
VLPD: Context-Aware Pedestrian Detection
via Vision-Language Semantic Self-Supervision

Mengyin Liu1* Jie Jiang2* Chao Zhu1† Xu-Cheng Yin1

1School of Computer and Communication Engineering,
University of Science and Technology Beijing, Beijing, China

2Data Platform Department, Tencent, Shenzhen, China
blean@live.cn, zeus@tencent.com, {chaozhu, xuchengyin}@ustb.edu.cn

Abstract

Detecting pedestrians accurately in urban scenes is sig-
nificant for realistic applications like autonomous driving
or video surveillance. However, confusing human-like ob-
jects often lead to wrong detections, and small scale or
heavily occluded pedestrians are easily missed due to their
unusual appearances. To address these challenges, only
object regions are inadequate, thus how to fully utilize
more explicit and semantic contexts becomes a key problem.
Meanwhile, previous context-aware pedestrian detectors ei-
ther only learn latent contexts with visual clues, or need
laborious annotations to obtain explicit and semantic con-
texts. Therefore, we propose in this paper a novel approach
via Vision-Language semantic self-supervision for context-
aware Pedestrian Detection (VLPD) to model explicitly se-
mantic contexts without any extra annotations. Firstly, we
propose a self-supervised Vision-Language Semantic (VLS)
segmentation method, which learns both fully-supervised
pedestrian detection and contextual segmentation via self-
generated explicit labels of semantic classes by vision-
language models. Furthermore, a self-supervised Prototyp-
ical Semantic Contrastive (PSC) learning method is pro-
posed to better discriminate pedestrians and other classes,
based on more explicit and semantic contexts obtained from
VLS. Extensive experiments on popular benchmarks show
that our proposed VLPD achieves superior performances
over the previous state-of-the-arts, particularly under chal-
lenging circumstances like small scale and heavy occlusion.
Code is available at https://github.com/lmy98129/VLPD.

1. Introduction
With the recent advances of pedestrian detection, enor-

mous applications benefit from such a fundamental per-
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Figure 1. Illustration of the problems by previous works (top) and
our proposed method to tackle them (bottom). (a) and (b) are pre-
dicted by [27]. Green boxes are correct, red ones are human-like
traffic signs, and dashed blue ones are missing heavily occluded or
small scale pedestrians. (c) and (d): We propose self-supervisions
to recognize the contexts and discriminate them from pedestrians.

ception technique, including person re-identification, video
surveillance and autonomous driving. In the meantime,
various challenges from the urban contexts, i.e., pedestri-
ans and non-human objects, still hinder the better perfor-
mances of detection. For example, confusing appearances
of human-like objects often mislead the detector, as shown
in Figure 1(a). Moreover, heavily occluded or small scale
pedestrians have unusual appearances and cause missing
detections as Figure 1(a) and (b). Apart from the object re-
gions, the contexts are crucial to address these challenges.

Nevertheless, previous methods still make inadequate in-
vestigations on the contexts in urban scenarios. For in-
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Figure 2. The overall architecture of our proposed VLPD approach. (a) Vision-Language Semantic (VLS) segmentation obtains pseudo
labels via Cross-Modal Mapping, then the Pretrained Visual Encoder learns fully-supervised detection (LDet) and self-supervised segmen-
tation to recognize semantic classes for explicit contexts without any annotations. (b) Prototypical Semantic Contrastive (PSC) learning
lets the pixel-wise pedestrian features as queries closer to positive prototypes and further to negative ones based on Pixel-wise Aggregation.

stance, manual contextual annotations from CityScapes [6]
boost SMPD [15] on the pedestrian benchmark CityPersons
[43], because they share homologous image data. Besides,
a semi-supervised model yields pseudo labels for the Cal-
tech dataset [9]. However, both these two solutions require
expensive fine-grained annotations, especially for training
the semi-supervised model. Moreover, other methods learn
regional latent contexts merely from limited visual neigh-
borhood [47], or non-human local proposals as negative
samples for contrastive learning [23]. Without an explicit
awareness of semantic classes in the contexts, these meth-
ods thus still suffer from unsatisfactory performance.

Besides, some pedestrian detection methods also indi-
rectly handle the contexts. For the occlusion problems,
many part-aware methods [4, 13, 19, 20, 28, 33, 41, 44, 45]
adopt visible annotations for the occluded pedestrians,
which indicate the occlusion by other pedestrians or non-
human objects in the contexts. Whereas, these labels still
need heavy labors of human annotators. For scale varia-
tion [2,8,21,39,46], crowd occlusion [14,25,38,40,48,50]
or generic hard pedestrians [1, 24, 26, 27, 34], most previ-
ous works are intra-class, e.g., small pedestrians or crowded
scenes, and thus irrelevant to context modeling problems.

Inspired by the vision-language models, we notice a
more explicit context modeling without any annotations via
cross-modal mapping. For instance, DenseCLIP [32] is ini-
tialized with vision-language pretrained CLIP model [31]
to learn cross-modal mapping from pixel-wise features to
linguistic vectors of human-annotated classes. Meanwhile,
MaskCLIP [49] generates pseudo labels via cross-modal
mapping and train another visual model. Hence, comple-
menting the initialized mapping and pseudo labeling, we
propose to recognize the semantic classes for explicit con-

texts via self-supervised Vision-Language Semantic (VLS)
segmentation, as shown in Figure 1(c) and 2(a).

Furthermore, we consider that only pixel-wise scores are
ambiguous to discriminate pedestrians and contexts. Due to
the coarse-grained pseudo labels, some parts of pedestrians
might have higher scores of other classes. Different from
the regional contrastive learning [23], we introduce the con-
cept of prototype [35, 51] for a global discrimination. Each
pixel of pedestrian features is pulled closer to pixel-wise
aggregated positive prototypes and pushed away from the
negative ones of other classes based on the explicit contexts
obtained from VLS. As illustrated in Figure 1(d) and 2(b),
a novel contrastive self-supervision for pedestrian detection
is proposed to better discriminate pedestrians and contexts.

In conclusion, we have observed a dilemma between the
heavy burden of manual annotation for explicit contexts and
local implicit context modeling. Hence, we propose a novel
approach to tackle these problems via Vision-Language se-
mantic self-supervision for Pedestrian Detection (VLPD).
The main contributions of this paper are as follows:

• Firstly, the Vision-Language Semantic (VLS) segmen-
tation method is proposed to model explicit seman-
tic contexts by vision-language models. With pseudo
labels via cross-modal mapping, the visual encoder
learns fully-supervised detection and self-supervised
segmentation to recognize the semantic classes for ex-
plicit contexts. To our best knowledge, this is the
first work to propose such a vision-language extra-
annotation-free method for pedestrian detection.

• Secondly, we further propose the Prototypical Seman-
tic Contrastive (PSC) learning method to better dis-
criminate pedestrians and contexts. The negative and
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positive prototypes are aggregated via the score maps
of contextual semantic classes obtained from VLS and
pedestrian bounding boxes, respectively. Each pixel
of pedestrian features is pulled close to positive proto-
types and pushed away from the negative ones, in order
to strengthen the discrimination power of the detector.

• Finally, by the integration of VLS and PSC, our pro-
posed approach VLPD achieves superior performances
over the previous state-of-the-art methods on popu-
lar Caltech and CityPersons benchmarks, especially on
the challenging small scale and occlusion subsets.

2. Related Works
2.1. Pedestrian Detection

In realistic applications, various circumstances are chal-
lenging for pedestrian detection, including occlusion, scale-
variation and generic hard pedestrian handling. Here, we
discuss these common problems as well as the context-
aware methods which are specialized for these problems.

2.1.1 Occlusion Handling

As a research hot-spot of pedestrian detection, handling oc-
clusion should make the best of limited information from
visible parts of pedestrian, and also avoid the noisy one
from occlusion by other pedestrians or non-human objects.

On the one hand, part-aware methods handle the visible
parts with other parts occluded by contextual objects. For
example, OR-CNN [44] re-scores parts to highlight the vis-
ible ones. PRNet++ [33] progressively refines the predicted
visible and full-body boxes. Extra labels of less frequently
occluded heads facilitate HBAN [28], JointDet [5] and Ped-
Hunter [4]. Some methods [2,19,20] handle the visible and
full bodies by parallel branches. Moreover, DMSFLN [13]
explores the feature distributions between both branches.

On the other hand, crowd-aware methods are specialized
to intra-class occlusion without context modeling. Some
post-processing methods [14, 25, 29] focus on the over-
suppression of dense predictions in crowd scenes, and the
others [48] handle the under-suppression of sparse ones.
For the heavily overlapped pedestrians, loss-based meth-
ods [36, 38, 40] identify them by learning representations.

Differently, our proposed VLPD discriminates non-
human occluders and pedestrians via the contrastive learn-
ing of PSC, on the basis of the self-supervised learning via
self-generated explicit labels of semantic classes from VLS.

2.1.2 Scale-Variation Handling

Scale-variation is another problem that potentially related
to modeling the context. Due to the distance, the blurry and
noisy appearances of both small pedestrians and non-human

objects often confuse the detectors. Multiple branches [8,
21, 46] are popular for modeling different scales. With the
powerful FPN [22] architecture, LBST [2] detects smaller
pedestrians with the fusion of bottom-up and top-down fea-
tures. Differently, SML [39] pushes the features of small-
scaled pedestrians towards the distribution of large ones.

Unfortunately, these works focus on the small-scale
pedestrians, due to no labels for small non-human objects.
Hence, our proposed VLPD uses label-free explicit contexts
including the latter and performs better on different scales.

2.1.3 Generic Hard Pedestrian Handling

The central issue to handle hard pedestrians is accurate lo-
calization. Plenty of previous works [1,26] introduce multi-
phase spatial refinements. Following the anchor-free style
from generic object detection, the CSP [18, 27] series de-
crease hyper-parameters with an adaptive prediction. AP2M
[24] matches proper parameters for different hard samples.

For the context modeling, SMPD [15] adopts extra seg-
mentation annotations, EGCL [23] uses contrastive learning
by local proposals, and FC-Net [47] learns latent features of
the local contexts. Without any extra labels, our proposed
VLPD can recognize explicit contextual objects via pseudo
labels of VLS, and then discriminates them with pedestrians
via more global positive and negative prototypes of PSC.

2.2. Segmentation by Vision-Language Pretraining

Recent progress of vision-language pretraining CLIP
[31] has facilitated more powerful segmentation methods.
For example, cosine similarity, i.e., cross-modal mapping,
is calculated between visual features and linguistic vectors
to obtain segmentation results. DenseCLIP [32] and LSeg
[17] initialize the model with a pretrained CLIP visual en-
coder, and then learn mapping features to annotated classes
via linguistic vectors. For self-supervision, MaskCLIP [41]
obtains the pseudo labels via the mapping and learns a new
vision model, which is evaluated to be sub-optimal by [32].

Differently, complementing the cross-modal mapping
and pseudo labeling, our proposed novel self-supervised
VLS recognizes semantic classes as explicit contexts with-
out any extra labels for context-aware pedestrian detection.

2.3. Prototypical Contrastive Learning

Due to the spatial resolution of images, purely pixel-
wise dense contrastive learning [37] leads to heavy com-
putational burden, and only discriminates locally regardless
of the global image. Hence, previous works introduce “Pro-
totypes” [35,51] as the alternatives for pixel features of each
semantic class. Differently, our proposed PSC maintain the
pixels of pedestrians as queries to keep their inner variance,
which learns better discrimination between pedestrians and
other classes for the contextual-aware pedestrian detection.
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3. Proposed Method
As illustrated in Figure 2 and 3, our proposed approach

Vision-Language semantic self-supervision for Pedestrian
Detection (VLPD) is an anchor-free detection framework
following the baseline CSP [27]. A pretrained visual en-
coder extracts features at different stages from S3 to S5. As
shown in Figure 3, they are concatenated into “Detection
Features” for the Detection Head to make predictions.

To achieve the explicit semantic context modeling with-
out any extra labels, our architecture comprises two key
components: Vision-Language Semantic (VLS) segmenta-
tion and Prototypical Semantic Contrastive (PSC) learning.
VLS leverages vision-language models to recognize the ex-
plicit contexts, where the visual encoder learns both fully-
supervised pedestrian detection and segmentation via self-
generated explicit labels of semantic classes by cross-modal
mapping. PSC supervises the detector to better discriminate
pedestrians and contextual semantic classes based on VLS.
More details will be introduced in the following sections.

3.1. Vision-Language Semantic Segmentation

Benefiting from self-supervised cross-modal contrastive
learning, vision-language models map the visual and lin-
guistic vectors with similar meanings closer to each other
into a unified feature space. Thus, it is possible to obtain
the existences of semantic classes in an image via linguistic
vectors. However, previous works initialize a model with
cross-modal mapping for full-supervision [17, 32], or re-
train a new model by pseudo labels via the mapping [41].

Therefore, as shown in Figure 2(a), we propose Vision-
Language Semantic (VLS) segmentation as the complement
of both initialized mapping and pseudo labeling. Labels
are generated by frozen pretrained models based on cross-
modal mapping, thus the unfrozen visual encoder is su-
pervised to predict the segmentation of explicit semantic
classes, which serve as more global contexts rather than
previous local latent ones [23, 47]. More details of our pro-
posed VLS will be provided in the following sections.

3.1.1 Cross-Modal Mapping for Pseudo Labeling

As one of the most popular vision-language models, CLIP
[31] is capable of mapping image and text with similar
meanings into closer vectors, based on its visual and lin-
guistic encoders pretrained by self-supervised cross-modal
contrastive learning. Although it is impossible to recover
pixel-wise contextual information of an image from its vi-
sual vector after an attention-based pooling of CLIP [31],
this pooling operation can be modified into projections to
keep visual regions, following [49]. As shown in Figure 4,
cosine similarities Sc

i = ((Lc)⊤(Vi))/(∥Lc∥∥Vi∥) ∈ S are
calculated between pretrained linguistic vector Lc ∈ RD′

of
each class c ∈ C and the projected vision features Vi ∈ RD′

C
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Figure 3. The detailed network architectures of our proposed
VLPD. The visual encoder is ResNet-50 [12] from the vision-
language pretrained CLIP model [31]. Following the baseline
CSP [27], S3∼S5 are Deconvolved (“D”) as “Detection Features”
for LDet , which are further supervised by our LPSC . The Pro-
jections (“P”) before cross-modal mapping are adopted like [49].
Concatenation and Up-sampling (“C” and “U”) are used for pre-
diction as [32]. These details are omitted in Figure 2 for simplicity.

of each pixel i = 1, 2, ...,H′W′, which means the existence
of each contextual class at each pixel of an image.

To obtain the pseudo labels for self-supervised learning,
as illustrated in Figure 2(a), images are feed into the frozen
CLIP visual encoder to obtain visual features, and the lin-
guistic vectors of classes are generated by frozen text en-
coder via the prompted sentence “A picture of [CLS]”.

3.1.2 Self-Supervised Learning for VLS

Evaluated by the experiments of [32], initialization with
CLIP pretrained visual encoder contributes the maintenance
of Cross-Modal Mapping, which allows the model to fully
utilize the similarity between each pixel and each linguis-
tic vector. While the ImageNet [7] pretrained one as [49]
needs re-training for an adaption to the mapping and thus
is sub-optimal. Therefore, we propose to embrace both the
advantage of both pseudo labeling and initialized mapping.

In details, as shown in the Figure 2(a) and 3, the visual
encoder of pedestrian detector is initialized by CLIP pre-
trained parameters, which is identical to the frozen visual
encoder for pseudo labeling as a self-supervision. Since
the Cross-Modal Mapping is also performed, the linguis-
tic vectors can be generated just once. The predicted S̄ ∈
RH′×W′×N are supervised by pseudo labels S based on
Smooth L1 Loss [10] LV LS that is robust to noisy labels:

LV LS =
1

H′W′N

∑
i,c

SmoothL1(S̄c
i , S

c
i ), (1)

where class count N = |C|. More than the self-supervision
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guistic vector of semantic classes and each pixel of visual features,
which constitutes the score maps of these classes in contexts.

in Eq.1, the visual encoder is also trained to detect pedestri-
ans as the baseline [27]. Consequently, the model learns
to model the contexts during detecting within a unified
pipeline. The predicted S̄ are fed into the Detection Head
in Figure 3 for an explicit contextual reference like [32].

3.1.3 Compacted Class Policy

The complicated environments in the urban scenarios for
pedestrian detection require a proper contextual class set.
Meanwhile, urban dataset CityScapes [6] already defines
various classes. However, experiments (in the following
sections) reveal a negative effect of it. Inspired by imbal-
anced class frequency statistics in the CityScapes paper [6],
we propose Compacted Class Policy in Table 1 to decide
whether classes should be kept, compacted or discarded.

For the most classes, we adopt the 2nd level of classes
in CityScapes higher than the original ones, as illustrated in
Table 1. Furthermore, the higher variance inside the “vehi-
cle” class leads to performance loss in experimental trials.
Thus, neither the 1st nor 2nd level of classes is applicable.

Therefore, we make statistics on frequencies in pixel-
wise annotations of CityScapes for the images shared with
CityPersons [43], which are computed via not only pixel-
wise counting but also re-weighting by image-wise occur-
rence times. Less frequent tail classes are omitted by thresh-
olding and the head ones are kept as the bottom of Table 1.

In conclusion, our proposed VLS leverages the pow-
erful vision-language model CLIP [31] to perform self-
supervision based on Cross-Modal Mapping and Com-
pacted Class Policy, which obtains pseudo labels of seman-
tic classes for explicit contexts to learn recognizing them
during detection for better discriminations.

Table 1. Compacted Class Policy for our proposed VLS.

Original → Compacted Used

{road, sidewalk} ground ✓
{building, wall, fence} building ✓
{vegetation, terrain} tree ✓

{person, rider} human ✓
{pole, traffic light, traffic sign} traffic sign ✓

{car, bicycle, bus, truck,
motorcycle, train}

vehicle ×

{car, bicycle,
bus, truck} ✓

3.2. Prototypical Semantic Contrastive Learning

Due to the coarse-grained characteristics of pseudo la-
bels by our proposed VLS, some visible parts of the pedes-
trians might have higher scores of other classes from VLS,
which are annotated by the bounding boxes for the detec-
tion tasks. Since there are no manual annotations available,
explicit refinement to the pseudo labels is rather difficult.

Inspired by self-supervised contrastive learning [35, 37,
51] for discriminative representations of positive and neg-
ative samples, we introduce this powerful technique and
propose a novel Prototypical Semantic Contrastive (PSC)
learning, which learns a better discrimination of pedestri-
ans and other semantic classes without any extra labels.

In order to decrease the heavy computations by dense
pixel-wise methods [37], the concept of “Prototype” is em-
braced. It means a representative feature which represents
all the features belong to same semantic class. In this paper,
prototype of pedestrian is positive, and others are negative.

Take the negative prototypes as examples. The predicted
score maps S̄ ∈ RH′×W′×(N−1) are adopted as the indicator
of the spatial existences of all the non-human N−1 classes,
except the “Human” which is overlapped with pedestrian.
Here, we denote C as non-human classes for simplicity,
where |C| = N − 1. Ṡ ∈ RH×W×(N−1) are up-sampled
from S̄. A SoftMax function δ with a temperature τ ′ is ap-
plied to normalize Ṡ ∈ [−1, 1] into Ŝ ∈ [0, 1]:

Ŝ = δ(Ṡ) = { exp(Ṡc
i /τ

′)∑
d∈C exp(Ṡd

i /τ
′)
| c ∈ C, i = 1, 2, ...,HW}.

(2)
Since we should not disturb the self-supervised learning

of VLS and only aim to improve the detection, “Detection
Features” E ∈ RD×H×W are supervised. As shown in Fig-
ure 5, prototypes of each class are obtained via aggregating
E pixel-wisely by Ŝ, denoted as Pixel-wise Aggregation:

P− = E · Ŝ = {P c− =
∑

i
Ei · Ŝc

i | c ∈ C}, (3)

where · is matrix multiplication, and P− ∈ RD×(N−1) are
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Figure 5. Pixel-wise Aggregation for our proposed PSC. “Detec-
tion Features” are pixel-wise weighted by predicted score maps of
VLS and then spatially added into prototypes as an aggregation.

negative prototypes of N− 1 non-human classes with chan-
nels D. Weighted by Ŝc

i ∈ R, feature Ei ∈ RD at each po-
sition i = 1, 2, ...,HW is aggregated. Similarly, 2D Gaus-
sians of pedestrian positions G ∈ RH×W×1 from the base-
line CSP [27] can replace the Ŝ for positive prototype P+.

Finally, each pixel-wise Ej of the annotated pedestrians
is supervised as “query” of contrastive loss function LPSC

in Figure 1(d) and 2(b), which pulls them close to P+ and
pushes them away from each P c−. Ej is located by the > 0
positions j of G and |G>0| = M. LPSC is formulated as:

− 1

M

∑
j∈G>0

log
exp(Ej · P+/τ)

exp(Ej · P+/τ) +
∑

c,b exp(Ej · P c−
b /τ)

,

(4)
where self-normalization of the features and prototypes,
e.g., Ej/∥Ej∥, is omitted for simplicity. Similar to some
contrastive pretraining methods [3, 11], negative prototypes
are expanded to all images b ∈ B inside the mini-batch B.

In brief, based on the contrastive self-supervision, PSC
trains the detector to better discriminate the pedestrians and
other classes via the positive and negative prototypes, owing
to the explicit and semantic contexts obtained from VLS. By
the integration of the VLS and PSC, our proposed VLPD is
supervised by LDet [27], LV LS and LPSC simultaneously:

L = LDet + λ1LV LS + λ2LPSC . (5)

3.3. Detection Head

Following the anchor-free style of our baseline CSP [27],
Detection Head in Figure 2 and 3 firstly decreases the chan-
nels of “Detection Features” via convolution layers. Then
multiple branches predict result maps: “Center Heatmap” to
classify the centers of pedestrians, “Scale Map” to predict
heights with a fixed aspect ratio 0.41 for widths, and “Offset
Map” to adjust the localization horizontally and vertically.
Finally, these maps are assembled into bounding boxes of
pedestrians. More details can be found in the CSP paper.

4. Experiments
In this section, extensive experiments are conducted

on two popular benchmarks for pedestrian detection, i.e.,
Caltech and CityPersons, to evaluate our proposed VLPD
method. Ablation study is performed on key components
VLS and PSC. Furthermore, we also report the state-of-the-
art comparisons on both benchmarks. For more experiments
and visualizations, please refer to supplementary materials.

4.1. Datasets

The Caltech pedestrian dataset [9] comprises 2.5-hour
video data captured on the urban areas of Los Angeles, with
4024 images for testing. Over 70% of pedestrians are less
than 100 pixels high, including particularly small pedestri-
ans that are less than 50 pixels. By fixing the inconsistency
and box misalignment, Zhang et. al. [42] has released a new
version of the annotations. For fair comparisons, all the fol-
lowing evaluations are performed based on the new version.

CityPersons [43] is a more recently published large-scale
pedestrian detection dataset. 2975 images are split for train-
ing and 500 images for validation. The standard evaluation
metric is as follows: log miss rate is averaged over the false
positive per image (FPPI) ∈ [10−2; 100], denoted as MR−2.
All tests are applied on the original data (1×) without resiz-
ing and any extra visible or head labels for fair comparisons.

4.2. Implementation Details

Our proposed method is based on a powerful pedestrian
detector CSP [27], which is re-implemented on PyTorch
[30] framework from the original Keras one. Adam [16] is
adopted for optimization. The backbone network is ResNet-
50 [12] pretrained on ImageNet [7] by fully-supervised im-
age classification or WIT [31] by self-supervised vision-
language contrastive learning. For Caltech, one Nvidia
3090 GPU is utilized for training with 10−4 learning rate.
For CityPersons, two 3090 GPUs are used with 2 × 10−4.
Batch sizes are set following [27]. All tests are conducted
on a single 3090 GPU. The size of training images is
336×448 for Caltech and 640×1280 for CityPersons. For
our proposed VLS, its loss weight λ1 = 100. For PSC, its
weight λ2 = 10−4 for Caltech and 10−3 for CityPersons.
Temperatures τ ′ = 10−3 and τ = 7× 10−2 following [11].

4.3. Ablation Study

The ablation study is firstly performed on the popular
CityPersons dataset. Comprehensive subset Reasonable,
more challenging ones Small and HO (Heavy Occlusion,
visible rate ∈ [0.2, 0.65]) are widely-used for comparisons.

Table 2 illustrates the overall ablation study for each key
components of our proposed VLPD. We provide the origi-
nal results of CSP [27] and our re-implemented one by Py-
Torch [30]. Under the CLIP [31] initialized visual encoder
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Figure 6. Qualitative analysis on Caltech [9] between the baseline CSP [27] (top) and our proposed VLPD (bottom). Green are correct
detections, red are wrong detections, and dashed blue are missing detections. With the powerful vision-language semantic self-supervision,
our proposed VLPD is context-aware and thus more robust to human-like objects, inter-class occlusion and ambiguous small pedestrians.

Table 2. Overall ablation study for key components of our pro-
posed VLPD, including VLS and PSC. Bolden are the best results.

Method Reasonable Small HO

CSP [27] 11.0 16.0 -
CSP (our re-imp.) 10.96 16.05 40.59

CSP w/ CLIP 10.13 12.59 38.97
+VLS 9.70 12.57 36.50

+VLS+PSC=VLPD 9.41 10.93 34.88

as a precondition of VLS, the improvements are limited be-
cause merely vision-language pretraining cannot fully han-
dle the context modeling. With VLS as well as PSC based
on VLS, our proposed VLPD gains significant boosts espe-
cially on the context-related subsets Small and HO.

In Table 3, different policies of the class set for our pro-
posed VLS are evaluated. Full CityScapes policy adopts all
the classes of the CityScapes dataset [6], and Full Com-
pacted uses 2nd level of classes. Both the too scattered
and concentrated sets lead to performance losses. Instead,
our proposed policy for VLS handles the largest “vehicle”
classes via frequency statistics for better context modeling.

Meanwhile, sub-items of this policy are evaluated at the
bottom of Table 3 via recovering to the 1st column of Table
1. Table 4 shows that our PSC in Eq.4 with cross-image
negatives and inner-image positives of “Detection Features”
E without disturbing the Ṡ from VLS performs the best.

4.4. Comparisons with the State-of-the-arts

For CityPersons, we compare our proposed VLPD with
various state-of-the-art methods: AMSCNN [46], DHRNet

Table 3. Different policies of the class set for our proposed VLS.

Method Reasonable Small HO

CSP w/ CLIP 10.13 12.59 38.97

+ Full CityScapes 10.40 12.87 37.14
+ Full Compacted 10.47 13.30 40.49

+ VLS (ours) 9.70 12.57 36.50

w/o ground 10.51 13.53 37.48
w/o building 10.42 12.84 37.70

w/o tree 10.34 12.66 38.39
w/o human 10.24 12.52 38.47

w/o {car, bicycle,
bus, truck} 10.61 13.61 38.84

w/o traffic sign 10.11 12.27 37.22

Table 4. Different prototypes and features for our proposed PSC.

Method Reasonable Small HO

VLPD (w/ PSC, ours) 9.41 10.93 34.88

Cross → Inner-img Neg. 10.12 12.67 37.90
Inner → Cross-img Pos. 10.58 13.14 38.08

E → Concate(E, Ṡ) 10.04 12.93 38.21

[8] and SML [39] for scale-variation; RepLoss [36], Adap-
tive NMS [25], PBM+R2NMS [14], CaSe [40], NMS-Ped
[29] and MAPD [38] for intra-class occlusion; OR-CNN
[44], HBAN [28] and PRNet++ [33] for part-aware occlu-
sion handling; LBST [2], ALFNet [26], CSP [27], AP2M
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Table 5. Comparison with the state-of-the-arts on CityPersons.

Methods R Hea. Partial Bare Small

AMSCNN [46] 14.0 - - - 12.6
FC-Net [47] 13.9 46.8 - - -

RepLoss [36] 13.2 56.9 16.8 7.6 42.6
OR-CNN [44] 12.8 55.7 15.3 6.7 42.3

LBST [2] 12.6 48.7 18.6 - -
SML [39] 12.3 - - - 19.3

ALFNet [26] 12.0 51.9 11.4 8.4 19.0
AdaNMS [25] 11.9 55.2 12.6 6.2 -
PR2NMS [14] 11.1 53.3 - - -

CSP [27] 11.0 49.3 10.4 7.3 16.0
CaSe [40] 11.0 50.3 - - -

HBAN [28] 10.9 47.0 - - -
EGCL [23] 10.9 46.4 11.6 7.4 -

PRNet++ [33] 10.7 51.2 9.9 6.9 -
AP2M [24] 10.4 48.6 9.7 6.2 15.3
DHRNet [8] 10.4 - - - 13.4

NMS-Ped [29] 10.1 - - - -
SMPD [15] 9.9 45.6 9.0 6.5 -
MAPD [38] 9.7 46.4 9.9 6.1 -

BGCNet [18] 9.4 45.9 9.0 6.4 -

VLPD (ours) 9.4 43.1 8.8 6.1 10.9

[24] and BGCNet [18] for generic hard pedestrian detec-
tion. Note that the context-related methods are: SMPD [15]
with segmentation annotation, EGCL [23] with proposal-
wise contrastive learning and FC-Net [47] with neighbor
region modeling. As illustrated in Table 5, our VLPD out-
performs them comprehensively among all the subsets.

In details, we denote Reasonable subset as “R” and the
occlusion one Heavy (visible rate ∈ [0, 0.65]) as “Hea.”
in Table 5. We also compare our proposed VLPD with
the methods on other occlusion subsets in Table 6, i.e.,
R+HO (Reasonable+HO, visible rate ∈ [0.2, 1]) and HO.
Our method keeps the best under these setting changes.

For Caltech, additional state-of-the-art methods are com-
pared: AR-Ped [1] for generic hard pedestrian handling;
JointDet [5], PedHunter [4] and DMSFLN [13] with visi-
ble or head labels. In Table 7, without any extra labels, our
proposed method VLPD also surpasses them significantly.
Its Reasonable 2.27% is better than 2.31% of [4]. Context-
related challenging subsets Heavy Occlusion 37.7% and All
52.4% are especially better than other methods.

In conclusion, our proposed VLPD has become a new
state-of-the-art on both benchmarks especially in context-
related subsets, which sufficiently validates its power
of vision-language semantic self-supervision to explicitly
model semantic contexts without any extra labels and better
discriminate pedestrians from other contextual classes.

Table 6. Comparison on other occlusion subsets on CityPersons.

Methods Reasonable R+HO HO

FC-Net [47] 13.9 29.6 -
ALFNet [26] 12.0 26.3 43.8
EGCL [23] 10.9 24.8 39.3

PRNet++ [33] 10.7 25.4 40.9
SMPD [15] 9.9 - 36.6

VLPD (ours) 9.4 21.7 34.9

Table 7. Comparison with the state-of-the-arts on Caltech.

Methods Reasonable All Heavy

ALFNet [26] 6.1 59.1 51.0
RepLoss [36] 5.0 59.0 47.9

CSP [27] 4.5 56.9 45.8
AR-Ped [1] 4.4 - -

BGCNet [18] 4.1 - 42.0
DHRNet [8] 3.4 - -
AP2M [24] 3.3 55.9 42.2
JointDet [5] 3.0 - -

DMSFLN [13] 2.7 - -
PedHunter [4] 2.3 - -

VLPD (ours) 2.3 52.4 37.7

5. Conclusion
In this paper, we have proposed a novel pedestrian detec-

tion method VLPD for explicit contexts modeling towards
challenging problems, e.g., human-like objects and small
scale or heavily occluded pedestrians. It tackles these chal-
lenges via vision-language semantic self-supervision with
two key components: VLS is proposed to leverage vision-
language models to recognize semantic classes for explicit
contexts, which learns fully-supervised pedestrian detec-
tion and self-supervised segmentation via pseudo labels by
cross-modal mapping. PSC is proposed to adopt contrastive
self-supervision for better discriminating pedestrians and
semantic classes based on explicit contexts from VLS. By
the integration of VLS and PSC, our VLPD achieves the
new cutting-edge performances on two challenging bench-
marks Caltech and CityPersons, especially on the very dif-
ficult circumstances of small scale and heavy occlusion.
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