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Alex gave Riley a present Alex gave Riley an ultimatum the ocean is [*]-colored a corn chip is [*]-shaped
How concrete are the words present and ultimatum? What word should be inserted in the blank?

Figure 1. In this paper, we propose a suite of visual language understanding tasks for probing the visual reasoning capabilities of text
encoder models. While we consider text-only tasks (i.e., processing only the textual descriptions above without associated imagery), we
argue that they require visual imagination to complete and can thus benefit from vision-and-language pretraining. For instance, consider
the words present and ultimatum. A simple online query (that considers only freely-available images) roughly yields a coherent set of
images for the more concrete word (namely present), while the latter cannot be uniquely depicted. Likewise, selecting the most natural
color or shape descriptors in cloze contexts as shown in the two examples on the right requires implicit knowledge of the appearance of the
referent under consideration (ocean and corn chip respectively).

Abstract

Most humans use visual imagination to understand and
reason about language, but models such as BERT reason
about language using knowledge acquired during text-only
pretraining. In this work, we investigate whether vision-
and-language pretraining can improve performance on text-
only tasks that involve implicit visual reasoning, focusing
primarily on zero-shot probing methods. We propose a suite
of visual language understanding (VLU) tasks for probing
the visual reasoning abilities of text encoder models, as
well as various non-visual natural language understanding
(NLU) tasks for comparison. We also contribute a novel
zero-shot knowledge probing method, Stroop probing, for
applying models such as CLIP to text-only tasks without
needing a prediction head such as the masked language
modelling head of models like BERT. We show that SOTA
multimodally trained text encoders outperform unimodally
trained text encoders on the VLU tasks while being under-
performed by them on the NLU tasks, lending new context
to previously mixed results regarding the NLU capabilities
of multimodal models. We conclude that exposure to images
during pretraining affords inherent visual reasoning knowl-

*These authors contributed equally to this work

edge that is reflected in language-only tasks that require im-
plicit visual reasoning. Our findings bear importance in the
broader context of multimodal learning, providing princi-
pled guidelines for the choice of text encoders used in such
contexts1.

1. Introduction

Humans are multimodal learners. We communicate
with each other about things that we have experienced and
knowledge we have gained using our senses—most com-
monly including sight as well as hearing, touch, smell, and
taste. Our communication channel is limited to a single
modality—spoken language, signed language, or text—but
a reader or listener is expected to use his or her imagination
to visualize and reason about the content being described.
In general, language is used to describe scenes, events, and
images; the words used to describe these are used to con-
jure up a visual impression in the listener. Therefore, it is
natural to consider the types of visual reasoning used in un-
derstanding language, and to ask how well we can currently

1Our code will be made available at https://isbertblind.
github.io/
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model them with computational methods.
Consider, for instance, the questions in Figure 1. Con-

creteness is typically correlated with how well a concept
can be visually imagined. For example, a concrete word
such as present often has a unique visual representation.
In addition, common associations such as ocean→blue
(color) and corn chip→triangle (shape) reflect properties
of an imagined visual representation of the item in ques-
tion. These properties may be difficult to infer from text
alone without prior knowledge gained from visual input; for
instance, a number of studies have investigated the partial
ability of blind English speakers to predict color associa-
tions and how it differs from the intuition of sighted speak-
ers2 [45, 57, 58, 61, 73].

There has been a wealth of recent research vision-and-
language (V&L) tasks involving both text and image data,
and the use of vision-language pretraining (VLP) to cre-
ate models that are able to reason jointly about both of
these modalities together [11, 12, 31, 39]. Notable in this
regard is CLIP [52], consisting of paired text and image en-
coders jointly trained on a contrastive objective, that learns
to align text and image embeddings in a shared semantic
space. On the other hand, text encoder models such as
BERT [15] learn to reason about text in a unimodal vac-
uum, with knowledge derived from pretraining tasks that
only involve textual data.

Prior work has investigated the performance of multi-
modally trained text encoders on various natural language
understanding (NLU) tasks with mixed results, sometimes
finding that they are outperformed by unimodal models [24]
and at other times suggesting improved performance [78].
However, these works fine-tune the models under consider-
ation on NLU tasks before evaluation, making it difficult to
disentangle the effects of multimodal pretraining and fine-
tuning configuration on the observed performance. Addi-
tionally, these works do not address the distinction between
NLU tasks requiring implicit visual reasoning and ones that
are purely non-visual. We refer to natural language infer-
ence involving implicit visual reasoning as visual language
understanding (VLU) and propose a suite of VLU tasks that
may be used to evaluate visual reasoning capabilities of pre-
trained text encoders, focusing primarily on zero-shot meth-
ods.

We compare multimodally trained text encoders such as
that of CLIP to BERT and other unimodally trained text en-
coders, evaluating their performance on our suite of VLU
tasks. We evaluate these models in without modifying their
internal weights in order to probe their knowledge obtained
during pretraining. A key design aspect of these tests is
the probing method used to evaluate knowledge. Previ-

2This phenomenon is illustrated in this interview with Tommy Edison,
a congenitally blind man, in which he describes his understanding and fre-
quent confusion regarding color associations.

ous work has probed the knowledge of BERT and sim-
ilar models using a masked language modelling (MLM)
paradigm [48, 55], but this cannot be directly applied to
CLIP since it was not pretrained with MLM. We there-
fore propose a new zero-shot probing method that we term
Stroop probing. This is based on the psychological Stroop
effect [43] (described in Section 3.2), which suggests that
salient items should have a stronger interference effect on
the representation of their context.

Strikingly, we find that the multimodally trained text en-
coders under consideration outperform unimodally trained
text encoders on VLU tasks, both when comparing to much
larger encoders as well as ones of comparable size. We
also compare these models on baseline NLU tasks that do
not involve visual reasoning and find that models such as
CLIP underperform on these tasks, demonstrating that they
do not have a global advantage on NLU tasks. We conclude
that exposure to images during pretraining improves per-
formance on text-only tasks that require visual reasoning.
Furthermore, our findings isolate the effect of the text com-
ponent of multimodal models for tasks such as text to image
generation, providing principled guidelines for understand-
ing the knowledge that such models inject into downstream
vision tasks.

2. Related Work
Building models to create text embeddings for a large

range of language tasks has been broadly explored over
the past several years. In our work we compare two types
of transformer-based models which encode these types of
embeddings: those trained on text-only data (unimodally
trained), and those exposed to both text and image data dur-
ing training (multimodally trained).

Since the introduction of the self-attention-based trans-
former architecture by Vaswani et al. [74], transformers
have become the predominant architecture for tasks in-
volving textual data. Devlin et al. [15] introduce BERT,
a transformer model encoding contextual information for
each token in an input sequence in a bidirectional manner.
They suggest a self-supervised pretraining method to com-
pute contextual feature representations of textual data, via
masked language modelling and next sentence prediction
objectives. This pretrained model can then be applied to
other downstream tasks by end-to-end fine-tuning. Subse-
quently, various other text encoder transformers have been
proposed, such as RoBERTa [41], DistilBERT [56], and
ERNIE [68, 69]. While these models differ on some archi-
tectural details and on precise pretraining objectives, they
all share the basic transformer architecture and the use of
denoising pretraining objectives. In particular, they are all
trained on unimodal data, meaning that they are only ex-
posed to text during training.

In contrast to unimodally trained text encoders, V&L
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models have been exposed to both text and image data dur-
ing training. These models are typically used for tasks that
require joint reasoning on text and images, such as visual
question answering, grounding referring expressions, and
vision-language retrieval [11, 18]. Fusion encoder mod-
els such as LXMERT [70], UNITER [12], ViLT [31], and
ALBEF [39] output a fused representation of text and im-
age data, while dual encoder models like CLIP [52] and
ALIGN [26] consist of dual text and image encoder models
that are jointly trained to produce embeddings in a shared
semantic space. FLAVA, a vision-and-language model in-
troduced recently by Singh et al. [65], also includes dual
text and image encoders, and is trained on both multimodal
objectives involving the alignment of images and text, as
well as unimodal objectives. In this work we focus on the
text encoder component of dual encoder models, since it
may be used after V&L pretraining for text-only tasks.

Various works have explored the use of multimodal
learning to benefit text understanding. Most related to our
work is the very recent study of Zhang et al. [83] which in-
vestigates the use of unimodal and multimodal models for
understanding visual commonsense in text. Their analysis
follows a line of related work investigating the contribu-
tion of multimodal learning to visual commonsense knowl-
edge in text, since such knowledge is typically not written
explicitly in text but is abundantly present in visual infor-
mation [35, 40, 75]. Unlike Zhang et al. [83] who only
evaluate CLIP with an added set of task-specific learned
weights, we are able to probe CLIP and other similar mod-
els in the strictly zero-shot setting via our novel Stroop
probing method. This allows for directly evaluating proper-
ties learned by the models, independent of differences that
result, for instance, from specific training configurations. In
addition, we also study performance on both visual and non-
visual NLU tasks in order to provide a controlled bench-
mark.

Other works have investigated the use of multimodal
learning for NLU in various contexts. Bruni et al. [7] pro-
pose an architecture for integrating text and image-based
distributional information to improve performance on tasks
where meaning is grounded in perception. Kiela and Bot-
tou [29] show that integrating features extracted from im-
ages using CNN with skip-gram representation vectors im-
proves performance on semantic similarity datasets. Lazari-
dou et al. [36] train visual representations extracted using
CNNs together with skip-gram embeddings to integrate vi-
sual and textual information performing well in both seman-
tic and vision tasks. Kiela et al. [30] train a sentence em-
bedding model using grounded information extracted from
image features by attempting to predict the image features.
These embeddings improve performance on various NLP
tasks in comparison to text only embeddings. They show
that using this method for a dataset consisting mainly of ab-

stract words is likely to less benefit from grounding infor-
mation. Shi et al. [62] show that a syntactic parser can bene-
fit from seeing images during training; however, it was later
shown that the model mostly relies on noun concreteness
(which we also elaborate on in our work) rather than more
complex syntactic reasoning [34]. The use of images for
PCFG induction is also investigated by Jin & Schuler [27].

Along with the rise in visibility of jointly trained V&L
transformer models, a number of works have explored the
use of these models for text-only tasks, with mixed re-
sults. Using terms coined by Sileo et al. [64], these can
be broadly split into associative grounding and transfer
grounding approaches. Associative grounding uses retrieval
methods to associate particular images with related texts;
Kiros et al. [33] and Tan & Bansal [71] show that associa-
tive grounding methods may improve performance on var-
ious text-only NLU benchmark tasks. Transfer grounding
applies V&L models directly to text-only input, disregard-
ing the vision component of the model during inference.
Wang et al. [78] apply this to weakly-supervised V&L mod-
els to outperform BERT on various text-only tasks from the
GLUE benchmark. On the other hand, Iki & Aizawa [24]
find that V&L-pretrained text encoders have similar or in-
ferior results on NLU tasks including tasks from GLUE.
Likewise, Cao et al. [9] find that although visually-aligned
text encoders perform well on semantic linguistic probing
tasks, BERT still outperforms them.

As discussed above, some prior works suggest that mul-
timodal pretraining aids text understanding while other
works show that it can lead to degradation. Our work pro-
vides new context for these seemingly contradictory results,
allowing them to be reassessed in the new context of visual
vs. non-visual natural language understanding.

3. Experimental Setup

3.1. Models Used

For evaluating unimodally trained text encoders, we
use BERT [15], RoBERTa [41], DistilBERT and Distil-
RoBERTa [56], which are all trained with text-only MLM
objectives. We also include results for Sentence-BERT
(SBERT) [54], since its output embeddings are trained to
have meaningful cosine similarity scores and thus bear more
similarity to other models evaluated with Stroop proving.
Results on multimodally trained text encoders are reported
for CLIP [52] and FLAVA [65]; for these models we use
only the text encoder with pretrained weights and discard
the other subcomponents. Our tests include checkpoints
from both OpenAI and the OpenCLIP open-source imple-
mentation of CLIP [13,25]. Details of the checkpoints used
for each model are listed in the supplementary material.

The text encoders of the multimodally trained models
range in size from 63M (CLIP) to 109M (FLAVA) param-
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eters. We compare to both comparably small unimodally
trained text encoders such as DistilBERT (66M parameters)
as well as much larger text encoders such as BERT-large
(340M). See the supplementary material for an exhaustive
list of sizes of the models under consideration.

We use each model with frozen pretrained weights. Our
subsequent tests probe the contents of the feature vectors
extracted by these models. For MLM probing, we also
use the model’s MLM head for prediction. In cases where
MLM can be used we have found it to outperform Stroop
probing; in such cases we report results for MLM probing
here and for Stroop probing in the supplementary material.

3.2. Probing Methods

In order to probe the inherent knowledge of our mod-
els, we use the knowledge probing methods described be-
low. The probing methods that follow are strictly zero-shot;
in the supplementary material we analyze the use of linear
classifiers trained on our models’ frozen embeddings (“lin-
ear probing”).

Masked language modelling (MLM). BERT and our other
unimodally trained models were all pretrained with MLM
objectives and hence can be used for zero-shot prediction
of tokens in a masked context. Given a text including a
[MASK] token and a set of k possible completions C =
{c1, c2, · · · , ck}, a MLM assigns probabilities p1, · · · , pk
to each corresponding token. We use argmaxi pi as the
model’s prediction. Previous works have found that BERT
and other MLM can be probed for innate knowledge with
this method [48, 55].

Stroop probing (SP). We propose another zero-shot prob-
ing method to extract knowledge from models based on the
pooled embeddings that they extract. Consider a masked
text tm and possible completions c ∈ C, and let tc be
the text with c inserted in the mask location. Given a
text encoder M , we calculate pooled embeddings vm =
M(tm) and vc = M(tc) and unit-normalize them to v̂m =
vm/∥vm∥ and v̂c = vc/∥vc∥. Stroop probing considers
the cosine similarity scores sc := v̂m · v̂c. These can
be used either directly for regression (as in the concrete-
ness task below), or for categorical prediction by selecting
c∗ = argmaxc sc.

The intuition behind Stroop probing is that items which
are more surprising, incongruous, or salient in the given
context may have a stronger interference effect on the en-
coding of the surrounding text. This is analogous to the
Stroop effect in human psychology. When presented with
congruent and incongruent stimuli such as color words
printed in the same or differing colors (e.g. “red” printed
in blue), readers take significantly longer on average to read
the incongruent stimuli, a phenomenon known as the Stroop

effect [43]3. We use Stroop probing for multiple tasks, in-
cluding predicting color associations, as described below.

3.3. Prompts Used

For each task, we test the probing methods above on a
wide variety of prompts in order to show the robustness of
the described phenomena. In our results below we report
the maximum metric value for each model over all of the
prompts, since this represents a rough bound on our ability
to extract intrinsic knowledge from the models under con-
sideration. A full list of prompts used for each task and an
analysis of model performance across prompts are provided
in the supplementary material.

In some cases our prompt contains an empty slot, which
we indicate below as [*]. Some models under consider-
ation have a dedicated mask token, but for those such as
CLIP that do not, we insert a fixed token in this slot, de-
tailed further in the supplementary material.

4. VLU Tasks
We present three VLU tasks to probe the ability of our

models to understand language with implied visual context:
concreteness prediction (Section 4.1), color association pre-
diction (Section 4.2) and shape association prediction (Sec-
tion 4.3). Note that each of these tasks is performed on text
alone, but requires visual reasoning to complete.

4.1. Concreteness Prediction

Task description. Words and phrases can be roughly clas-
sified as either concrete or abstract. A concrete concept is
something that can be pointed to or directly sensed, while
abstract concepts refer to things that cannot be easily visu-
alized [60]. This can be conceptualized on a scale, ranging
from the most abstract to the most concrete. Psychological
research suggests that concrete words are easier for humans
to understand and remember than abstract words [60]. Simi-
larly, it has been shown that concreteness correlates with the
learnability of visual concepts for machine learning mod-
els [20], and that MLM pretraining of V&L models may be
improved by preferentially masking concrete words [4].

Because concreteness is a property of text that is tightly
coupled with the visual domain, we consider concrete-
ness prediction to be a VLU task, requiring some knowl-
edge of the visual content of language to complete. We
note that this task has been addressed in various previous
works [10, 20, 22, 23, 51]. In contrast to these approaches,
our unsupervised concreteness estimation procedure evalu-
ates the concreteness of a word or phrase in a given textual
context, rather than being limited to a fixed set of lexical
items or discrete categories in a dataset.

3For example, try saying these colors out loud (not the printed words):
Green, Red, Blue, Purple, Red, Purple.
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Experimental details. We probe our models for the con-
creteness of words in context by using a cloze task paradigm
with Stroop probing. For example, using the prompt tm =
“I see the [*]” and testing word ⟨w⟩, we insert the word
into the prompt to obtain tw = “I see the ⟨w⟩”, and use co-
sine similarity score sw between embeddings of tm and tw
as the regression output. All prompts used are listed in the
supplementary material.

We test our approach on the dataset introduced by Brys-
baert et al. [8]. This dataset contains 39,954 English uni-
grams and bigrams along with human-labelled concreteness
scores on a scale from 1 (abstract) to 5 (concrete), averaged
over annotators. We only use the unigram nouns from this
list, totaling 14,562 items. Note that unlike prior concrete-
ness prediction techniques that train supervised models on
this dataset [10], we perform zero-shot prediction on this
task with no supervised training, using the dataset for test-
ing only.

Also note that we do not report results for DistilBERT or
DistilRoBERTa since the checkpoints used do not contain a
trained pooling layer, which is required for Stroop probing.

Evaluation metrics. We report absolute values of Pearson,
Spearman, and Kendall correlations between the predicted
concreteness and ground truth scores (|ρ|, |rs|, and |τ | re-
spectively).

4.2. Color Association Prediction

Task description. Some concepts are highly associated
with particular colors—for example, the word banana is
highly associated with the color yellow, while a word like
child does not have a strong color association. These color
associations have been widely studied in experimental psy-
chology and neuroscience [3,5]. We propose a task of color
association prediction – given a noun (or noun phrase) ⟨w⟩,
identify the color with which ⟨w⟩ is normally associated.

Experimental details. To probe our models for color asso-
ciations, we use the MLM and SP methods described above.
In particular, we conceive of this task as categorical predic-
tion over a set of basic color words C. For example, using
the prompt “A picture of a [*] ⟨w⟩” where ⟨w⟩ is the item
being tested, our probing methods search for the most suit-
able color to place in the [*] slot. All prompts tested are
listed in the supplementary material. For MLM probing,
we predict the color c ∈ C with the highest predicted prob-
ability in the [*] slot of the prompt. For SP, we predict
c∗ = argmax sc using similarity scores as defined above.

To test this method on our chosen text encoders, we use
two datasets. The Color Terms Dataset (CTD) [6] provides
a list of 52 concrete words and their color. The Natural-
Color Dataset (NCD) of fruit images [2] is a colorization
task containing images of 20 types of fruits and vegeta-
bles paired with colors. We use the provided list of fruits

and colors as a fixed set of words with strong color asso-
ciations, discarding the image data. For the latter, we fil-
ter objects with the color label purple as this label contains
multiple WordPiece tokens and thus is not directly compa-
rable with MLM probing for models such as BERT. This
results in 15 unique fruits and vegetables. For each model,
we calculate color predictions using the probing methods
described above out of the set: {red, orange, yellow, green,
blue, black, white, grey, brown}.

Evaluation metrics. We report categorical accuracy of
predictions on the CTD and NCD datasets (accCTD and
accNCD) relative to the ground truth color labels.

4.3. Shape Association Prediction

Task description. Another salient visual feature of lan-
guage is the association between concrete nouns or noun
phrases and particular shapes. For example, the nouns
wheel and compass have a circular association, while pyra-
mid and corn chip have a triangular association. Shape as-
sociations have been studied in the psychological literature
in contexts such as child language acquisition [80] and se-
mantic memory representation [76]. Building on this line of
research, we propose the task of shape association predic-
tion – given a noun (or noun phrase) ⟨w⟩, identify the basic
shape that is most associated with ⟨w⟩. Because the space
of possible shapes is complex and difficult to categorize un-
ambiguously, we restrict ⟨w⟩ under consideration to nouns
associated with a few basic shapes, as described below.

Experimental details. We construct the ShapeIt bench-
mark for shape associations4. This contains 109 items
total, each consisting of a noun or noun phrase along
with the basic shape most associated with it from the set
{rectangle, circle, triangle}. The benchmark was con-
structed by performing a user study requiring users to
choose a shape associated with a given word, and select-
ing for only those words which were consistently classified
by the users. Data collection methods used in constructing
this benchmark are detailed in the supplementary material,
along with further analysis of its contents. Probing meth-
ods used for this task are equivalent to the color associa-
tion prediction task. Prompts used for probing include “A
[*] shaped ⟨w⟩” where ⟨w⟩ is the shape associated word;
the full list of prompts used is detailed in the supplemen-
tary material. We use both shape nouns (e.g. circle) and
associated adjectives (e.g. circular) and report the highest
accuracy achieved between these two settings.

Evaluation metric. We report categorical accuracy of pre-
dictions (acc) relative to the ground truth shape labels.

4available in our code repository
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5. Non-visual NLU Tasks

We also present three non-visual NLU tasks to serve as
a baseline comparison for our models:

5.1. Factual Knowledge Probing

Task description. It has been observed that language
models have an emergent knowledge base property, in
which they may be probed for factual knowledge about
the world [48, 55]. Various works on probing BERT and
other language models for commonsense world knowledge
have found that they show an impressive ability to memo-
rize knowledge, although they may be deficient in applying
this knowledge to reasoning about the physical world [16].
In this task, we probe our models for fine-grained factual
knowledge via a cloze test, where an empty slot must be
filled in with a word. We test on factual knowledge about
geographical locations since this requires factual knowledge
that does not explicitly rely on visual reasoning.

Experimental details. For this task, we use the Compara-
tive Question Completion dataset introduced by [82]. This
consists of questions in which one of a pair of coordinated
elements is masked; the target is the masked phrase. Specif-
ically, we use the cities dataset which masks the names of
geopolitical entities such as cities and countries. Example
sentences from the dataset include: which country has more
part time jobs new zealand or [*]? (the correct answer be-
ing australia) and which is older saudi arabia or [*]? (the
correct answer being persia). The original dataset has 1,187
questions with 447 unique locations as answers. In order to
fit the general method of masking tasks, we filter masked
phrases with more than one token (e.g. the west coast) sim-
ilar to the protocol presented in the original paper. As this
results in an extremely limited set of candidates for MLM
models such as RoBERTa that use Byte Pair Encoding to-
kenization, we restrict the MLM models under comparison
to BERT and DistilBERT. The filtered dataset contains 825
questions with 216 unique locations.

We treat this task as a categorical classification task,
choosing only from the set of unique locations given in the
dataset per sample, and evaluating how often the correct tar-
get is chosen. We use MLM probing and Stroop probing for
categorical prediction as described above. Similarly to our
other tasks, the intuition is that more surprising completions
should have a larger interference effect on the text’s encod-
ing, if the relevant information is encoded in the embedding.

Evaluation metrics. We report recall at one and five (R@1,
R@5), measuring how often the ground truth answer is
found among the model’s top one or five predicted candi-
dates.

5.2. Language Proficiency Probing

Task description. In order to evaluate our models’ intrinsic
knowledge of general language usage, we consider the task
of reconstructing English text in order to produce natural-
sounding language. Multiple-choice cloze tests are com-
monly used in language assessment tasks for students to
evaluate their proficiency [1,67,72]. Similarly, a model with
a good grasp of English language usage should be able to
fill in missing words in cloze contexts to produce fluent En-
glish. This requires grammatical and semantic knowledge,
but in general, it is not directly related to visual reasoning
when applied to arbitrary masked contexts. As noted by
Trace [72], cloze tasks may evaluate global reading com-
prehension or local contextual information in the cloze con-
text; we focus on the latter case and refer to this task applied
to our models as language proficiency probing.

Experimental details. To evaluate language proficiency,
we use the Children’s Book Test (CBT) cloze dataset pro-
vided by Meta research [21], consisting of book passages
with accompanying masked sentences and possible mask
completions. We discard the book passages and only con-
sider the sentences and completions, to focus on the task of
reconstructing well-formed text. Completions are grouped
by part of speech (POS); we use the noun (N), verb (V),
and preposition (P) groups and discard the named entity
groups since the latter require long-distance context to pre-
dict while N, V, and P can often be inferred from local sen-
tential context. In total, each of the N, V, and P groups con-
tains 2,500 sentences with 10 possible completions each.
We filter out long sentences since our multimodally trained
models have shorter expected input lengths. After filtering
we are left with 1,588 noun, 1,747 verb, and 2,382 prepo-
sition completion sentences. In addition, we only use sen-
tences that have a one-word token answer for all tokenizers.
For example, one sentence from the V group is I [*] not a
fellow; I am a young lady! and the set of possible comple-
tions is {am, born, find, picking, pricked, said, sat, seems,
streamed, thinking}. We use MLM and Stroop probing to
evaluate our models on this data.

Evaluation metrics. We report categorical accuracy per
POS group (accV , accN , and accP ), measuring how often
the ground truth answer is selected in each of these groups.

5.3. Sentiment Analysis

Task description. Sentiment analysis refers to the task of
predicting speaker emotion or affect, a well-studied prob-
lem in natural language processing [28, 38, 49]. We focus
on sentiment analysis in text as a subset of text classifica-
tion. Since text describing the same visual scene may have
a positive or negative sentiment (This cake is delicious vs.
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This cake tastes bad), we consider this task to be a non-
visual NLU task.

Experimental details. For this task, we use the IMDB
movie review dataset consisting of 50K movie reviews with
binary sentiment labels (positive/negative) [42]. In order to
provide a fairer comparison between models rather than bi-
asing towards models trained on longer texts, we use only
a single random sentence from each review in the IMDB
dataset. In addition, we filter long sentences which are too
long for multimodal encoders leaving 42,567 examples. Us-
ing only a single sentence makes this task more challeng-
ing since the randomly chosen sentence is not guaranteed
to contain sufficient context for understanding the review’s
sentiment, but we find that significantly better than random
performance is achievable, as seen in the results section.
We also differ from the more common learned sentiment
analysis paradigm by using strictly zero-shot prediction via
engineered prompts. For example, one prompt used is “sen-
timent expressed for the movie is [*]. ⟨s⟩”, where ⟨s⟩ indi-
cates the sentence chosen from the initial review, and [*]
may be filled with one of {good, bad}. We apply MLM and
Stroop probing for binary prediction, and report categorical
accuracy achieved for each model.

Evaluation metric. We report categorical accuracy of pre-
dictions (acc) relative to the ground truth sentiment labels.

6. Results and Discussion
Results for the tasks described above are provided in Ta-

ble 1. For tasks with multiple prompts the listed metrics
are the maximum over prompts, providing a rough upper
bound on each model’s ability to perform the task in ques-
tion. Further analysis of performance by prompt, as well as
SP results for models shown here with MLM, are provided
in the supplementary materials.

As seen in these results, multimodally trained models
consistently outperform unimodally trained models on VLU
tasks, including both comparably sized and much larger text
encoders, while generally underperforming them on non-
visual NLU tasks. This is further illustrated by qualitative
analysis of the results in various tasks.

Figure 2 shows the results of concreteness prediction
for CLIP and BERT. Nouns predicted as most concrete by
CLIP, for example bench and chalk, that can be clearly vi-
sualized, while nouns predicted as least concrete (i.e., ab-
stract) such as story and name, do not have a clear visual
representation. In comparison, BERT’s predictions are sig-
nificantly noisier, with nouns such as seed and jelly pre-
dicted as abstract.

Figures 3 and 4 shows color and shape association pre-
dictions of BERT-base and CLIP on samples from the rele-
vant datasets. Without having access to the associated im-
ages, the CLIP text encoder usually predicts the correct

snowman
l i a r
l e t t u c e
mailman
couch

BERT

s i n k
bench
c h a l k
s p l i n t e r
p i n e c o n e

CLIP

s eed
j e l l y
ca sh
l i g h t n i n g
pudding

BERT

f r i e n d
s t o r y
name
t h a n k s
fun

CLIP
Most concrete Most abstract

Figure 2. Basic nouns selected as most (and least) concrete using
BERT-base and CLIP, according the method described in Section
4.1. As these illustrate, concreteness can be reasonably predicted
from CLIP text embeddings, whereas this knowledge is not readily
accessible for the unimodally trained text encoders.

BERT
CLIP

green
green

green
orange

red
yellow

red
red

white
brown

Figure 3. Examples of color prediction results on NCD dataset.
Depicted above are examples of results for predicting colors from
the NCD dataset using MLM for BERT-base and Stroop probing
for CLIP. We emphasize that the model only receives as input the
name of the fruit or vegetable without the given image.

Item
BERT
CLIP

pill
triangle
circle

saucer
rectangle

circle

prism
triangle
triangle

notebook
circle

rectangle

Figure 4. Examples of shape prediction results on ShapeIt
benchmark. Depicted above are examples of results for predict-
ing shapes from the ShapeIt benchmark using MLM for BERT-
base and Stroop probing for CLIP. Images are for illustration only,
but during probing the model only receives the name of the item.

matching between the given item and its correct shape or
color, while BERT fails in most cases. Our results sug-
gest that these associations are more consistently encoded
by multimodally trained encoders. Furthermore, qualitative
analysis of the misclassifications of CLIP, OpenCLIP and
FLAVA on color association prediction reveals that these
are mostly due to ambiguities in the dataset itself; see the
supplementary materials for details.

Performance on non-visual NLU tasks, shown on the
right side of Table 1, demonstrates that our results are not an
artifact of our probing methodology providing a global ad-
vantage to multimodally trained models, nor are these mod-
els uniformly better at language-related tasks. We also see
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Concreteness Color Shape Knowledge Proficiency Sent.
Metric |ρ| |rs| |τ | accCTD accNCD acc R@1 R@5 accV accN accP acc

Unimodal
BERT-base 0.414 0.416 0.283 0.353 0.400 0.559 0.198 0.522 0.898 0.753 0.893 0.618
BERT-large 0.348 0.355 0.239 0.490 0.467 0.587 0.231 0.541 0.914 0.779 0.905 0.625
DistilBERT – – – 0.333 0.400 0.587 0.148 0.479 0.864 0.709 0.814 0.637
RoBERTa-base 0.433 0.404 0.275 0.431 0.333 0.431 – – 0.877 0.718 0.881 0.666
RoBERTa-large 0.345 0.374 0.253 0.471 0.400 0.431 – – 0.898 0.765 0.916 0.703
DistilRoBERTa – – – 0.411 0.333 0.431 – – 0.804 0.664 0.756 0.635
ERNIE 0.461 0.496 0.338 0.196 0.333 0.449 0.001 0.006 0.064 0.051 0.086 0.582
ERNIE-large 0.358 0.353 0.233 0.216 0.267 0.458 0.006 0.022 0.209 0.241 0.280 0.674
SBERT 0.338 0.337 0.228 0.198 0.067 0.513 0.013 0.141 0.237 0.158 0.126 0.554

V&L
CLIP 0.603 0.624 0.437 0.843 0.800 0.798 0.009 0.118 0.134 0.133 0.126 0.560
OpenCLIP 0.634 0.643 0.432 0.941 0.800 0.853 0.009 0.121 0.211 0.135 0.123 0.560
FLAVA 0.608 0.665 0.449 0.882 0.800 0.798 0.020 0.138 0.116 0.118 0.139 0.519

Table 1. Results on VLU (left) and non-visual NLU (right) tasks: concreteness prediction, color and shape association prediction,
factual knowledge probing, language proficiency probing, and sentiment analysis (Sent.) respectively. For tasks other than concreteness
prediction, MLM probing is used for models supporting it (BERT, DistilBERT, RoBERTa, DistilRoBERTa); SP is used elsewhere. The
definition of each metric is defined in the relevant task definition in Sections 4-5. DistilBERT and DistilRoBERTa do not have concreteness
results due to the pooling layer issue mentioned in Section 4.1, and RoBERTa and DistilRoBERTa do not have results for factual knowledge
probing due to the tokenization issue mentioned in Section 5.1. As these results show, V&L models yield superior performance on visual
tasks, while underperforming unimodally trained models on non-visual NLU tasks.

that the non-visual tasks are highly solveable, with BERT-
large and RoBERTa-large achieving high performance on
all tasks despite the challenging zero-shot regime and lim-
ited information in the task inputs (ambiguity in cloze con-
texts for factual probing, lack of textual textual context
for proficiency probing and randomly-chosen sentences for
sentiment analysis). Despite this, the multimodally trained
models show near-random performance.

We note a direct connection to the original Stroop ef-
fect in the field of human psychology. Follow-up works to
the first Stroop effect demonstration have found it to ap-
ply to various types of stimuli, such as color-congruent and
incongruent objects (e.g. a yellow banana vs. a purple ba-
nana) [46]. Our results, also including color congruence of
objects, strengthen the motivation for using Stroop probing
applied to tasks involving visual congruence or saliency.

We also note a connection between our results and the
reporting bias effect, in which commonsense properties are
less likely to be explicitly stated than incongruent proper-
ties (e.g. a (yellow) banana vs. a blue banana). Report-
ing bias in text has been studied in the context of color as-
sociations [47] and in more general contexts [19, 63]. As
the multimodally trained models under consideration were
trained on paired image-caption data, the distribution of text
in image captions differs somewhat from the text used for
training models such as BERT. In the supplementary mate-
rial, we provide an analysis of reporting bias in the LAION
dataset [59], the training data for the OpenCLIP model in-

cluded in our tests. These results provide evidence that the
improvement in performance seen from V&L training can-
not primarily be attributed to a lack of reporting bias in im-
age caption texts, and emphasizes the significance of the
visual modality in these models’ language understanding.

7. Conclusion
We propose a suite of visual language understanding

tasks along with non-visual natural language understand-
ing tasks to probe the effect of V&L pretraining on such
reasoning capabilities of text encoder models. We intro-
duce Stroop probing as a zero-shot knowledge proving
method for evaluating the innate knowledge of text en-
coders. We also show that exposure to V&L data in pre-
training improves the performance of text encoder models
on VLU tasks, even though they may underperform uni-
modally trained text encoders on non-visual NLU tasks. Be-
yond text-only tasks, these results bear importance in the
broader context of multimodal learning, in which the iso-
lated contribution of text encoders has previously been un-
derexplored. Our findings suggest that multimodal pretrain-
ing has a significant effect on the knowledge represented by
the text encoder component of multimodal models, facilitat-
ing in establishing best practices for the design and training
of text encoders used in such contexts.

Acknowledgements. We thank Noriyuki Kojima, Gabriel
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Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian
Riedel. Language models as knowledge bases? arXiv
preprint arXiv:1909.01066, 2019. 2, 4, 6

[49] Soujanya Poria, Devamanyu Hazarika, Navonil Majumder,
and Rada Mihalcea. Beneath the tip of the iceberg: Current
challenges and new directions in sentiment analysis research.
IEEE Transactions on Affective Computing, 2020. 6

[50] Tingyu Qu, Tinne Tuytelaars, and Marie-Francine Moens.
Weakly supervised face naming with symmetry-enhanced
contrastive loss. arXiv preprint arXiv:2210.08957, 2022. 12

[51] Ella Rabinovich, Benjamin Sznajder, Artem Spector, Ilya
Shnayderman, Ranit Aharonov, David Konopnicki, and
Noam Slonim. Learning concept abstractness using weak
supervision. arXiv preprint arXiv:1809.01285, 2018. 4

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 2, 3, 16

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 12

[54] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019. 3, 16

[55] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A
primer in bertology: What we know about how bert works.
Transactions of the Association for Computational Linguis-
tics, 8:842–866, 2020. 2, 4, 6

[56] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019. 2, 3, 16

10



[57] Armin Saysani, Michael C Corballis, and Paul M Corbal-
lis. Colour envisioned: Concepts of colour in the blind and
sighted. Visual cognition, 26(5):382–392, 2018. 2

[58] Armin Saysani, Michael C Corballis, and Paul M Corballis.
Seeing colour through language: colour knowledge in the
blind and sighted. Visual Cognition, 29(1):63–71, 2021. 2

[59] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for
training next generation image-text models. arXiv preprint
arXiv:2210.08402, 2022. 8, 14

[60] Paula J Schwanenflugel. Why are abstract concepts hard to
understand? In The psychology of word meanings, pages
235–262. Psychology Press, 2013. 4

[61] Roger N Shepard and Lynn A Cooper. Representation of
colors in the blind, color-blind, and normally sighted. Psy-
chological science, 3(2):97–104, 1992. 2

[62] Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen
Livescu. Visually grounded neural syntax acquisition. arXiv
preprint arXiv:1906.02890, 2019. 3

[63] Vered Shwartz and Yejin Choi. Do neural language models
overcome reporting bias? In Proceedings of the 28th In-
ternational Conference on Computational Linguistics, pages
6863–6870, 2020. 8, 14

[64] Damien Sileo. Visual grounding strategies for text-only nat-
ural language processing. arXiv preprint arXiv:2103.13942,
2021. 3

[65] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. Flava: A foundational language and vision
alignment model. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15638–15650, 2022. 3, 16

[66] Shane Storks, Qiaozi Gao, and Joyce Y Chai. Re-
cent advances in natural language inference: A survey of
benchmarks, resources, and approaches. arXiv preprint
arXiv:1904.01172, 2019. 13

[67] Joseph Bartow Stubbs and G Richard Tucker. The cloze test
as a measure of english proficiency. The Modern Language
Journal, 58(5/6):239–241, 1974. 6

[68] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, and
Hua Wu. Ernie: Enhanced representation through knowl-
edge integration. arXiv preprint arXiv:1904.09223, 2019. 2,
16

[69] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian,
Hua Wu, and Haifeng Wang. Ernie 2.0: A continual pre-
training framework for language understanding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8968–8975, 2020. 2, 16

[70] Hao Tan and Mohit Bansal. Lxmert: Learning cross-
modality encoder representations from transformers. arXiv
preprint arXiv:1908.07490, 2019. 3

[71] Hao Tan and Mohit Bansal. Vokenization: Improving lan-
guage understanding with contextualized, visual-grounded
supervision. arXiv preprint arXiv:2010.06775, 2020. 3

[72] Jonathan Trace. Clozing the gap: How far do cloze items
measure? Language Testing, 37(2):235–253, 2020. 6

[73] Jeroen van Paridon, Qiawen Liu, and Gary Lupyan. How do
blind people know that blue is cold? distributional semantics
encode color-adjective associations. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 43,
2021. 2

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[75] Ramakrishna Vedantam, Xiao Lin, Tanmay Batra,
C Lawrence Zitnick, and Devi Parikh. Learning com-
mon sense through visual abstraction. In Proceedings of the
IEEE international conference on computer vision, pages
2542–2550, 2015. 3

[76] Brian N Verdine, Kelsey R Lucca, Roberta M Golinkoff,
Kathryn Hirsh-Pasek, and Nora S Newcombe. The shape
of things: The origin of young children’s knowledge of the
names and properties of geometric forms. Journal of Cogni-
tion and Development, 17(1):142–161, 2016. 5

[77] Mingzhe Wang, Mahmoud Azab, Noriyuki Kojima, Rada
Mihalcea, and Jia Deng. Structured matching for phrase lo-
calization. In ECCV, pages 696–711, 2016. 12

[78] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language
model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021. 2, 3

[79] Adina Williams, Nikita Nangia, and Samuel R Bowman. A
broad-coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426, 2017.
12, 14

[80] Eiling Yee, Stacy Huffstetler, and Sharon L Thompson-
Schill. Function follows form: activation of shape and func-
tion features during object identification. Journal of Experi-
mental Psychology: General, 140(3):348, 2011. 5

[81] Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking
zero-shot text classification: Datasets, evaluation and entail-
ment approach. arXiv preprint arXiv:1909.00161, 2019. 13

[82] Avishai Zagoury, Einat Minkov, Idan Szpektor, and
William W Cohen. What’s the best place for an ai confer-
ence, vancouver or : Why completing comparative ques-
tions is difficult. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14292–14300,
2021. 6

[83] Chenyu Zhang, Benjamin Van Durme, Zhuowan Li,
and Elias Stengel-Eskin. Visual commonsense in pre-
trained unimodal and multimodal models. arXiv preprint
arXiv:2205.01850, 2022. 3

11



Task Metric VisualBERT LMXERT BERT CLIP

VLU
Conc. Pearson 0.400 0.421 0.233 0.513

Spearman 0.412 0.370 0.238 0.495
Kendall 0.281 0.249 0.159 0.339

NCD Accuracy 0.467 0.400 0.267 0.823
CTD Accuracy 0.314 0.431 0.353 0.800

NLU
Cites R@1 0.003 0.007 0.199 0.019
NLI AUC 0.704 0.688 0.754 0.696

Table 2. Evaluating non-dual V&L encoders (VisualBERT and
LMXERT) on several VLU and NLU tasks with BERT and CLIP
added for reference.

Appendix
A. Additional Results and Comparisons
A.1. Non-dual V&L encoder models

Although non-dual (fusion) encoder models are not di-
rectly comparable to purely textual encoders such as BERT
or the text encoder component of CLIP which do not fuse
modalities, we consider them here for completeness We
evaluate the VisualBERT and LMXERT non-dual encoder
models on several tasks from our task suite by only feeding
them textual input. Results are shown in Table 2. As illus-
trated in the table, even though these models were trained
using image features together with text tokens, the models
outperform BERT on visual tasks, though the gap is not as
significant as with dual encoder models.

A.2. Additional tasks using linear probing

We present two additional tasks for comparing V&L
and unimodal models using linear probing, one VLU
and one NLU task. For both tasks, we use a lin-
ear classifier on the pooled embedding output of a
model for categorical prediction. Specifically, we
use a logistic regression model using the scikit-learn
linear model.LogisticRegression implementa-
tion. For all tasks we use the default parameters except for
max iter which was changed according to task require-
ments to allow convergence. In particular, we use parame-
ters penalty=’l2’, C=1.0, solver=’lbfgs’.

A.2.1 Groundability classification

Task description. In paired text-image data, there is nor-
mally an implied mapping between referential expressions
in the text and objects or regions in the accompanying im-
age. The task of learning these mappings is known as visual

grounding and is of general interest for visual semantic un-
derstanding [14, 44, 77]. In captions accompanying images,
some expressions refer directly to regions in images while
others give non-visual context; we refer to the former as
groundable referents and the latter as non-groundable. A
similar paradigm was recently proposed by Kim et al. [32]
that separately considers “answerable” and “unanswerable”
phrases.

We propose a groundability classification task, consist-
ing of classifying referents in text as groundable or non-
groundable. This is a text-only task as it uses text alone and
the visual context is only implied. Since this task requires
visual imagination to complete, we consider it to be a VLU
task.

Experimental details. In line with previous works that
consider person-centric visual grounding [14, 50], we con-
struct a dataset of person-centric groundability sentences
where a fixed human participant is either implied to be
groundable (i.e., on-camera) or non-groundable (i.e., off-
camera). The associated task consists of binary classifica-
tion applied to these texts according to whether the given
participant would be visible in a description of an event.
Due to the lack of existing labelled data for this task, we cre-
ated a synthetic dataset of sentences with a common format:
Alex [MASK]ing Riley’s [MASK], where the first masked
word is a randomly drawn verb, and the second masked
word is a randomly drawn noun, and the task is to clas-
sify whether or not the second mentioned individual (i.e.,
Riley) is groundable. Groundability labels are estimated
using zero-shot text classification with a pretrained natu-
ral language inference model. We created synthetic data for
the groundability task by taking the prompt template “Alex

ing Riley’s ”, filling in various verb-noun pairs into
the given slots, and filtering using a pretrained language
model to select for natural-sounding samples. We then esti-
mated ground-truth labels using zero-shot inference with a
pretrained natural language inference (NLI) model.

To find verb-noun pairs, we listed all verbs and nouns in
the Brown corpus of standard American English with part-
of-speech labels [17]. We converted all text to lowercase
and then selected the 5,000 most common verb lemmas and
1,000 most common noun lemmas in this corpus. Using
all possible verb-noun combinations among these, inserted
into the prompt template shown above, yielded 5M can-
didate phrases. From the given 5M candidates we sample
randomly 200K phrases. We then calculate the total nega-
tive log-likelihood (NLL) for each candidate relative to the
pretrained language model GPT2-large [53] and kept only
those samples in the 20th percentile of NLL (i.e. the most
likely samples), corresponding to 40,000 descriptions.

After generating these texts, we estimated labels
using a pretrained NLI model. We used BART-
large [37] fine-tuned on the MNLI dataset [79] (using the
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facebook/bart-large-mnli checkpoint from Hug-
ging Face model hub5). This model takes pairs of texts
as inputs (the “premise” and “hypothesis” texts) and out-
puts three probabilities per pair: pc, pn, pe, corresponding
to probabilities of a contradictory, neutral, or entailment re-
lation between the texts respectively. As observed by Yin
et al. [81], NLI can be used for zero-shot text classification
by designing premise and hypothesis prompts for the task
of interest. In our case, we use the following prompts:

Premise: “This is a picture of .”
Hypothesis: “Riley can be seen in the picture.”
For each of our 40,000 texts, we insert the text in the slot

given in the premise and calculate pe with the NLI model.
If pe > 0.5 we assign the sample label 1 (groundable), oth-
erwise we assign it label 0 (non-groundable). Below are
several example sentences from the synthetic dataset.
Examples of Riley being groundable (sample label 1):

• Alex facing Riley’s figure

• Alex viewing Riley’s participation

• Alex seeing Riley’s enjoyment

Examples of Riley being non-groundable (sample label 0):

• Alex hiding Riley’s file

• Alex announcing Riley’s absence

• Alex stealing Riley’s evidence

For evaluation we created a test set, containing 200 sen-
tences judged by human evaluators to be natural sound-
ing, half labeled as groundable and the other half as non-
groundable. To provide an example, sentences such as Alex
cutting Riley’s hair or Alex blocking Riley’s shot were la-
beled as groundable, whereas sentences such as Alex paint-
ing Riley’s house or Alex counting Riley’s vote were labeled
as non-groundable.

For this binary classification task, we apply linear prob-
ing to assess our models’ understanding of groundability,
and report ROC-AUC scores for each model. We also pro-
vide 95% confidence intervals, calculated using bootstrap
resampling with 200 bootstraps, in order to analyze the ro-
bustness of these results.

Results and discussion. Results for the groundability clas-
sification are provided in Table 3. As these results illustrate,
CLIP significantly outperforms all unimodally trained text
encoders on average. We observe that the score gaps are not
as distinct as in the previous zero-shot tasks, as this task is a
learnable task which requires training, allowing all models
to learn this task to some extent. Nonetheless, CLIP’s abil-
ity to surpass the unimodally trained encoders suggest that

5The model can be found here.

Model AUC (95% CI)

BERT 0.789 ± 0.0007
RoBERTa 0.799 ± 0.0005
ERNIE 0.766 ± 0.0006
CLIP 0.822 ± 0.0007

Table 3. Groundability Classification Evaluation. We report
ROC-AUC with 95% bootstrap confidence intervals scores for a
manually assembled test set comparing linear probing for text
based encoders and V&L CLIP model. As shown above, CLIP
significantly outperforms the unimodally trained models.

V&L trained text encoders have a better ability to grasp if
an object is grounded or not due to additional perceptual in-
formation that is encoded during the pretraining phase. Fur-
thermore, note that in comparison to the other VLU tasks,
here the subject in question (i.e., Riley) is not directly con-
nected to visual information and the prediction is based only
on context relating to the performed action and the associ-
ated object. The improved performance on this task illus-
trates that V&L models can better encode higher-level per-
ceptual reasoning.

A.2.2 Natural language inference

Task description. Natural language inference (NLI) refers
to inferring the logical relation between pairs of statements,
as well as more generally referring to logical inference
based on text [66]. In particular, NLI commonly consid-
ers the following logical relations between sentences A and
B:

• Contradiction: For example, A=It is rainy outside. is
contradicted by B=It is sunny outside., since they can-
not be simultaneously true.

• Neutral: For example, A=It is rainy outside. is neu-
tral with regards to B=It is summer., since A neither
contradicts nor entails B.

• Entailment: For example, A=It is cold and rainy out-
side. entails B=It is cold outside., since if A is true then
B must also be true.

Solving this task requires an understanding of the fine-
grained semantics of language and logical reasoning. On
the other hand, visual cues are not tightly related to this
task and are even potentially misleading. For example, the
sentences This cup contains grape juice. and This cup con-
tains wine. are contradictory even though the scenes they
describe are visually identical. Therefore, we consider this
to be a non-visual NLU task.
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Model AUC ± std

BERT 0.754 ± 0.001
RoBERTa 0.777 ± 0.001
ERNIE 0.787 ± 0.001
CLIP 0.696 ± 0.001

Table 4. NLI Evaluation. We report ROC-AUC scores for the
NLI task using linear probing, comparing text based encoders to
the V&L CLIP model. As depicted above, the V&L trained text
encoder is inferior to all other text based encoders for this non-
visual language understanding task.

Experimental details. For this task we use the MNLI
dataset introduced by Adina et al. [79]. We remove sentence
pairs with a neutral relation and treat this as a binary clas-
sification task to predict sentence pairs as contradictory or
entailing. We perform 5-fold cross validation on a dataset of
261,775 pairs of sentences using 80% of samples for train-
ing and 20% for testing.

For each sentence pair, we concatenate the sentences’
two pooled embeddings and apply linear probing. Note that
some models such as BERT include a special [SEP] token
for encoding sentence pairs as a single unit, but we encode
sentences separately and concatenate their embeddings in
order to have a fair comparison between all models. We
report the ROC-AUC score on the MNLI test set.

Results and discussion. Results for NLI are provided in
Table 4. As shown in the table, text-based models outper-
form CLIP by a large margin. Similar to our findings re-
garding linguistic acceptability classification, we see that
V&L trained models are less effective in tasks that do not
incorporate perceptive information, suggesting that for non-
visual tasks, V&L pretraining is not necessarily beneficial.

A.3. Comparing usage of SP on text based models

In the main paper we presented results for text models
using MLM probing, and for CLIP using Stroop probing
(SP). To allow for a full comparison between both types of
models, and to strengthen the choice of using MLM probing
for text based models, we present additional results com-
paring SP and MLM probing for text based models. Ta-
ble 5 presents results for comparing SP and MLM prob-
ing methods for BERT and RoBERTa. As illustrated, using
SP with unimodally trained models results in lower perfor-
mance than using MLM probing with these models. This
result supports our choice of using MLM probing for text
based models trained to perform MLM tasks as the pre-
ferred probing method.

A.4. Additional task results information

We provide additional detailed results for our suite tasks
including the mean and standard deviation of the results

over all used prompts in Table 6.

A.5. Qualitative analysis for V&L model misclassi-
fications on color prediction

Our results for color association prediction show that
V&L models outperform unimodally trained text encoders
in the given setting. Additional qualitative analysis of the
results show that even the reported misclassifications of
V&L models such as CLIP may be explained by ambigu-
ities in the dataset itself. For example, the noun “ash” has
ground truth value “grey” in our dataset, while CLIP with
SP predicts the color “black”, which is arguably also cor-
rect. Table 7 presents all of the objects from both color
datasets misclassified by CLIP, containing the ground truth
and the predicted color. As seen there, most of these pre-
dictions may be interpreted as valid colors for the given ob-
jects.

A.6. Analysis of reporting bias in LAION

Prior works have noted that commonsense properties that
can be inferred from text are less likely to be explicitly
stated than incongruent properties, notably including color
terms(e.g. a (yellow) banana vs. a blue banana) [19,47,63].
In particular, text in image captioning datasets such as the
web-scale LAION dataset [59] (used to train OpenCLIP)
might have a different incidence of reporting bias than the
text used to train models such as BERT. To disentangle this
from the effect of training on the visual modality, we pro-
vide an analysis of reporting bias in LAION for color asso-
ciations.

We use the laion-2B-en subset of 2.33 billion
English-language image-caption pairs in the LAION-5B
dataset, and estimate reporting bias by searching for bigram
pairs (c, w) where c is a basic color term6 and w is a un-
igram noun from our color association datasets (CTD and
NCD). The empirical probability of color c immediately
preceding w is P (c|w) = n(c,w)/nw, where n indicates the
number of instances of the given ngram, and the associated
color estimates are ĉw = argmaxc P (c|w). For these esti-
mates, the corresponding accuracy scores on the unigrams
in our datasets are accCTD = 0.549 and accNCD = 0.714,
significantly below the accuracies achieved by all of the
multimodally trained models under consideration on these
datasets for the color prediction task. We also provide qual-
itative examples in Table 8 showing the effect of reporting
bias for various common nouns from these datasets. These
results provide evidence that multimodally trained models’
strong performance on VLU tasks cannot be explained away
as stemming from a lack of reporting bias in the texts used
to train them.

6one of {red, orange, yellow, green, blue, black, white, grey, brown}
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Color Shape Knowledge Proficiency Sent.
Metric accCTD accNCD acc R@1 R@5 accV accN accP acc

BERT-MLM 0.353 0.400 0.559 0.198 0.522 0.898 0.753 0.893 0.618
BERT-SP 0.137 0.067 0.412 0.000 0.005 0.048 0.038 0.013 0.596

RoBERTa-MLM 0.431 0.333 0.431 – – 0.877 0.718 0.881 0.666
RoBERTa-SP 0.176 0.200 0.422 – – 0.016 0.019 0.063 0.616

Table 5. Comparing SP to MLM probing for text base models. As the results show, using probing using MLM method for text based
models outputs better results than using SP

Concreteness Color Shape Sent.
Metric |ρ| |rs| |τ | accCTD accNCD acc acc

Unimodal
BERT-base 0.27 ± 0.10 0.27 ± 0.09 0.18 ± 0.07 0.26 ± 0.13 0.25 ± 0.08 0.47 ± 0.08 0.56 ± 0.03
BERT-large 0.18 ± 0.13 0.26 ± 0.10 0.17 ± 0.06 0.28 ± 0.14 0.27 ± 0.15 0.51 ± 0.06 0.56 ± 0.03
DistilBERT – – – 0.23 ± 0.08 0.31 ± 0.04 0.45 ± 0.09 0.56 ± 0.04
RoBERTa-base 0.30 ± 0.09 0.29 ± 0.10 0.19 ± 0.07 0.27 ± 0.10 0.27 ± 0.07 0.43 ± 0.00 0.61 ± 0.04
RoBERTa-large 0.21 ± 0.10 0.23 ± 0.11 0.16 ± 0.07 0.30 ± 0.12 0.26 ± 0.08 0.43 ± 0.00 0.63 ± 0.06
DistilRoBERTa – – – 0.24 ± 0.12 0.25 ± 0.10 0.43 ± 0.01 0.57 ± 0.02
ERNIE 0.23 ± 0.10 0.20 ± 0.12 0.13 ± 0.08 0.10 ± 0.04 0.13 ± 0.11 0.31 ± 0.08 0.53 ± 0.02
ERNIE-large 0.23 ± 0.08 0.22 ± 0.07 0.14 ± 0.05 0.12 ± 0.06 0.07 ± 0.09 0.30 ± 0.05 0.57 ± 0.05
SBERT 0.24 ± 0.09 0.25 ± 0.09 0.17 ± 0.06 0.13 ± 0.02 0.07 ± 0.01 0.43 ± 0.05 0.53 ± 0.02

V&L
CLIP 0.47 ± 0.09 0.49 ± 0.09 0.34 ± 0.07 0.67 ± 0.15 0.70 ± 0.08 0.69 ± 0.08 0.52 ± 0.01
OpenCLIP 0.45 ± 0.12 0.47 ± 0.12 0.32 ± 0.09 0.77 ± 0.12 0.66 ± 0.17 0.79 ± 0.08 0.53 ± 0.01
FLAVA 0.46 ± 0.10 0.52 ± 0.10 0.36 ± 0.07 0.52 ± 0.30 0.47 ± 0.22 0.68 ± 0.10 0.50 ± 0.01

Table 6. Mean and STD Results. Additional details of mean and standard deviations calculated across prompts, for all tasks which use
multiple prompts.

Word Ground Truth Predicted Color

apple green red
ash grey black
cauliflower white brown
cello brown black
chalk white grey
foam white grey
garlic white brown
lady finger green red
pear green yellow
sea blue grey
sky blue white

Table 7. Qualitative results for CLIP misclassified objects from
the CTD and NCD datasets. As can be seen by analyzing the
misclassified objects, most mistakes can be explained by ambigu-
ity of the data.

Word Ground Truth LAION

banana yellow green
cherry red black
orange orange red
soil brown red
swan white black
wood brown white

Table 8. Reporting bias in the LAION dataset, illustrated by
unigram nouns from the CTD and NCD datasets, along with their
ground truth colors and the most commonly preceding colors in
LAION.

B. Additional Details

B.1. Models

Table 9 presents the different models and Hugging Face
checkpoints used for comparing results on the presented
tasks.
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Model family Size Pretraining Params MLM head? Checkpoint

BERT [15] base text 110M Y bert-base-uncased
BERT [15] large text 340M Y bert-large-uncased
RoBERTa [41] base text 124M Y roberta-base
RoBERTa [41] large text 355M Y roberta-large
ERNIEv2 [68, 69] base text 109M Y∗ ernie-2.0-base-en
ERNIEv2 [68, 69] large text 335M Y∗ ernie-2.0-large-en
DistilBERT [56] base text 66M Y distilbert-base-uncased
DistilRoBERTa [56] base text 82M Y distilroberta-base
SBERT [54] – text 23M N paraphrase-MiniLM-L6-v2
FLAVA [65] – text & VLP 109M Y facebook/flava-full
CLIP [52] – VLP 63M N openai/clip-vit-base-patch32
OpenCLIP [25] – VLP 352M N laion/CLIP-ViT-H-14-laion2B-s32B-b79K

Table 9. Models table. Note that the number of parameters listed for CLIP, OpenCLIP and FLAVA refers to their text encoder components
alone. ∗ Note: ERNIE was trained with an MLM head, but because the public checkpoints provided do not include this, we do not evaluate
it with MLM probing.

B.2. Prompts used per task

We present further implementation details elaborating
the list of prompts used per task.

Concreteness Prediction As explained in the main paper,
we use the following prompts to probe our models for the
concreteness of words in context by using a cloze task
paradigm with Stroop probing. For each word tested, we
insert the masked prompt and the prompt with the tested
word and calculate the cosine similarity between them.

• Alice giving the [*] to Bob

• Bob giving the [*] to Alice

• I see the [*]

• A photo of my [*]

• A close-up photo of a [*]

• A painting of the [*]

• A photo of the [*]

• A photo of a nice [*]

• A drawing of the [*]

Color Association Prediction For the color association
prediction, we use the following prompts. For each given
object denoted as ⟨w⟩, we use all color options to probe for
the correct color.

• A picture of a [*] ⟨w⟩

• A photo of a [*] ⟨w⟩

• A photo of the [*] ⟨w⟩

• A [*] ⟨w⟩

• [*] ⟨w⟩

• The normal color of a ⟨w⟩ is [*]

• ⟨w⟩ usually has a [*] color

• ⟨w⟩ s have a [*] color

• What is the color of a ⟨w⟩? [*]

• The natural color of a ⟨w⟩ is [*]

Shape Association Prediction For the shape association
prediction, we use the following prompts. For each given
object denoted as ⟨w⟩, we use the given shape o to probe
for the correct object shape.

• A photo of a [*] shaped ⟨w⟩

• A photo of a [*] ⟨w⟩

• A photo of the [*] ⟨w⟩

• A [*] ⟨w⟩

• [*] ⟨w⟩

• An image of a [*] ⟨w⟩

• A ⟨w⟩ usually has a [*] shape

• ⟨w⟩ s commonly have a [*] shape

• The basic shape of a ⟨w⟩ is [*]

• What is the shape of a ⟨w⟩? [*]

Sentiment Analysis For sentiment analysis, we concate-
nate the following prompts to the given reviews and use the
different options for sentiment prediction.
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• Is this review positive? [*]; Yes, No

• Is this a good movie? [*]; Yes, No

• I conclude the movie was [*]; good, bad

• The film was [*]; good, bad

• I had a [*] time; good, bad

• The following movie review expresses what sentiment?
[*]; Positive, Negative

• Sentiment expressed for the movie is [*]; Positive,
Negative

• The overall review of the film is [*]; good, bad

• The movie was [*]; good, bad

• This movie is [*]; good, bad
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