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Abstract

Temporal Action Localization (TAL) methods typically
operate on top of feature sequences from a frozen snippet
encoder that is pretrained with the Trimmed Action Classifi-
cation (TAC) tasks, resulting in a task discrepancy problem.
While existing TAL methods mitigate this issue either by re-
training the encoder with a pretext task or by end-to-end fine-
tuning, they commonly require an overload of high memory
and computation. In this work, we introduce Soft-Landing
(SoLa) strategy, an efficient yet effective framework to bridge
the transferability gap between the pretrained encoder and
the downstream tasks by incorporating a light-weight neural
network, i.e., a SoLa module, on top of the frozen encoder.
We also propose an unsupervised training scheme for the
SoLa module; it learns with inter-frame Similarity Match-
ing that uses the frame interval as its supervisory signal,
eliminating the need for temporal annotations. Experimen-
tal evaluation on various benchmarks for downstream TAL
tasks shows that our method effectively alleviates the task
discrepancy problem with remarkable computational effi-
ciency.

1. Introduction

Our world is full of untrimmed videos, including a
plethora of Youtube videos, security camera recordings, and
online streaming services. Analyzing never-ending video
streams is thus one of the most promising directions of com-
puter vision research in this era [29]. Amongst many long-
form video understanding tasks, the task of finding action
instances in time and classifying their categories, known as
Temporal Action Localization (TAL), has received intense
attention from both the academia and the industry in recent
years; TAL is considered to be the fundamental building
block for more sophisticated video understanding tasks since
it plays the basic role of distinguishing frame-of-interest
from irrelevant background frames [19,34,40].
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Figure 1. (a-i) Standard TAL framework assumes a “frozen snip-
pet encoder” and only focuses on designing a good TAL head,
causing the task discrepancy problem. Straightforward approaches
to alleviating the issue include devising (a-ii) a temporally sensi-
tive pretext task [1,32,41], and (a-iii) an end-to-end TAL training
procedure [20,33]. However, both approaches break the aforemen-
tioned frozen snippet encoder assumption. On the other hand, (b)
our SoLa strategy shares the “frozen snippet encoder assumption”
with the standard TAL framework by providing a smooth linkage
between the frozen encoder and the downstream head. It offers gen-
eral applicability and more importantly, exceptional computational
efficiency.

Despite its importance, training a TAL model has a unique
computational challenge that hinders the naive extension of
conventional image processing models, mainly due to the
large size of the model input. For instance, videos in the
wild can be several minutes or even hours long, implying
that loading the whole video to a device for processing is
often infeasible. In this context, the prevailing convention
in processing a long-form video for TAL is to divide the
video into non-overlapping short snippets and deal with the



snippet-wise feature sequences. Specifically, a standard train-
ing pipeline for the long-form video understanding tasks
consists of two steps: (i) Train the snippet encoder with
a large-scale action recognition dataset (e.g., Kinetics400),
which is often different from the dataset for the downstream
task; (ii) Train the downstream head (e.g., TAL) that takes
the snippet feature sequences extracted from the pretrained
encoder. An issue here is that the mainstream pretext task for
the snippet-wise video encoder is “Trimmed” Action Classi-
fication (TAC), which does not handle action boundaries and
background frames. Although the current pipeline achieves
remarkable performance in TAL tasks due to the power of
large action recognition datasets, recent works [1,32,33,41]
point out the task discrepancy problem that is inherent in
this two-staged approach. The task discrepancy problem,
first introduced in [33], comes from the pretrained snippet
encoder’s insensitivity to different snippets within the same
action class. It results in a temporally invariant snippet
feature sequence, making it hard to distinguish foreground
actions from backgrounds. A straightforward approach to
the problem is adopting a temporally sensitive pretext task to
train the snippet encoder [, 32], or devising an end-to-end
framework [20, 33], which are briefly described in Figure 1
(a). However, as all previous methods involve retraining the
snippet encoder, an excessive use of memory and computa-
tion is inevitable.

To tackle the task discrepancy problem, we propose a new
approach, namely Soft-Landing (SoLa) strategy, which is
neither memory nor computationally expensive. SoLa strat-
egy is a novel method which incorporates a light-weight
neural network, i.e., Soft-Landing (SoLa) module, between
the pretrained encoder and the downstream head. The prop-
erly trained SoLa module will act like a middleware between
the pretext and the downstream tasks, mitigating the task dis-
crepancy problem (Figure 1 (b)). Since the task adaptation
is solely done by the SoLa module, the parameters of the
pretrained encoder are fixed in our SoLa strategy. The use
of a frozen encoder significantly differentiates our approach
from previous methods that mainly focus on designing an
appropriate training methodology for a snippet encoder. In
addition, our SoLa strategy only requires an access to the pre-
extracted snippet feature sequence, being fully compatible
with the prevailing two-stage TAL framework.

We also propose Similarity Matching, an unsupervised
training scheme for the SoLa module that involves neither
frame-level data manipulation nor temporal annotations. Our
training strategy circumvents the need for strong frame-level
data augmentation which most existing unsupervised repre-
sentation learning techniques [5, 10] rely on. This strategy
perfectly suits our condition where frame-level data aug-
mentation is impossible, as we only have an access to pre-
extracted snippet features. The new loss is based on a simple
empirical observation: “adjacent snippet features are simi-

lar, while distant snippet features remain distinct”. Coupled
with the Simsiam [60] framework, Similarity Matching not
only prevents the collapse, but also induces temporally sen-
sitive feature sequences, resulting in a better performance in
various downstream tasks.

The contributions of the paper can be summarized as
follows:

1. To tackle the task discrepancy problem, we introduce
a novel Soft-Landing (SoLa) strategy, which does not
involve retraining of the snippet encoder. As we can
directly deploy the “frozen” pretrained snippet encoder
without any modification, our SoLa strategy offers eas-
ier applicability compared to previous works that re-
quire snippet encoders to be retrained.

2. We propose Similarity Matching, a new self-
supervised learning algorithm for the SoLa strategy.
As frame interval is utilized as its only learning sig-
nal, it requires neither data augmentation nor temporal
annotation.

3. With our SoLa strategy, we show significant improve-
ment in performance for downstream tasks, outperform-
ing many of the recent works that involve computation-
ally heavy snippet encoder retraining.

2. Related Work
2.1. Temporal Action Localization Tasks

As a fundamental task for processing long-form videos,
Temporal Action Localization (TAL) has drawn significant
attention among computer vision researchers leading to a
plethora of seminal works [4, 17, 19,31, 34,37,42]. Be-
yond the standard fully-supervised and offline setting, var-
ious extensions of the task were suggested, including its
online [ 14, 16], weakly-supervised [21,35,39] and unsuper-
vised [9] variants.

2.2. Designing Better Snippet Encoder

Although numerous attempts have been made for design-
ing better TAL heads, relatively less attention has been paid
for devising a good snippet encoder, despite the fact that all
TAL methods and its variants start from the pre-extracted
snippet feature sequences. A major problem of the TAC-
pretrained snippet encoder is its insensitivity to different
snippets in the same video clip. Apparently, this insensi-
tivity problem can be resolved by adopting a “temporally
sensitive” pretraining method for the snippet encoder. In this
perspective, [1] rigorously exploited temporal annotations
for training the snippet encoder. However, as it requires
a large scale and temporally annotated video dataset, gen-
eral applicability of this approach is limited. On the other
hand, [32] adopted data-generation approach which only ex-
ploited the action class labels of the Kinetics400 [15] dataset.



To be specific, various boundaries were generated by sim-
ply stitching intra-/inter- class videos, and a pretext task of
guessing the type of the generated boundaries was proposed.
Going one step further, a recent work [4 1] introduced a com-
pletely unsupervised pretraining methodology for the snippet
encoder, greatly expanding its possible applications. In ad-
dition, it is worth noting that [33] made an initial attempt
on designing an end-to-end TAL with a low-fidelity snippet
encoder, while [20] provided exhaustive empirical studies
on these end-to-end TAL approaches. Nevertheless, all pre-
vious works involve trainable snippet encoder assumption,
while our SoLa strategy only requires pre-extracted feature
sequence for its adoption.

2.3. Temporal Self-similarity Matrix

Temporal Self-similarity Matrix (TSM) is a square matrix,
where each of its element corresponds to its self-similarity
score. From a given video with L frames, each value at
position (i, 7) in TSM is calculated using a similarity metric
(e.g. cosine similarity) between frame i and j, resulting in an
L x L matrix. As an effective and interpretable intermediate
representation of a given video, several recent works [ 12, 13]
exploited TSM to tackle various video understanding tasks,
including Generic Event Boundary Detection [23] and repeti-
tive action counting [7]. In our work, we focus on the certain
similarity patterns that arise in general TSM, motivating us
to design a new Similarity Matching objective.

3. Method
3.1. Problem Description

LetV := Ui;:1 be a video consisting of | frames. We
assume having a pretrained snippet encoder that takes a
length « snippet vgiif as its input and emits a vector
f € R™. With the snippet encoder, we convert V' into a
snippet feature sequence f~_,, where L = [l/a] if there
is no overlap among the snippets. Here, we introduce the
Soft-Landing (SoLa) module SoLa(-) : RLx™ — RExm,
where FL | = SoLa(fE_ ) and FZ ; denotes the trans-
formed feature sequence'. For a wider and more general
applicability of the transformed feature sequence F'Z_;, we
assume to have access to the unlabeled downstream dataset,
meaning that we only know the target data but do not know
the target task. Our ultimate goal is to devise a proper un-
supervised training method to train the SoLa module that
produces temporally sensitive transformed feature sequence
FL_|. We expect the transformed feature sequence X ;
to perform better than the original feature sequence fZ_; in
various downstream tasks, in which the temporal sensitivity
is important.

'In general, output dimension of the SoLa(-) can be different. But here
we only consider the same dimension case for clarity.
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Figure 2. Step by step instruction of the overall SoLa module
training: [Step 1] A fixed size subsequence from the snippet feature
sequence fZ_; is sampled, which is then passed through the SoLa
module. [Step 2] Each transformed feature is aggregated with
a predefined step size s (s = 2 in the above figure), forming a
gathered feature sequence. [Step 3] Predicted TSM is computed
by calculating a pairwise similarity between the gathered feature
sequence and the projected gathered feature sequence. Position-
wise BCE loss is then posed with the target TSM and the predicted
TSM.

3.2. Overview of Soft-Landing Strategy

The main idea of the Soft-Landing (SoLa) strategy is
placing a light-weight neural network, or SoLa module, be-
tween the pretrained encoder and the downstream head. In
our framework, there is no need for retraining or fine-tuning
of the pretrained encoder since the SoLa module is solely
responsible for narrowing the task discrepancy gap between
the pretrained encoder and the downstream head. Besides,
following the standard two-stage TAL convention, our SoLa
strategy works on the snippet feature level and hence elimi-
nates the need for an access to raw RGB frames. As most
properties of the standard TAL framework are preserved, our
SoLa strategy requires only a minimal modification of the
existing framework for its integration.

For a clear demonstration, overall schematic diagram of
the training and the inference stage of the SoLa strategy is
illustrated in Figure 2 and Figure 1 (b) respectively. In the
training stage, we first sample a fixed-size local subsequence
from the pre-extracted snippet features f~_,, which origi-
nate from the pretrained snippet encoder. Next, the sampled
subsequence is put into the SoLa module, yielding a trans-
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Figure 3. (Right) Results of the feature similarity analysis. Two
different snippet encoders ( [3,260]) are utilized for extracting snip-
pet features. For each video, snippet feature subsequence with a
fixed length is sampled and a TSM is computed for each of those
subsequences by calculating their pairwise self-similarities. The
average over those TSMs is denoted as the “Average TSM”.
(Left) Target TSM with K = 16. Target TSM exaggerates the
temporal similarity structure of the average TSMs.

formed feature sequence. After assembling each element
with a step size s, the shortened feature sequence is pro-
jected through an MLP and pairwise similarities between
the sequence before the projection and after the projection
are computed, forming a TSM-like matrix. In Figure 2, we
denote this asymmetric self similarity matrix as a predicted
TSM. With a predefined target TSM which solely depends
on the frame interval, Similarity Matching loss £3M (-, -) is
posed in each position of the matrices. Note that the above
training procedure does not demand any additional label as
the frame interval (distance between the frames) is its only
supervisory signal. The exact procedure for generating the
target TSM and calculating the loss will be discussed in the
next section. (Section 3.3)

During the inference stage, we put the snippet feature
sequence fL_; to the trained SoLa module SoLa(-) and get
an enhanced feature sequence F'Z_;. Then, 'L, is directly
used for the downstream task.

From its definition, the SoLLa module can be any neural
networks that take a tensor with shape (L, m) as its input
and output a tensor of the same shape. To demonstrate it as
a proof of concept, we employed the simplest architecture: a
shallow 1D CNN. While devising effective architecture for
the SoLa module is an interesting future research direction,
we found that this 1D CNN architecture works surprisingly
well. More detailed architectural configurations and abla-
tion studies on this topic are provided in the supplementary
materials.

3.3. Similarity Matching

Due to the unlabeled target dataset assumption, it is ob-
vious that the training of the SoLa module must be done
in a self-supervised way. While recent studies [0, 1 0] have
shown remarkable success of contrastive learning in the self-
supervised representation learning domain, all of these meth-
ods rely on extensive data augmentation. Specifically, [5]
pointed out that a strong data augmentation is essential for
successful training of the self-supervised contrastive learning
models. Nevertheless, existing data augmentation methods
are rgb frame-level operation (e.g. random cropping, color
distortion, etc.), whereas our SoLa module deals with feature
sequences f_. Since feature-level data augmentation is in-
feasible, straightforward application of previous contrastive
learning approach is non-trivial.

Instead of designing a feature-level data augmentation
technique, we pay attention to the temporal similarity struc-
ture that general videos naturally convey: “Adjacent frames
are similar, while remote frames remain distinct.” This intu-
ition is validated in Figure 3, where the similarities among
the snippet features from the same video and their average
Temporal Self-similarity Matrix (TSM) are plotted.

As expected, the frame similarity decays as the frame
interval increases, regardless of the backbone snippet en-
coder’s architecture. Note that although specific similarity
scores may vary between the backbone architectures, the
overall tendency of the similarity decay and the average
TSM is preserved, indicating that the temporal similarity
structure is a common characteristic of general videos. With
this empirical observation, we propose a novel pretext task
for feature level self-supervised pretraining called Similarity
Matching, which utilizes frame interval as its only learning
signal.

One of the possible approaches for exploiting the frame
distances to train the model is directly using their positional
information [36, 38]. However, instead of using the raw
frame interval as the learning signal, we go one step further
to produce a snippet feature sequence that is even more tem-
porally sensitive. To this end, we introduce a deterministic
function A(+) : R — R that maps a frame interval to a de-
sirable, i.e., target similarity score. With these scores, the
SoLa module is trained with the Similarity Matching. Here,
the Similarity Matching denotes a direct optimization of the
feature similarity; if the target similarity score is given as
0.75, the objective function would penalize the feature en-
coder if the similarity score between the two snippet features
deviates from 0.75. In this manner, the objective forces the
similarity between the two snippet features to be close to the
target similarity score, which depends on the frame interval
between them.

We designed the A function to enhance the temporal simi-
larity structure of the empirical similarity score distribution.
To achieve the goal, the function should make the adjacent



snippet features be more similar while remote snippet fea-
tures remain distinct. To do so, the X function is defined as
follows with a constant K :

A(d) = U(%)Ji 40, (1)

where d stands for the frame interval between the two snippet
representations and o (-) denotes the sigmoid function. High
K value in Equation (1) leads to a A function that amplifies
the similarities of neighboring snippet features (refer to the
Target TSM and the Average TSM in Figure 3). We found
that this target assignment is important for achieving a good
downstream performance (see ablation study results in the
supplementary materials). Furthermore, it is worth mention-
ing that the target similarity score never goes to zero with
the above A function if both snippet features are from the
same video, reflecting our another prior knowledge: “There
is an invariant feature that is shared among frames in the
same video”, which also corresponds to the basic concept of
the slow feature analysis [28].

Remaining design choice for the Similarity Matching is
choosing an appropriate way to produce a similarity predic-
tion p from the given snippet feature pair (f;, f;). As the
frame interval between different videos cannot be defined
and to avoid trivial dissimilarity, we presume the snippet
feature pair (f;, f;) to come from the same video.

Motivated by the Simsiam framework [6], we adopt asym-
metric projector network Proj(-) : R™ — R™, which
consists of two fully-connected layers. Thus, we first calcu-
late 2; = SoLa(fE,)[i],z; = Proj(SoLa(fL_,)[j]) and
utilize the rescaled cosine similarity between them as the
network prediction:

1 Zi - Zj
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Finally, with those p and target similarity A (output from
the A\ function in Equation (1)), Similarity Matching loss
L£5M is computed as follows:

LM(A, p) = —Alogp— (1 — A)log(1 —p).  (3)

Note that £5M(-,-) is merely a standard Binary Cross En-
tropy (BCE) loss with a soft target. In the supplementary
materials, we provide the connection between the Similarity
Matching loss and the contrastive learning.

Focusing on the fact that both A and p values represent
feature similarities, we can derive an interesting interpreta-
tion: view the set of A and p values as TSMs. In this point
of view, posing standard BCE loss between A and p values
becomes a TSM Matching. The target TSM, presented in
Figure 3, visually illustrates A assignments following Equa-
tion (1); it can be seen as a general and desirable TSM of an
arbitrary video — maintaining high similarity between close
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Figure 4. Snapshot of TSMs during training. Average TSM here
is computed with samples in 1 batch (256 snippet feature subse-
quences)

frames while low similarities among distant frames. For
each p and A in the corresponding position, Equation (3) is
computed, resulting in a group of BCE losses. This group
of BCE losses can be succinctly described as an aforemen-
tioned “TSM matching” in that the losses force the predicted
TSM to resemble the target TSM as training proceeds.

One may suspect that the TSM matching with a fixed tar-
get TSM would induce monotonous TSM prediction. How-
ever, we observed that only the average of the predicted
TSMs goes to the target TSM as training proceeds while
each sample shows diverse patterns (Figure 4).

4. Experiments
4.1. Experimental Setup

Target Downstream Tasks To validate the representation
power of the transformed feature sequences, we evaluated
TAL performance with off-the-shelf downstream heads in-
cluding G-TAD [34], BMN [19], and Actionformer [40].
Moreover, we tested our transformed feature sequence in
the language grounding task with the LGI [22] head. Result
from Actionformer [40] downstream head is presented in
our supplementary materials. For an additional experiment,
we also present a linear evaluation result, which aims to
distinguish foreground snippet features from background
snippet features with an one-layer classifier. Following the
related works [1,30,32,33], we choose G-TAD [34] as the
main downstream head and conducted various ablation stud-
ies. For all training procedures of the downstream tasks, we
followed the same procedure of the published codes. No
additional fine-tuning of the hyperparameters in the down-
stream heads is done.



Method Backbone TE | Label Temporal Action Localization (GTAD [34]) Temporal Action Proposal (BMN [19]) l;:quired Flop§
mAP@0.5 @075 @095 Avg. Gain | AR@l @10 @100 AUC Gain emory | (per clip)
TSM-R18 [18] - 49.64 34.16 7.68 33.59 - 3329 5620 7488 66.81 -
TSM-R50 [18] - 50.01 35.07 8.02 34.26 - 3345 56.55 75.17 67.26 -
Baseline 13D [3] - 48.50 3290 720 3250 - 3230 54.60 73.50 65.60 -
R(2+1)D-34 [25] - 49.76 34.87 8.65  34.08 - 34.67 57.89 75.65 68.08 -
TSN [26] - 49.78 34.46 796  33.84 - 33.59  56.79 75.05 67.16 -
BSP [27] TSM-R18 v t 50.09 34.66 795 3396 +0.37 - - N/A 14.6G
TSM-R50 v t 50.94 35.61 798 3475 +049 | 33.69 5735 7550 67.61 +0.35 33G
LoFi [33] TSM-R18 v v 50.68 35.16 8.16 3449 +090 | 33.71 56.81 7558 6749 +0.58 128G 14.6G
TSM-R50 v v 50.91 35.86 8.79 3496 +0.70 - 33G
PAL [41] 13D v X 49.30 34.00 7.90 3340 +0.90 | 33.70 5590 75.00 66.80 +1.24 2048G 3.6G
TSP [1] R(2+1)D-34 v v 51.26 36.87 9.11 3581 +1.73 | 3499 5896 76.63 69.04 +0.96 64G 76.4G
SoLa(ours) TSN X X 51.17 35.70 831 3499 +1.15 | 3425 57.75 7586 68.07 +0.91 11G 0.014G

Table 1. TAL results on ActivityNet-v1.3 dataset. T.E stands for the “Trainable snippet Encoder”. v, 1, X in Label column denote “Temporal
annotation”, “Action class annotation”, and “No label at all” respectively. “Memory” refers the GPU memory constraint, which is reported

according to the hardware configuration of each method. [
methods are from the main table of [41].

Dataset and Feature ActivityNet-v1.3 [2] dataset consists
of 19,994 temporally annotated, untrimmed videos with 200
action classes. Videos in the dataset are divided into training,
validation, and test sets by the ratio of 2:1:1. For ActivityNet-
v1.3 SoLa training, we used the training split with no label.

HACSI.1 dataset [43] is a newly introduced video dataset
for the temporal action localization task. It contains 140K
complete action segments from 50K untrimmed videos with
200 action categories, which correspond to the ActivityNet-
v1.3 action categories. THUMOSI14 [11] contains 413
untrimmed videos with 20 action classes and it is split
into 200 training videos and 213 test videos. Analogous
to ActivityNet-v1.3 setting, we used the training splits of the
aforementioned datasets with no label for training the SoLa
module.

Charades-STA [8] is a popular video grounding dataset
which is an extension of the action recognition dataset called
Charades [24]. It contains 9848 videos of daily indoors ac-
tivities, with 12408/3720 moment-sentence pairs in train/test
set respectively.

For ActivityNet-v1.3 and THUMOS 14 experiments, we
chose Kinetics400 [15] pretrained two-stream TSN net-
work [26] as the frozen snippet encoder, which is widely
used among various TAL methods. In this setting, the sam-
pling step size of the snippets is set to 5.

For HACS1.1 experiments, we directly utilized the of-
ficially available? 13D [3] feature, which is extracted from
Kinetics400 [15] pretrained I3D snippet encoder. For all the
SoLa training procedure, we used pre-extracted snippet fea-
ture sequences (numpy array format), indicating that there is
no parameter update on the snippet encoders.

For the VG task, we extracted I3D features of Charades-
STA [8] dataset, using Kinetics400 [15] pretrained weight

Zhttp://hacs.csail.mit.edu/challenge.html

] does not provide its hardware configuration. Per clip FLOP values of other

from the PytorchVideo model zoo.?

SoLa Settings Except for the SoLa configuration for the
unified training in the ablation study, the training and the
evaluation of SoLa follows a two-staged approach. First, the
SoLa module is trained with the Similarity Matching and
with the trained module, input feature sequences f~_, are
converted to the transformed feature sequences ;. Then,
the training and the evaluation of the downstream task are
conducted on the transformed feature sequence ;. For all
TAL tasks, we set the output dimension of the SoLa module
to be the same as its input dimension, yielding identical
tensor shape for the input feature sequences f_; and the
transformed feature sequences F-_;.

Unlike previous works that required substantial amount
of computational resources for training snippet encoders,
we only used 1 RTX-2080 GPU for training SoLa. In fact,
only less than 6GB of GPU memory and approximately 3
hours for training are required for the SoLa training. Other
hyperparameter settings can be found in the supplementary
materials.

Evaluation Metrics Following the standard evaluation
protocols, we report mean Average Precision (mAP) val-
ues under different temporal Intersection over Union (tIOU)
thresholds for G-TAD performance. An average mAP is
also reported by averaging across several tloUs for clear
demonstration. For BMN, we adopted the standard AR @k
(the average recall of the top-k predictions) and AUC (the
area under the recall curve) as performance metrics. For VG
tasks, the top-1 recall score at three different tloU thresholds
{0.3,0.5,0.7} are presented. Following LGI’s evaluation

3https://github.com/facebookresearch/pytorchvideo/



Datasets Method Temporal Action Localization (GTAD [34])
mAP@0.5 @0.75 @0.95 Avg
Baseline 40.45 26.84 8.10 26.85
HACS [43]
SoLa(ours) 41.12 27.69 8.54 27.58
mAP@0.3 @04 @05 @0.6 @0.7
Baseline 57.93 51.96  43.05 3262 2252
THUMOS [11]
SoLa(ours) 59.14 53.08 4432 3359 23.19

Table 2. TAL results on HACS [43] and THUMOS14 [1 1] datasets.
In both datasets, SoLa module brings downstream performance
gain, supporting the general applicability of the SoLa strategy.

Video Grounding (LGI)
Method
R@0.1 R@03 R@05 R@0.7 mloU gain
Baseline | 67.72 56.09 41.48 21.88 38.24 -
SoLa 70.50 58.47 42.96 2190 39.70 +1.46

Table 3. VG task performance (LGI). mloU gain is reported.

metrics [22], mean tloU between predictions and ground-
truth is also reported.

4.2. Main Results

As arelatively new task, many of the preceding works did
not release their codes yet, making the exact fair comparison
difficult. Thus, we will mainly focus on the gain, which
reflects given method’s efficacy compared to their baselines.

TAL Results Tablel and Table 2 show that our SoLa mod-
ule not only achieves exceptional performance compared
to most of the recent snippet encoder training approaches,
but also generalizes well to various datasets and different
snippet encoders. Note that TSP [1] heavily relies on tempo-
rally annotated video dataset to train the snippet encoder. In
addition, our framework has the general applicability across
various downstream tasks, as evidenced by the performance
gain on VG task in Table 3. These results allude that when it
comes to bridging the task discrepancy gap, computationally
heavy snippet encoder pretraining is not an essential part.
This counterintuitive results strongly suggest that developing
SoLa strategy can be a promising research direction.

Computational Cost As our method directly processes
the snippet feature and does not involve snippet encoder
training, it is exceptionally efficient in computation. It is
quantitatively verified with the memory requirement and per
clip FLOP in Table 1. Here, per clip FLOP values of the
other methods, which are from the main table of [41], only
represent the backbone network’s computational complexity;
they are lower bounds of computational cost with regard to
their whole training procedure since they involve backbone
network training.
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Figure 5. Qualitative results showing the effect of the SoLa module
which compensates the temporal sensitivity. For each video in Ac-
tivitynet1.3 [2] validation split, standard deviation of the pairwise
self-similarity scores is calculated, and the average value of them
is reported as the “Mean of std-dev”.

Qualitative Results Figure 5 visually illustrates the role of
the trained SoLa module. We can see that TSMs of the SoLa
feature sequences show more diverse patterns compared to
the original ones. To support the claim, we calculated the av-
erage value of standard deviation. Standard deviation here is
computed for each snippet feature sequence’s self similarity
scores, meaning that higher standard deviation is an indi-
cation of more temporally sensitive feature sequence. We
observed that SoLa features sequences are more temporally
sensitive.

Linear Evaluation The most straightforward and standard
method of measuring the learned feature’s representation
power is conducting a linear classification on them [5, 10].
It is based on the linear separability concept - good features
should be linearly separable for the meaningful criterion.
As we are targeting on the TAL tasks and our Similarity
Matching training compensates the temporal sensitivity of
the snippet features in the same video, we chose the fore-
ground/background frame distinction as a criterion for the
linear evaluation protocol, forming a binary classification
problem. Both the original and the transformed features are
normalized before they are fed into the linear classifier.

We present linear evaluation results in Figure 6. It clearly
shows that the SoLa module with Similarity Matching im-
proves the temporal sensitivity, making the linear classifier
easier to distinguish foreground/background snippet.
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Figure 6. Linear evaluation performance graph in Activitynet 1.3.
Test accuracy is reported at the end of each epoch.

4.3. Ablation Study

We conducted three major ablation studies on the SoLa
module with the G-TAD downstream head by experimenting
with the followings: i) receptive fields, ii) unified training of
the SoLa module, iii) different snippet encoder which only
uses RGB-only frames.

As we discussed in Section 3.2, the SoLa module consists
of simple 1D convolutional layers. However, finding the
best-performing convolution kernel size remains as a design
choice. To figure out the influence of the design choice, we
tested +kernel_size+ € {1,3,5,7}.

Moreover, a recent work on MLP projector [27] claims
that additional MLP between the classifier head and the
feature encoder can reduce the transferability gap, induc-
ing better downstream task performances. From this, it is
natural to ask if the SoLa module itself (without Similarity
Matching) can play a role as a buffer between the pretrained
encoder and the TAL heads. To answer this question, we
tried a unified training of the SoLa module where the SoLa
module is directly attached to the very front part of the TAL
head and trained simultaneously with the head. It can be
seen as a TAL head with an additional local aggregation
module on its front part, or a truncated version of [33].

The prevailing convention in TAL is using the twostream
network. However, to ensure our SoLa strategy’s general
applicability, we also conducted experiments on RGB only
I3D [3] features®

Table 4 describes the result of ablation studies on our
SoLa strategy. The result suggests that while the local feature
aggregation plays a key role in the SoLa module, the wider
receptive field does not necessarily entail a performance
improvement; we attribute it to the need for an appropriate
information bottleneck since the frame interval is exploited

4The feature is available in https:/github.com/Alvin-Zeng/PGCN

Setting Temporal Action Localization (GTAD [34])
Kernel mAP@0.5 @0.75 @0.95 Avg
Baseline 49.78 34.46 7.96 33.84
1 50.30 34.90 8.52 34.30
3 50.70 35.39 8.14 34.68
SUnified 50.07 34.86 7.07 34.07
5 51.17 35.70 8.31 34.99
7 50.94 35.53 7.53 34.79
Baselinejsp 49.11 33.70 7.49 33.18
Sp 49.86 3441 6.29 33.59

Table 4. Ablation study results on ActivityNet-v1.3. The subscript
Unified refers to the simultaneous training of the SoLa module
with the standard TAL head, where the module is trained with the
standard downstream objective, not with our Similarity Matching.

as the model’s learning signal. In addition, we find out
that while the SoLa module itself can slightly boost the
TAL performance, it does not match the performance of the
SoLa module trained with Similarity Matching. It implies
that training with Similarity Matching is essential for the
successful training of the SoLa module.

Lastly, we observed that the SoLa module performs rea-
sonably well in the RGB-only case (bottom part in Table 4).
However, the gain is lower than the two-stream case, indicat-
ing that there is an inherent limitation that comes from the
frozen snippet encoder assumption. For instance, if the base
feature does not contain sufficient information, it serves as
an information bottleneck for the SoLa module, imposing an
upper bounds of the gain that SoLa module can achieve. For
more ablation studies and results about our model, please
refer to our supplementary materials.

5. Conclusion

In this paper, we introduced the Soft-Landing (SoLa)
strategy, a new direction in tackling the suboptimal snippet
encoder problem in TAL research. Unlike previous works,
we adopt a light-weight Soft-Landing (SoLa) module be-
tween the frozen encoder and the TAL head, resulting in
both efficiency and easier applicability. Coupled with the
novel self-supervising method called the Similarity Match-
ing, our SoLa strategy brings about significant performance
gains in downstream tasks, outperforming most of the re-
cent works that involve retraining the snippet encoder. We
hope that our results spark further research on efficient and
effective methods of using the pretrained snippet encoder for
long-form video understanding.
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