze2
[24], and SALICON [15] similarly use pretrained convolu-
tional neural network (VGG [39]) encoders. Recent works
utilize additional sources of information such as scene con-
text [22], external knowledge [47] and object dissimilar-
ity [2] to improve saliency prediction. Yet, none of these
methods take into account the temporal evolution of human
gaze, which occurs even when the image stimuli are static.
In our work, we make use of these temporal patterns as an

additional source of information to boost conventional im-
age saliency prediction.

2.2. Multi-duration saliency

Existing image saliency ground-truth maps include all
fixations made throughout the observation period. Aggre-
gating all these fixations that have different timestamps into
a single ground-truth map results in the loss of temporal in-
formation. Representing the fixations as scanpaths retains
the temporal clues by encoding the change of gaze of an
individual over time. However, merging numerous scan-
paths is challenging [14]. Fosco et al. [12] proposed multi-
duration saliency to characterize the attention of a group
of individuals while taking into account time-dependent at-
tention shifts. The temporal maps they rely on, however,
encode the attention distribution of many observers across
overlapping time periods of increasing durations. While this
is a convenient way of capturing a population’s attention
patterns, it does not reflect the saliency trajectory over time.
Similarly, [32] use order of fixations as a sequential meta-
data for deep supervision but they do not model evolution
of attention through time. In our work, we model multi-
duration saliency to analyze underlying attention patterns
by using mutually exclusive time slices. We provide this
temporal information to our spatiotemporal mixing mod-
ule to refine the initial image saliency prediction with tem-
poral information. Moreover, this lets us predict temporal
saliency maps for each second of attention.

3. Temporal saliency data analysis

3.1. Dataset

SALICON [18] is the largest human attention dataset on
natural images. It was created via a crowdsourced mouse
tracking experiment, which was shown to be similar to eye-
tracking [18] and widely used in the saliency prediction lit-
erature. SALICON consists of 10000 training, 5000 valida-
tion and 5000 test images from the MS-COCO dataset [27].
The SALICON dataset provides saliency maps, fixations,
and gaze points for each image and observer. A gaze point
is a raw data point recorded by a tracking device. It de-
scribes the spatial coordinates of the eye/mouse on the as-
sociated stimuli at a given timestamp. Conversely, fixations
describe the coordinates of the long pause when the eyes
are fixated on an image detail. Following common practice
in eye tracking experiments, Jiang et al. [18] grouped spa-
tially and temporally close gaze points to create fixations.
Since the fixations were created by grouping multiple gaze
points, they do not have an associated timestamp. To ad-
dress this, SALICON-MD [12] assumes that the fixations
are uniformly distributed across the total viewing time. We
provide a finer approximation for recovering the fixations’
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timestamps, by minimizing the spatial and temporal dis-
tance between a fixation and the nearest gaze point. We
refer the reader to the supplementary material for the de-
tails of this approximation process.

3.2. Temporal patterns in the dataset

In this section, we examine how temporality evolves
during human visual attention. To observe the evolution
of attention over time, we slice the data into five slices,
one for each second of observation. In particular, we
inspect the dissimilarity between slices, the agreement
with the average, and the distribution of fixations in the
time-saliency space.

Average maps. Viewing patterns in image saliency
experiments tend to show a concentration towards the
image center [41], which is known as the photographer’s
bias or center bias. We observe a similar spatial bias for
each temporal slice, shown in Figure 2, where we plot the
average heat maps for each temporal slice. Note that the
gaze tends to converge to the center of the image as time
passes. This means that the observers revisit the previously
seen important center regions [46].

Figure 2. Average heat maps for each one second interval. Note
that a center-bias occurs, similar to image saliency prediction’s
average ground-truth maps.

We plot the differences of the consecutive average
temporal slices in Figure 3 to illustrate attention shifts.
Light blue indicates the regions with reduced attention,
whereas (light) red indicates increased attention. We
observe that attention shifts from left to right, with a
subsequent dispersion from the center towards the corners.
Then, attention increases at the center of the image, slightly
skewed to the left. Interestingly, the trend (especially in
T2 − T1) coincides with the western left-to-right reading
direction [6].

Figure 3. Differences of the consecutive average temporal slices
shown in Fig. 2. Red indicates regions of increased attention
whereas blue indicates decreased attention.

CC T1 T2 T3 T4 T5
T1 1.00 0.70 0.54 0.50 0.54
T2 0.70 1.00 0.73 0.66 0.65
T3 0.54 0.73 1.00 0.75 0.70
T4 0.50 0.66 0.75 1.00 0.73
T5 0.54 0.65 0.70 0.73 1.00

Average 0.66 0.75 0.74 0.73 0.72

Table 1. Correlation scores of the temporal slices with each other
in a single image, averaged over all images. All slices show more
similarity to their direct temporal neighbors. The last row shows
the average similarity of a slice with the other slices, T1 being the
most dissimilar one.

Inter-slice similarity across time. We expect tempo-
ral saliency slices to be more similar to their closer-in-time
slices than to the ones further away since human attention
is continuous over time. Table 1 contains the correlation
coefficients between each pair of saliency slices in a single
image, averaged over all images. We calculate the correla-
tion coefficient between slices Tj and Tk as

CC(Tj , Tk) =
1

N

N∑
n=i

CC(Tij , Tik), j, k ∈ {1, . . . , 5},

(1)
where N is the total number of images, and Tij and Tik
denote the jth and kth slice of the ith image.

By calculating t-test scores on the pairwise comparisons,
we observe that all of the pairwise differences except T1, T3
and T1, T5 are statistically significant (p < 0.01). Thus, the
attention residuals between different time intervals in one
image are significantly different. We provide more details
in the supplementary material.

Intra-slice similarity across images. We also investi-
gate the deviation of each slice from its respective average
slices. The average slices are depicted in Figure 2. Table 2
shows the deviation of a slice from the average time slices
per image. We compute CC scores between a single slice
and the corresponding average slice as

CC(Tj , Aj) =
1

N

N∑
n=i

CC(Tij , Aj), j ∈ {1, . . . , 5},

(2)
where Aj denotes the jth average slice.

We average the scores across all images. Higher values
of CC indicate more agreement with the average whereas
lower values of CC indicate more deviation from the
average. Note that the similarity with the average across
images decreases with time, except for the last slice. This
can be explained by the more prominent center bias in
T5 − T4 as seen in Figure 2. T1 has the least deviation from
the average by a significant margin (p� 0.01). This shows
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T1 T2 T3 T4 T5
CC 0.574 0.433 0.431 0.426 0.447

Table 2. Correlation scores of each time slice in a single image
with the average maps presented in Figure 2, averaged over all
images. The similarity between slices across images decreases
with time, with the exception of the last slice.

that humans tend to look at similar places at first, and then
their attention scatters around to less important regions.

Early and late fixations versus saliency. Lastly, we in-
vestigate the relationship between the fixation timestamps
and their respective saliency values. We assign a saliency
value to each fixation as the normalized pixel value in the
corresponding saliency map. We plot the histogram of num-
ber of fixations with their saliency and timestamp values in
Figure 4. The fixation time stamps range from 0 to 5000
ms and the saliency values range from 0 to 1. Late fixations
tend to have lower saliency values than earlier fixations, as
indicated by the darker color towards the bottom right cor-
ner. That is, the first region we glance at in an image is more
important (salient) than the following regions [5, 16].

Figure 4. Number of fixations with their respective saliency values
and timestamps. Lighter colors indicate higher number of occur-
rences while darker areas denote fewer occurrences. We see that
late fixations tend to be less salient, which can be seen as the de-
crease in the number of salient fixations along the arrow. The most
salient fixations appear at approximately 1s.

4. Methodology
4.1. Temporal slices

We aim to recover fixation timestamps to train models
with this temporal information. We extract temporal slices
by grouping the fixations in several time-intervals and, fol-
lowing common practice [3], blurring with a Gaussian ker-
nel. We break down the fixations into time slices with two

time-slicing (grouping) alternatives, namely equal duration
and equal distribution. The equal duration model outper-
forms the equal distribution one and is easier to interpret;
we present a comparison of these two alternatives as an ab-
lation study in Section 5.7.

4.2. Temporal saliency model

Let us now introduce our framework that exploits tem-
poral human attention information. Our model is depicted
in Figure 5. We extract image features using a pre-trained
object recognition encoder [30]. Then, we decode these fea-
tures by a temporal slice decoder to obtain one saliency map
per time slice. These temporal saliency slices are useful
in automated visual appeal assessment in applications such
as website design [29], advertisement [33] and infograph-
ics [11] In parallel, we decode the same image features into
an initial image saliency prediction. Finally, we combine
the temporal slices and the image saliency predictions in
the spatiotemporal mixing module to produce a final image
saliency map. We describe each component in detail in the
following sections.

4.2.1 Image encoder and saliency decoders

Following the previous saliency prediction architectures
[24, 28, 37], we first encode the input image with a pre-
trained image classification network, in our case PNASNet-
5 [30]. We extract encoded features at various levels for
multi-level integration, similar to a U-Net structure [38].
Formally, we denote the image encoder as

E(I) = [Ei], i ∈ {1, . . . , 5}, (3)

where I is the input image, and Ei the ith encoder block.
The output of E(·) therefore is a 5D vector. The early en-
coder blocks extract low-level features, such as edges, color,
and contrast, while the later blocks encode high-level se-
mantics. We pass these blocks to the temporal saliency de-
coder, the image saliency decoder, and the spatiotemporal
mixing module.

Our temporal slice decoder, namely DT , processes the
encoder blocks with four 3x3 convolution layers followed
by ReLU functions, integrating one encoder block after
each convolution. Later, two 3x3 convolution layers with a
ReLU in-between and a sigmoid function at the end produce
n temporal saliency maps. Formally, we write the temporal
saliency decoder as

DT

(
E(I)

)
= [Tn] =: T , n ∈ {1, . . . , 5} (4)

where Tn denotes the nth temporal saliency slice. Through
this branch of the network, a single image input produces n
temporal saliency slices. We use this component to provide
temporal predictions to the spatiotemporal mixing module.
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Figure 5. Overview of the proposed architecture. We encode image features into encoder blocks consisting of multi-level image features.
We then pass these blocks to the temporal saliency decoder (shown in pink) to decode them into temporal saliency predictions, which are
saliency maps in sequential time intervals. In parallel, the image saliency decoder (shown in green) decodes the encoder blocks into an
image saliency prediction. We then combine (1) the temporal saliency maps, (2) the image saliency map, and (3) the encoder blocks in the
spatiotemporal mixing module (shown in orange). (Best viewed in color.)

Our image saliency decoder, namely DS , has the same
structure as DT , with the exception of the number of output
channels. This component produces a single map SI , which
corresponds to the conventional image saliency map of the
input image. As such, we can write

SI = DS

(
E(I)

)
. (5)

We use this module to provide cumulative saliency informa-
tion to the spatiotemporal mixing module.

4.2.2 Spatiotemporal Mixing Module

To incorporate temporal information into the saliency pre-
diction, we introduce a module that combines temporal and
spatial saliency maps. This module takes temporal saliency
predictions, the initial image saliency prediction, and the
encoded image feature blocks as input. We write this as

SR = SMM
(
E(I), T ,SI

)
, n ∈ {1, . . . , 5}, (6)

where SR denotes the final, refined image saliency map.
We use the encoded image features in this module to ben-
efit from both low-level and high-level saliency features by
multi-level integration.

The module architecture is shown in Figure 6. It takes
the last two encoder blocks [E5, E4] and passes them through
a 3x3 convolution. We then concatenate the other encoder
blocks with the image saliency and temporal saliency maps
passing through 3x3 convolution, ReLU, and linear upsam-
pling to keep the spatial dimensions consistent. In the last
step, we only add the saliency maps to output a final re-
fined saliency map SR. This module eliminates the need
for optimizing a weight parameter between the spatial and
temporal maps. It can also modulate the maps within the

spatial range of convolutions, which allows the selection of
different regions from different maps.

4.2.3 Loss Functions

To train our network, we use the Kullback- Leibler di-
vergence (KL) [42] and the Correlation Coefficient (CC)
[19] between the predicted and ground-truth saliency maps.
First, we train the temporal branch using

L1(I) = λ1 ∗ CC(GTn, Tn) + β1 ∗KL(GTn, Tn), (7)

where GTn denotes the temporal ground truth for the nth

slice. We then freeze the weights in this component and
train the spatiotemporal mixing module using

L2(I) = λ2 ∗ CC(GT,SR) + β2 ∗KL(GT,SR), (8)

where GT is the image saliency ground truth for image I .

5. Experiments and Results
5.1. Experimental Setup

We use a batch size of 32 and an initial learning rate of
1e-4, reduced by a factor of ten every two epochs. We train
the temporal branch first and then freeze the weights. We
found that 10 epochs of training on SALICON was suffi-
cient. For SALICON, we used the provided test, train, and
validation splits.

5.2. Metrics

We evaluate the obtained saliency predictions according
to the following standard metrics used by the community.
Area Under the Curve (AUC) [3]: Saliency prediction can

5



Figure 6. The spatiotemporal mixing module combines temporal
saliency predictions with the conventional image saliency predic-
tion with multi-level image feature integration. SI denotes the
predicted image saliency map, T1,..,5 the temporal saliency pre-
dictions for n frames, and E1,..,5 the encoder blocks. This multi-
level integration scheme provides information from earlier layers
of the network to the next blocks in this module. SR denotes the
temporally refined image saliency map output.

be interpreted as classifying fixation vs non-fixation points.
The area under the ROC curve shows the trade-off between
true positives (TP) and false positives (FP). A higher AUC
score indicates less FPs.
Normalized Scanpath Saliency (NSS) [35]: This metric
compares the predicted saliency values at the ground-truth
fixation points to the average predicted saliency. An NSS
score of one indicates that the predicted saliency values at
the ground-truth fixation points are one standard deviation
above the average.
Kullback - Leibler Divergence (KL) [42]: The KL mea-
sures the cumulative distance between the predicted and the
ground-truth saliency maps. A KL score close to zero in-
dicates a better approximation of the ground-truth saliency
map by the predicted one.
Pearson’s correlation coefficient (CC) [19]: This metric
measures the linear relationship between the predicted and
ground-truth saliency maps. It ranges from -1 to 1. A CC
score close to one indicates a strong linear correlation be-
tween the two maps.
Similarity (SIM) score [20]: The similarity score sums the
minimum value between the predicted and the ground-truth
saliency maps over all pixels. A similarity score of 1 indi-
cates a perfect prediction since both of the maps are proba-
bility distributions summing to 1.
Information Gain (IG) score [25]: The information gain
is a information-theoretic metric which measures the dif-
ference in average log-likelihood between the predicted
saliency map and center-bias prior.

5.3. Quantitative Results

We compare our method with the state-of-the-art
models, namely SAM-Resnet [8], MSI-Net, GazeGAN,
MDNSal [37], SimpleNet [37], DeepGaze IIE [28], and
MD-SEM [12], in image saliency prediction. Our model

outperforms these methods in five out of seven metrics,
showing the benefit of incorporating temporal information.
Moreover, our model outperforms the only other multi-
duration saliency model in image saliency prediction by a
significant margin. Furthermore, we compare our model
with this multi-duration model and a multi-duration base-
line. Our model improves the saliency prediction in two du-
rations consisting of 0.5 and 3 seconds in two out of three
metrics and in all three metrics in the five second duration.

5.4. Comparison with state-of-the-art methods

We first evaluate the performance of our model on image
saliency prediction on the SALICON benchmark [18]. The
ground truth of SALICON’s test set is exclusively hosted
on the CodaLab website2. Table 3 shows the comparison
of standard evaluation metrics for different state-of-the art
saliency models alongside our model TempSAL. TempSAL
outperforms all the baselines in almost all metrics. When it
does not, it still yields competitive results.

5.5. Comparison with the multi-duration method

To compare our method with the only other multi-
duration model [12], we modify our network to output three
temporal slices. We train our network on a three slice SAL-
ICON multi-duration dataset first and then fine-tune it on
the CodeCharts1k dataset [12] using the given training and
validation splits. We report the results of the comparison in
Table 4.

5.6. Qualitative Results

In Figure 7, we compare the temporal and image saliency
maps obtained with our method with the ground truth from
SALICON [18]. Our model learns time-specific predictions
and is able to combine such predictions with a conventional
image saliency map. We provide additional qualitative re-
sults in the supplementary material.

5.7. Ablation studies

In this section, we investigate the effect of different com-
ponents in our model, and of two temporal slicing methods.
We also provide a comparison with a multi-duration base-
line model on the temporal SALICON dataset.
Effect of the SMM module: We evaluate the effect of
the spatiotemporal mixing module (SMM) and the image
saliency decoder in Table 5. The first model consists of
the image encoder and temporal saliency decoder only. We
take the average of the temporal slices to measure its perfor-
mance by comparing with the ground-truth image saliency
map. In the second row, we add the image saliency decoder
to our model. Similarly, we take the average of the predicted
maps Tn and SI . Lastly, we add the spatiotemporal mixing

2https://competitions.codalab.org/competitions/17136

6



Model MD AUC ↑ CC ↑ KL ↓ SAUC ↑ IG ↑ NSS ↑ SIM ↑
SAM-Resnet [8] 7 0.865 0.899 0.610 0.741 0.538 1.990 0.793
MSI-Net [22] 7 0.865 0.899 0.307 0.736 0.793 1.931 0.784
GazeGAN [4] 7 0.864 0.879 0.376 0.736 0.720 1.899 0.773
SimpleNet [37] 7 0.869 0.907 0.201 0.743 0.880 1.960 0.793
MDNSal [37] 7 0.865 0.899 0.221 0.736 0.863 1.935 0.790
UNISAL [10] 7 0.864 0.879 0.354 0.739 0.780 1.952 0.775
DeepGaze IIE [28] 7 0.869 0.872 0.285 0.767 0.766 1.996 0.733
MD-SEM [12] 3 0.864 0.868 0.568 0.746 0.660 2.058 0.774
TempSAL 3 0.869 0.911 0.195 0.745 0.896 1.967 0.800

Table 3. Evaluation results on the SALICON (LSUN 2017) test benchmark. We compare our model with the state-of-the-art saliency
prediction models, namely SAM-Resnet [8], MSI-Net [22], GazeGAN [4], MDNSal [37], SimpleNet [37], DeepGaze IIE [28], and
MD-SEM [12]. The results in bold show the best performance. Our method outperforms the state-of-the-art on conventional image
saliency in five metrics. The MD column denotes the ability of the models to predict multi-duration saliency. Our model outperforms the
only other multi-duration saliency model by a significant margin on six out of seven metrics.

Model TempSAL MD-SEM SAM-MD
Accuracy metrics CC ↑ KL ↓ NSS ↑ CC ↑ KL ↓ NSS ↑ CC ↑ KL ↓ NSS ↑
Slice 1 (0-500 ms) 0.819 0.496 3.422 0.816 0.351 3.374 0.805 0.370 3.181
Slice 2 (0-3000 ms) 0.752 0.512 2.703 0.745 0.452 2.694 0.738 0.469 2.541
Slice 3 (0-5000 ms) 0.822 0.471 3.337 0.734 0.487 2.677 0.715 0.535 2.495
Average 0.797 0.493 3.154 0.765 0.430 2.915 0.753 0.458 2.739

Table 4. Results of our model, MD-SEM [12], and the baseline SAM-MD [12] across different durations on the CodeCharts1k dataset [12].
Our model improves the saliency prediction in the first two intervals, consisting of 500 ms and 3000 ms observations, in two out of three
metrics. Our model benefits from both non-overlapping temporal slices and image saliency. In this comparison, the time slices are
cumulative, not mutually exclusive, which diminishes the separation between different time slices. However, our model performs well in
the last slice since this slice corresponds to the image saliency with 5000 ms observation duration.

Models CC ↑ KL ↓ NSS ↑ SIM ↑
DT (E(I)) 0.852 0.243 1.973 0.754
+DS(E(I)) 0.857 0.252 1.943 0.760
+SMM 0.906 0.198 1.930 0.798

Table 5. Results of ablation studies on the temporal SALICON
validation dataset. The first row denotes the model with only the
temporal saliency decoder. In the second row, the model has both
the temporal and image saliency decoders. The last row denotes
the performance with the spatiotemporal mixing module (SMM).
As evidenced by the improved accuracy metrics, the SMM effec-
tively modulates the spatial and temporal saliency maps to refine
the initial image saliency prediction.

module, which effectively modulates these predicted maps
and combines them into a final image saliency map SR.
Comparison with a temporal baseline model: The per-

formance of our TempSAL model with five temporal slices
is provided in Table 6. Note that each saliency slice contains
five times fewer samples than the original image saliency
map. Therefore, individual slices contain more variation
compared to conventional accumulated maps. As a baseline
to our model, we compute the performance of an architec-

ture composed of five replicated SimpleNet models (5xSim-
pleNet) [37], each trained on one saliency slice. This base-
line model uses an unshared encoder and decoder for each
slice, while we share the decoder among slices. Therefore,
we do not benefit from increased model capacity. We ob-
serve an accuracy decline in the baseline model, which con-
firms the increased discrepancy in the data.

Model Baseline TempSAL
Accuracy metrics CC ↑ KL ↓ NSS ↑ SIM ↑ CC ↑ KL ↓ NSS ↑ SIM ↑

T1 0.898 0.211 2.436 0.778 0.899 0.214 2.453 0.782
T2 0.870 0.219 2.159 0.765 0.877 0.215 2.211 0.776
T3 0.840 0.247 1.840 0.753 0.843 0.247 1.878 0.758
T4 0.820 0.273 1.729 0.743 0.825 0.264 1.740 0.749
T5 0.811 0.275 1.646 0.738 0.813 0.276 1.654 0.743

Average 0.848 0.245 1.962 0.756 0.852 0.243 1.987 0.761

Table 6. Results of the baseline model (left) and our TempSAL
model (right) across different time slices. In 18 out of 20 compar-
isons, our model consistently outperforms the baseline. Note that
both models perform best in the first slice, in which the intra-slice
agreement is more prominent than in the other slices, as mentioned
in Section 3.2.
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Figure 7. Temporal saliency predictions of our model and ground truth temporal saliency maps. Black and white maps are image saliency
maps for the whole observation duration. Red-yellow maps are temporal saliency maps for one second intervals. The first row shows the
input image with the ground-truth saliency overlaid. The second row shows the ground truth saliency and the third row shows our temporal
saliency predictions. Our approach captures the attention shifts in sequential temporal maps. Moreover, our model is able to produce
accurate image saliency predictions which are close to the ground truth maps.

Equal duration versus equal distribution: We break
down the fixations into time slices with two time-slicing
alternatives, namely equal duration and equal distribution.
The equal duration method groups the fixations based on
their timestamps. Each slice has a different total number of
fixations. On the other hand, the equal distribution method
groups an equal number of fixations in each slice. There-
fore, the duration of each slice is different from that of the
other ones. We provide more details on the slicing meth-
ods in the supplementary material. We train and evaluate
two models using both sampling methods. The results are
presented in Table 7.

6. Conclusion

We present a saliency prediction method that can
learn time-specific predictions and is also able to exploit
temporal information to improve overall image saliency
prediction. In particular, we show that the temporally
evolving patterns in human attention play an important

Model Equal distribution Equal duration
Accuracy metrics CC ↑ KL ↓ NSS ↑ SIM ↑ CC ↑ KL ↓ NSS ↑ SIM ↑

Slice 1 0.899 0.213 2.426 0.785 0.899 0.214 2.453 0.782
Slice 2 0.857 0.252 2.152 0.760 0.877 0.215 2.211 0.776
Slice 3 0.836 0.263 1.877 0.752 0.843 0.247 1.878 0.758
Slice 4 0.821 0.278 1.750 0.746 0.825 0.264 1.740 0.749
Slice 5 0.815 0.283 1.676 0.744 0.813 0.276 1.654 0.743

Average 0.846 0.258 1.976 0.757 0.852 0.243 1.987 0.761

Table 7. Results of the equal distribution model (first column)
and the equal duration one (second column) across different time
slices. The equal duration model achieves better results in 13 out
of 20 comparisons.

role in saliency prediction in natural images. This is evi-
denced by our experiments that demonstrate our TempSAL
method outperforming the state-of-the-art, including a
multi-duration method exploiting cumulative temporal
saliency maps.
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