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Abstract

Contrastive Language-Image Pre-training (CLIP)
achieves promising results in 2D zero-shot and few-shot
learning. Despite the impressive performance in 2D, apply-
ing CLIP to help the learning in 3D scene understanding
has yet to be explored. In this paper, we make the first
attempt to investigate how CLIP knowledge benefits 3D
scene understanding. We propose CLIP2Scene, a simple
yet effective framework that transfers CLIP knowledge
from 2D image-text pre-trained models to a 3D point cloud
network. We show that the pre-trained 3D network yields
impressive performance on various downstream tasks,
i.e., annotation-free and fine-tuning with labelled data for
semantic segmentation. Specifically, built upon CLIP, we
design a Semantic-driven Cross-modal Contrastive Learning
framework that pre-trains a 3D network via semantic and
spatial-temporal consistency regularization. For the former,
we first leverage CLIP’s text semantics to select the positive
and negative point samples and then employ the contrastive
loss to train the 3D network. In terms of the latter, we
force the consistency between the temporally coherent point
cloud features and their corresponding image features. We
conduct experiments on SemanticKITTI, nuScenes, and
ScanNet. For the first time, our pre-trained network achieves
annotation-free 3D semantic segmentation with 20.8% and
25.08% mIoU on nuScenes and ScanNet, respectively. When
fine-tuned with 1% or 100% labelled data, our method
significantly outperforms other self-supervised methods,
with improvements of 8% and 1% mIoU, respectively.
Furthermore, we demonstrate the generalizability for
handling cross-domain datasets. Code is publicly available1.

1. Introduction
3D scene understanding is fundamental in autonomous

driving, robot navigation, etc [26,28]. Current deep learning-

Symbol † denotes the corresponding authors.
1https://github.com/runnanchen/CLIP2Scene.
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Figure 1. We explore how CLIP knowledge benefits 3D scene
understanding. To this end, we propose CLIP2Scene, a Semantic-
driven Cross-modal Contrastive Learning framework that leverages
CLIP knowledge to pre-train a 3D point cloud segmentation net-
work via semantic and spatial-temporal consistency regularization.
CLIP2Scene yields impressive performance on annotation-free 3D
semantic segmentation and significantly outperforms other self-
supervised methods when fine-tuning on annotated data.

based methods have shown inspirational performance on 3D
point cloud data [15, 32, 33, 38, 47, 56, 62]. However, some
drawbacks hinder their real-world applications. The first
one comes from their heavy reliance on the large collection
of annotated point clouds, especially when high-quality 3D
annotations are expensive to acquire [39,40,44,51]. Besides,
they typically fail to recognize novel objects that are never
seen in the training data [11,45]. As a result, it may need ex-
tra annotation efforts to train the model on recognizing these
novel objects, which is both tedious and time-consuming.

Contrastive Vision-Language Pre-training (CLIP) [48]
provides a new perspective that mitigates the above issues
in 2D vision. It was trained on large-scale free-available
image-text pairs from websites and built vision-language
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correlation to achieve promising open-vocabulary recogni-
tion. MaskCLIP [61] further explores semantic segmenta-
tion based on CLIP. With minimal modifications to the CLIP
pre-trained network, MaskCLIP can be directly used for the
semantic segmentation of novel objects without additional
training efforts. PointCLIP [59] reveals that the zero-shot
classification ability of CLIP can be generalized from the
2D image to the 3D point cloud. It perspectively projects a
point cloud frame into different views of 2D depth maps that
bridge the modal gap between the image and the point cloud.
The above studies indicate the potential of CLIP on enhanc-
ing the 2D segmentation and 3D classification performance.
However, whether and how CLIP knowledge benefits 3D
scene understanding is still under-explored.

In this paper, we explore how to leverage CLIP’s 2D
image-text pre-learned knowledge for 3D scene understand-
ing. Previous cross-modal knowledge distillation meth-
ods [44, 51] suffer from the optimization-conflict issue, i.e.,
some of the positive pairs are regarded as negative samples
for contrastive learning, leading to unsatisfactory represen-
tation learning and hammering the performance of down-
stream tasks. Besides, they also ignore the temporal coher-
ence of the multi-sweep point cloud, failing to utilize the
rich inter-sweep correspondence. To handle the mentioned
problems, we propose a novel Semantic-driven Cross-modal
Contrastive Learning framework that fully leverages CLIP’s
semantic and visual information to regularize a 3D network.
Specifically, we propose Semantic Consistency Regulariza-
tion and Spatial-Temporal Consistency Regularization. In
semantic consistency regularization, we utilize CLIP’s text
semantics to select the positive and negative point samples
for less-conflict contrastive learning. For spatial-temporal
consistency regularization, we take CLIP’s image pixel fea-
ture to impose a soft consistency constraint on the temporally
coherent point features. Such an operation also alleviates the
effects of imperfect image-to-point calibration.

We conduct several downstream tasks on the indoor and
outdoor datasets to verify how the pre-trained network bene-
fits the 3D scene understanding. The first one is annotation-
free semantic segmentation. Following MaskCLIP, we place
class names into multiple hand-crafted templates as prompts
and average the text embeddings generated by CLIP to con-
duct the annotation-free segmentation. For the first time,
our method achieves 20.8% and 25.08% mIoU annotation-
free 3D semantic segmentation on the nuScenes [24] and
ScanNet [20] datasets without training on any labelled data.
Secondly, we compare with other self-supervised methods
in label-efficient learning. When fine-tuning the 3D network
with 1% or 100% labelled data on the nuScenes dataset,
our method significantly outperforms state-of-the-art self-
supervised methods, with improvements of 8% and 1%
mIoU, respectively. Besides, to verify the generalization
capability, we pre-train the network on the nuScenes dataset

and evaluate it on SemanticKITTI [3]. Our method still
significantly outperforms state-of-the-art methods. The key
contributions of our work are summarized as follows.

• The first work that distils CLIP knowledge to a 3D
network for 3D scene understanding.

• We propose a novel Semantic-driven Cross-modal Con-
trastive Learning framework that pre-trains a 3D net-
work via spatial-temporal and semantic consistency
regularization.

• We propose a novel Semantic-guided Spatial-Temporal
Consistency Regularization that forces the consistency
between the temporally coherent point cloud features
and their corresponding image features.

• For the first time, our method achieves promising re-
sults on annotation-free 3D scene segmentation. When
fine-tuning with labelled data, our method significantly
outperforms state-of-the-art self-supervised methods.

2. Related Work
Zero-shot Learning in 3D. The objective of zero-shot learn-
ing (ZSL) is to recognize objects that are unseen in the
training set. Many efforts have been devoted to the 2D recog-
nition tasks [1, 2, 4, 8, 21, 25, 34, 37, 41–43, 46, 54, 55, 58, 60],
and few works concentrate on performing ZSL in the 3D
domain [11, 16–18, 45]. [18] applies ZSL to 3D tasks, where
they train PointNet [47] on ”seen” samples and test on ”un-
seen” samples. Subsequent work [16] addresses the hubness
problem caused by the low-quality point cloud features. [17]
proposes the triplet loss to boost the performance under the
transductive setting, where the ”unseen” class is observed
and unlabeled in the training phase. [11] makes the first at-
tempt to explore the transductive zero-shot segmentation for
3D scene understanding. Recently, some studies introduced
CLIP into zero-shot learning. MaskCLIP [61] investigates
the problem of utilizing CLIP to help the 2D dense prediction
tasks and exhibits encouraging zero-shot semantic segmen-
tation performance. PointCLIP [59] is the pioneering work
that applies CLIP to 3D recognition and shows impressive
performance on zero-shot and few-shot classification tasks.
Our work takes a step further to investigate how the rich
semantic and visual knowledge in CLIP can benefit the 3D
semantic segmentation tasks.
Self-supervised Representation Learning. The purpose
of self-supervised learning is to obtain a good represen-
tation that benefits the downstream tasks. The dominant
approaches resort to contrastive learning to pre-train the net-
work [7, 9, 9, 10, 12–14, 22, 23, 27, 30]. Recently, inspired
by the success of CLIP, leveraging the pre-trained model
of CLIP to the downstream tasks has raised the commu-
nity’s attention [35, 36, 49, 50, 57]. DenseCLIP [49] utilizes
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Figure 2. Illustration of the Semantic-driven Cross-modal Contrastive Learning. Firstly, we obtain the text embedding ti, image pixel
feature xi, and point feature pi by text encoder, image encoder, and point encoder, respectively. Secondly, we leverage CLIP knowledge to
construct positive and negative samples for contrastive learning. Thus we obtain point-text pairs {xi, ti}Mi=1 and all pixel-point-text pairs in
a short temporal {x̂k

i , p̂
k
i , t

k
i }M̂,K

i=1,k=1. Here, {xi, ti}Mi=1 and {x̂k
i , p̂

k
i , t

k
i }M̂,K

i=1,k=1 are used for Semantic Consistency Regularization and
Spatial-Temporal Consistency Regularization, respectively. Lastly, we perform Semantic Consistency Regularization by pulling the point
features to their corresponding text embedding and Spatial-Temporal Consistency Regularization by mimicking the temporally coherent
point features to their corresponding pixel features.

the CLIP’s pre-trained knowledge for dense image pixel
prediction. DetCLIP [57] proposes a pre-training method
equipped with CLIP for open-world detection. We leverage
the image-text pre-trained CLIP knowledge to help 3D scene
understanding.
Cross-modal Knowledge Distillation. Recently, increas-
ing studies have focused on transferring knowledge from 2D
images to 3D point clouds for self-supervised representation
learning [44, 51]. PPKT [44] resorts to the InfoNCE loss
to help the 3D network distil rich knowledge from the 2D
image backbone. SLidR [51] further introduce the super-
pixel to boost the cross-modal knowledge distillation. In this
paper, we first attempt to pre-train a 3D network with CLIP’s
knowledge.

3. Methodology

Considering the impressive open-vocabulary performance
achieved by CLIP in image classification and segmentation,
natural curiosities have been raised. Can CLIP endow the
ability to a 3D network for annotation-free scene understand-
ing? And further, will it promote the network performance
when fine-tuned on labelled data? To answer the above ques-
tions, we study the cross-modal knowledge transfer of CLIP
for 3D scene understanding, termed CLIP2Scene. Our work
is a pioneer in exploiting CLIP knowledge for 3D scene un-

derstanding. In what follows, we revisit the CLIP applied in
2D open-vocabulary classification and semantic segmenta-
tion, then present our CLIP2Scene in detail. Our approach
consists of three major components: Semantic Consistency
Regularization, Semantic-Guided Spatial-Temporal Consis-
tency Regularization, and Switchable Self-Training Strategy.

3.1. Revisiting CLIP

Contrastive Vision-Language Pre-training (CLIP) miti-
gates the following drawbacks that dominate the computer
vision field: 1. Deep models need a large amount of format-
ted and labelled training data, which is expensive to acquire;
2. The model’s generalization ability is weak, making it diffi-
cult to migrate to a new scenario with unseen objects. CLIP
consists of an image encoder (ResNet [31] or ViT [6]) and
a text encoder (Transformer [53]), both respectively project
the image and text representation to a joint embedding space.
During training, CLIP constructs positive and negative sam-
ples from 400 million image-text pairs to train both encoders
with a contrastive loss, where the large-scale image-text pairs
are free-available from the Internet and assumed to contain
every class of images and most concepts of text. Therefore,
CLIP can achieve promising open-vocabulary recognition.

For 2D zero-shot classification, CLIP first places the class
name into a pre-defined template to generate the text embed-
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Figure 3. Illustration of the image pixel-to-text mapping. The
dense pixel-text correspondence {xi, ti}Mi=1 is extracted by the
off-the-shelf method MaskCLIP [61].

dings and then encodes images to obtain image embeddings.
Next, it calculates the similarities between images and text
embeddings to determine the class. MaskCLIP further ex-
tends CLIP into 2D semantic segmentation. Specifically,
MaskCLIP modifies the attention pooling layer of the CLIP’s
image encoder, thus performing pixel-level mask prediction
instead of the global image-level prediction.

3.2. CLIP2Scene

As shown in Fig. 2, we first leverage CLIP and 3D net-
work to respectively extract the text embeddings, image pixel
feature, and point feature. Secondly, we construct positive
and negative samples based on CLIP’s knowledge. Lastly,
we impose Semantic Consistency Regularization by pulling
the point features to their corresponding text embedding.
At the same time, we apply Spatial-Temporal Consistency
Regularization by forcing the consistency between tempo-
rally coherent point features and their corresponding pixel
features. In what follows, we present the details and insights.

3.2.1 Semantic Consistency Regularization

As CLIP is pre-trained on 2D images and text, our first con-
cern is the domain gap between 2D images and the 3D point
cloud. To this end, we build dense pixel-point correspon-
dence and transfer image knowledge to the 3D point cloud

via the pixel-point pairs. Specifically, we calibrate the Li-
DAR point cloud with corresponding images captured by six
cameras. Therefore, the dense pixel-point correspondence
{xi, pi}Mi=1 can be obtained accordingly, where xi and pi
indicates i-th paired image feature and point feature, which
are respectively extracted by the CLIP’s image encoder and
the 3D network. M is the number of pairs. Note that it is
an online operation and is irreverent to the image and point
data augmentation.

Previous methods [44, 51] provide a promising solution
to cross-modal knowledge transfer. They first construct
positive pixel-point pairs {xi, pi}Mi=1 and negative pairs
{xi, pj}(i ̸= j), and then pull in the positive pairs while
pushing away the negative pairs in the embedding space via
the InfoNCE loss. Despite the encourageable performance
of previous methods in transferring cross-modal knowledge,
they are both confronted with the same optimization-conflict
issue. For example, suppose i-th pixel xi and j-th point
pj are in the different positions of the same instance with
the same semantics. However, the InfoNCE loss will try
to push them away, which is unreasonable and hammer
the performance of the downstream tasks [51]. In light
of this, we propose a Semantic Consistency Regularization
that leverages the CLIP’s semantic information to allevi-
ate this issue. Specifically, we generate the dense pixel-
text pairs {xi, ti}Mi=1 by following the off-the-shelf method
MaskCLIP [61] (Fig. 3), where ti is the text embedding gen-
erated from the CLIP’s text encoder. Note that the pixel-text
mappings are free-available from CLIP without any addi-
tional training. We then transfer pixel-text pairs to point-text
pairs {pi, ti}Mi=1 and utilize the text semantics to select the
positive and negative point samples for contrastive learning.
The objective function is as follows:

LS info = −
C∑

c=1

log

∑
ti∈c,pi

exp(D(ti, pi)/τ)∑
ti∈c,tj /∈c,pj

exp(D(ti, pj)/τ)
,

(1)
where ti ∈ c indicates that ti is generated by c-th classes
name, and C is the number of classes. D denotes the scalar
product operation and τ is a temperature term (τ > 0).

Since the text is composed of class names placed into
pre-defined templates, the text embedding represents the
semantic information of the corresponding class. Therefore,
those points with the same semantics will be restricted near
the same text embedding, and those with different semantics
will be pushed away. To this end, our Semantic Consistency
Regularization causes less conflict in contrastive learning.

3.2.2 Semantic-guided Spatial-temporal Consistency
Regularization

Besides semantic consistency regularization, we consider
how image pixel features help to regularize a 3D network.
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Figure 4. Illustration of the image pixel-to-point mapping (left)
and semantic-guided fusion feature generation (right). We build
the grid-wise correspondence between an image I and the tem-
porally coherent LiDAR point cloud {Pk}Kk=1 within S seconds
and generate semantic-guided fusion features for individual grids.
Both {x̂k

i , p̂
k
i }M̂,K

i=1,k=1 and {fn}Nn=1 are used to perform Spatial-
Temporal Consistency Regularization.

The natural alternative directly pulls in the point feature with
its corresponding pixel in the embedding space. However,
the noise-assigned semantics of the image pixel and the im-
perfect pixel-point mapping hinder the downstream task’s
performance. To this end, we propose a novel semantic-
guided Spatial-Temporal Consistency Regularization to al-
leviate the problem by imposing a soft constraint on points
within local space and time.

Specifically, given an image I and temporally coherent
LiDAR point cloud {Pk}Kk=1, where K is the number of
sweeps within S seconds. Note that the image is matched to
the first frame of the point cloud P1 with pixel-point pairs
{x̂1

i , p̂
1
i }M̂i=1. We register the rest of the point cloud to the

first frame via the calibration matrices and map them to the
image (Fig. 4). Thus we obtain all pixel-point-text pairs
in a short temporal {x̂k

i , p̂
k
i , t

k
i }

M̂,K
i=1,k=1. Next, we divide

the entire stitched point cloud into regular grids {gn}Nn=1,
where the temporally coherent points are located in the same
grid. We impose the spatial-temporal consistency constraint
within individual grids by the following objective function:

LSSR =
∑
gn

∑
(̂i,k̂)∈gn

(1− sigmoid(D(p̂k̂
î
, fn)))/N, (2)

where (̂i, k̂) ∈ gn indicates the pixel-point pair {x̂k
i , p̂

k
i }

is located in the n-th grid. {fn}Nn=1 is a semantic-guided
cross-modal fusion feature formulated by:

fn =
∑

(̂i,k̂)∈gn

ak̂
î
∗ x̂k̂

î
+ bk̂

î
∗ p̂k̂

î
, (3)

where ak̂
î

and bk̂
î

are attention weight calculated by:

ak̂
î
=

exp(D(x̂k̂
î
, t1

î
)/λ)∑

(̂i,k̂)∈gn
exp(D(x̂k̂

î
, t1

î
)/λ) + exp(D(p̂k̂

î
, t1

î
)/λ)

,

bk̂
î
=

exp(D(p̂k̂
î
, t1

î
)/λ)∑

(̂i,k̂)∈gn
exp(D(x̂k̂

î
, t1

î
)/λ) + exp(D(p̂k̂

î
, t1

î
)/λ)

,

(4)

where λ is the temperature term.
Actually, those pixel and point features within the local

grid gn are restricted near a dynamic centre fn. Thus, such a
soft constraint alleviates the noisy prediction and calibration
error issues. At the same time, it imposes Spatio-Temporal
Regularization on the temporally coherent point features.

3.2.3 Switchable Self-training Strategy

We combine the loss function LS info and LSSR to end-
to-end train the whole network, where the CLIP’s image
and text encoder backbone are frozen during training. We
find that method worked only when the pixel-point feature
{xi, pi}Mi=1 and {x̂k

i , p̂
k
i }

M̂,K
i=1,k=1, which are used in LS info

and LSSR, are generated from different learnable linear layer.
On top of that, we further put forward an effective strategy to
promote performance. Specifically, after contrastive learning
of the 3D network for a few epochs, we randomly switch
the point pseudo label between the paired image pixel’s
pseudo label and the point’s predicted label. Since different
modality networks learn different feature representations,
they can filter different types of error introduced by noisy
pseudo labels. By this switchable operation, the error flows
can be reduced by mutually [29].

4. Experiments

Datasets. We conduct extensive experiments on two large-
scale outdoor LiDAR semantic segmentation datasets, i.e.,
SemanticKITTI [3] and nuScenes [5, 24], and one indoor
dataset ScanNet [20]. The nuScenes dataset contains 700
scenes for training, 150 scenes for validation, and 150 scenes
for testing, where 16 classes are utilized for LiDAR semantic
segmentation. As for SemanticKITTI, it contains 19 classes
for training and evaluation. It has 22 sequences, where
sequences 00 to 10, 08, and 11 to 21 are used for training,
validation, and testing, respectively. ScanNet [20] contains
1603 scans with 20 classes, where 1201 scans are for training,
312 scans are for validation, and 100 scans are for testing.

Implementation Details. We follow SLidR [51] to pre-
train the network on the nuScenes [5, 24] dataset. The
network is pre-trained on all keyframes from 600 scenes.



Table 1. Comparisons (mIoU) among self-supervised methods on
the nuScenes [24], SemanticKITTI [3], and ScanNet [20] val sets.

Initialization nuScenes SemanticKITTI ScanNet
1% 100% 1% 100% 5% 100%

Random 42.2 69.1 32.5 52.1 46.1 63.3

PPKT [44] 48.0 70.1 39.1 53.1 47.5 64.2
SLidR [51] 48.2 70.4 39.6 54.3 47.9 64.9

PointContrast [55] 47.2 69.2 37.1 52.3 47.6 64.5

CLIP2Scene 56.3 71.5 42.6 55.0 48.4 65.1

Table 2. Annotation-free 3D semantic segmentation performance
(mIoU) on the nuScenes [24] and ScanNet [20] val sets.

Method nuScenes ScanNet

CLIP2Scene 20.80 25.08

Besides, the pre-trained network is fine-tuned on Se-
manticKITTI [3] to verify the generalization ability. We
leverage the CLIP model to generate image features and
text embedding. Following MaskCLIP, we modify the at-
tention pooling layer of the CLIP’s image encoder, thus
extracting the dense pixel-text correspondences. We take
SPVCNN [52] as the 3D network to produce the point-wise
feature. The framework is developed on PyTorch, where the
CLIP model is frozen during training. The training time is
about 40 hours for 20 epochs on two NVIDIA Tesla A100
GPUs. The optimizer is SGD with a cosine scheduler. We
set the temperature λ and τ to be 1 and 0.5, respectively. The
sweep number is set to be 3 empirically. Besides, We adopt
MinkowskiNet14 [19] as the backbone for evaluation on the
ScanNet dataset, where the number of sweeps is set to be 1
and the training epochs is 30. As for the Switchable Self-
Training Strategy, we randomly switch the point supervision
signal after 10 epochs. We apply several data augmentations
in contrastive learning, including random rotation along the
z-axis and random flip on the point cloud, random horizontal
flip, and random crop-resize on the image.

4.1. Annotation-free Semantic Segmentation

After pre-training the network, we show the performance
of the 3D network when it is not fine-tuned on any anno-
tations (Table 2). As no previous method reports the 3D
annotation-free segmentation performance, we compare our
method with different setups (Table 3). In what follows, we
describe the experimental settings and give insights into our
method and the different settings.
Settings. We conduct experiments on the nuScenes and
ScanNet datasets to evaluate the annotation-free semantic
segmentation performance. Following MaskCLIP [61], we
place the class name into 85 hand-craft prompts and feed it
into the CLIP’s text encoder to produce multiple text features.
We then average the text features and feed the averaged fea-
tures to the classifier for point-wise prediction. Besides, to

Table 3. Ablation study on the nuScenes [24] val set for annotation-
free 3D semantic segmentation.

Ablation Target Setting mIoU (%)

- Baseline 15.1

Prompts

nuScenes 15.1 (+0.0)

SemanticKITTI 13.9 (−1.2)

Cityscapes 11.3 (−3.8)

All 15.3 (+0.2)

Regularization
w/o StCR 19.8 (+4.7)

w/o SCR 16.8 (+1.7)

KL 0.0 (−15.1)

Training Strategy w/o S3 18.8 (+3.7)

ST 10.1 (−4.0)

Sweeps

1 sweep 18.7 (+3.6)

3 sweeps 20.8 (+5.7)

5 sweeps 20.6 (+5.5)

merged 18.6 (+3.5)

Full Configuration CLIP2Scene 20.8 (+5.7)

explore how to effectively transfer CLIP’s knowledge to the
3D network for annotation-free segmentation, We conduct
the following experiments to highlight the effectiveness of
different modules in our framework.
Baseline. The input of the 3D semantic segmentation net-
work is only one sweep, and we pre-train the framework via
semantic consistency regularization.
Prompts (nuScenes, SemanticKITTI, Cityscapes, All).
Based on the baseline, we respectively replace the nuScenes,
SemanticKITTI, Cityscapes, and all class names into the
prompts to produce the text embedding.
Regularization (w/o StCR, w/o SCR, KL). Based on the
full method, we remove the Spatial-temporal Consistency
Regularization (w/o StCR) and remove the Semantic Con-
sistency Regularization (w/o SCR). Besides, we abuse both
StCR and SCR and distill the image feature to the point
cloud by Kullback–Leibler (KL) divergence loss.
Training Strategies (w/o S3, ST). We abuse the Switchable
Self-Training Strategy (w/o S3) in the full method. Besides,
we show the performance of only training the 3D network
by their own predictions after ten epochs (ST).
Sweeps Number (1 sweep, 3 sweeps, 5 sweeps, and
merged). We set the sweep number K to be 1, 3, and 5,
respectively. Besides, we also take three sweeps of the point
cloud as the input to pre-train the network (merged).
Effect of Different Prompts. To verify how text embedding
affects the performance, we generate various text embedding
by the class name from different datasets (nuScenes, Se-
manticKITTI, and Cityscapes) and all classes for pre-training
the framework. As shown in Table 3, we find that even learn-
ing with other datasets’ text embedding (SemanticKITTI
and Cityscapes), the 3D network could still recognize the
nuScenes’s objects with decent performance (13.9% and
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Figure 5. Qualitative results of annotation-free semantic segmentation on nuScenes dataset. Note that we show the results of individual
classes. From the left to the right column are bus, motorcycle, car, and truck, respectively. The first row [ground truth] is the annotated
semantic label. The second row [ours*] is our prediction of the highlighted target. The third row [ours] is our prediction of full classes.

11.3% mIoU, respectively). The result shows that the 3D
network is capable of open-vocabulary recognition ability.
Effect of Semantic and Spatial-temporal Consistency
Regularization. We remove Spatial-temporal Consistency
Regularization (w/o SCR) from our method. Experiments
show that the performance is dramatically decreased, indicat-
ing the effectiveness of our design. Besides, we also distill
the image feature to the point cloud by KL divergence loss,
where the text embeddings calculate the logits. However,
such a method fails to transfer the semantic information
from the image. The main reason is the noise-assigned se-
mantics of the image pixel and the imperfect pixel-point
correspondence due to the calibration error.
Effect of Switchable Self-training Strategy. To examine
the effect of the Switchable Self-Training Strategy, we either
train the network with image supervision (w/o S3) or train
the 3D network by their own predictions. Both trials witness
a performance drop, indicating Switchable Self-Training
Strategy is efficient in cross-modal self-supervised learning.
Effect of Sweep Numbers. Intuitively, the performance of
our method benefits from more sweeps information. There-
fore, we also show the performance when restricting sweep
size to 1, 3, and 5, respectively. However, we observe that
the performance of 5 sweeps is similar to 3 sweeps but is
more computationally expensive. Thus, we empirically set
the sweep number to be 3.
Qualitative Evaluation. The qualitative evaluations of indi-
vidual classes (bus, motorcycle, car, and truck) are in Fig. 5,
indicating that our method is able to perceive the objects
even without training on any annotated data. However, we

also observe the false positive predictions around the ground
truth objects. We will resolve this issue in future work.

4.2. Annotation-efficient Semantic Segmentation

The pre-trained 3D network also boosts the performance
when few labeled data are available for training. We directly
compare SLidR [51], the only published method for image-
to-Lidar self-supervised representation distillation. Besides,
we also compared PPKT [44] and PointContrast [55]. In
the following, we introduce SLidR and PPKT and compare
them in detail.
PPKT. PPKT is a cross-modal self-supervised method for
the RGB-D dataset. It performs 2D-to-3D knowledge distil-
lation via pixel-to-point contrastive loss. For a fair compari-
son, we use the same 3D network and training protocol but
replace our semantic and Spatio-Temporal Regularization
with InfoNCE loss. The framework is trained 50 epochs on
4096 randomly selected image-to-point pairs.
SLidR. SLidR is an image-to-Lidar self-supervised method
for autonomous driving data. Compared with PPKT, it in-
troduces image super-pixel into cross-modal self-supervised
learning. For a fair comparison, we replace our loss function
with their superpixel-driven contrastive loss.
Performance. As shown in Table 1, our method signifi-
cantly outperforms the state-of-the-art methods when fine-
tuned on 1% and 100% nuScenes dataset, with the improve-
ment of 8.1% and 1.1%, respectively. Compared with the
random initialization, the improvement is 14.1% and 2.4%,
respectively, indicating the efficiency of our Semantic-driven
Cross-modal Contrastive Learning framework. The qualita-
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Figure 6. Qualitative results of fine-tuning on 1% nuScenes dataset. From the first row to the last row are the input LiDAR scan, ground
truth, prediction of SLidR, and our prediction, respectively. Note that we show the results by error map, where the red point indicates the
wrong prediction. Apparently, our method achieves decent performance.

tive results are shown in Fig. 6. Besides, we also verify the
cross-domain generalization ability of our method. When
pre-training the 3D network on the nuScenes dataset and
fine-tuning on 1% and 100% SemanticKITTI dataset, our
method significantly outperforms other state-of-the-art self-
supervised methods.
Discussions. PPKT and SLidR reveal that contrastive loss
is promising for transferring knowledge from image to point
cloud. Like self-supervised learning, constructing the pos-
itive and negative samples is vital to unsupervised cross-
modal knowledge distillation. However, previous methods
suffer from optimization-conflict issues, i.e., some negative
paired samples are actually positive pairs. For example, the
road occupies a large proportion of the point cloud in a scene
and is supposed to have the same semantics in the semantic
segmentation task. When randomly selecting training sam-
ples, most negatively defined road-road points are actually
positive. When feedforwarding such samples into contrastive
learning, the contrastive loss will push them away in the
embedding space, leading to unsatisfactory representation
learning and hammering the downstream tasks’ performance.
SLidR introduces superpixel-driven contrastive learning to
alleviate such issues. The motivation is that the visual rep-
resentation of the image pixel and the projected points are
consistent intra-superpixel. Although avoiding selecting neg-
ative image-point pairs from the same superpixel, the conflict
still exists inter-superpixel. In our CLIP2Scene, we intro-
duce the free-available dense pixel-text correspondence to

alleviate the optimization conflicts. The text embedding rep-
resents the semantic information and can be used to select
more reasonable training samples for contrastive learning.

Besides training sample selection, the previous method
also ignores the temporal coherence of the multi-sweep point
cloud. That is, for LiDAR points mapping to the same image
pixel, their feature is restricted to be consistent. Besides,
considering the calibration error between the LiDAR scan
and the camera image. We relax the pixel-to-point mapping
to image grid-to-point grid mapping for consistency regu-
larization. To this end, our Spatial-temporal consistency
regularization leads to a more rational point representation.

Last but not least, we find that randomly switching the
supervision signal benefits self-supervised learning. Essen-
tially, different modality networks learn different feature
representations. They can filter different types of errors
introduced by noisy pseudo labels. By this switchable opera-
tion, the error flows can be reduced mutually.

5. Conclusion

We explored how CLIP knowledge benefits 3D scene
understanding in this work, termed CLIP2Scene. To ef-
ficiently transfer CLIP’s image and text features to a 3D
network, we propose a novel Semantic-driven Cross-modal
Contrastive Learning framework including Semantic Regu-
larization and Spatial-Temporal Regularization. For the first
time, our pre-trained 3D network achieves annotation-free



3D semantic segmentation with decent performance. Be-
sides, our method significantly outperforms state-of-the-art
self-supervised methods when fine-tuning with labelled data.
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