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Figure 1. Overview. We propose to learn generalizable object perception and manipulation skills via Generalizable and Actionable Parts,
and present GAPartNet, a large-scale interactive dataset with rich part annotations. We propose a domain generalization method for
cross-category part segmentation and pose estimation. Our GAPart definition boosts cross-category object manipulation and can transfer
to real.

Abstract

For years, researchers have been devoted to general-
izable object perception and manipulation, where cross-
category generalizability is highly desired yet underex-
plored. In this work, we propose to learn such cross-
category skills via Generalizable and Actionable Parts
(GAParts). By identifying and defining 9 GAPart classes
(lids, handles, etc.) in 27 object categories, we construct
a large-scale part-centric interactive dataset, GAPartNet,
where we provide rich, part-level annotations (semantics,
poses) for 8,489 part instances on 1,166 objects. Based on
GAPartNet, we investigate three cross-category tasks: part
segmentation, part pose estimation, and part-based object
manipulation. Given the significant domain gaps between
seen and unseen object categories, we propose a robust 3D

*Equal contribution with the order determined by rolling dice.
†Corresponding author: hewang@pku.edu.cn.

segmentation method from the perspective of domain gen-
eralization by integrating adversarial learning techniques.
Our method outperforms all existing methods by a large
margin, no matter on seen or unseen categories. Further-
more, with part segmentation and pose estimation results,
we leverage the GAPart pose definition to design part-based
manipulation heuristics that can generalize well to unseen
object categories in both the simulator and the real world.
Our dataset, code, and demos are available on our project
page.

1. Introduction

Generalizable object perception and manipulation are at
the core of building intelligent and multi-functional robots.
Recent efforts on generalizing the vision have been devoted
to category-level object perception that deals with perceiv-
ing novel object instances from known object categories,
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including object detectors from RGB images [17, 21, 46],
point clouds [5, 19], and category-level pose estimation
works on rigid [4, 53] and articulated objects [27, 59]. On
the front of generalizable manipulation, complex tasks that
involve interacting with articulated objects have also been
proposed in a category-level fashion, as in the recent chal-
lenge on learning category-level manipulation skills [38].
Additionally, to boost robot perception and manipulation
with indoor objects, researchers have already proposed sev-
eral datasets [37, 57, 61, 66, 68] with part segmentation and
motion annotations, and have devoted work to part segmen-
tation [37, 68] and articulation estimation [27].

However, these works all approach the object perception
and manipulation problems in an intra-category manner,
while humans can well perceive and interact with instances
from unseen object categories based on prior knowledge of
functional parts such as buttons, handles, lids, etc. In fact,
parts from the same classes have fewer variations in their
shapes and the ways that we manipulate them, compared to
objects from the same categories. We thus argue that part
classes are more elementary and fundamental compared to
object categories, and generalizable visual perception and
manipulation tasks should be conducted at part-level.

Then, what defines a part class? Although there is no sin-
gle answer, we propose to identify part classes that are gen-
eralizable in both recognition and manipulation. After care-
ful thoughts and expert designs, we propose the concept of
Generalizable and Actionable Part (GAPart) classes. Parts
from the same GAPart class share similar shapes which al-
low generalizable visual recognition; parts from the same
GAPart class also have aligned actionability and can be in-
teracted with in a similar way, which ensures minimal hu-
man effort when designing interaction guidance to achieve
generalizable and robust manipulation policies.

Along with the GAPart definition, we present GAPart-
Net, a large-scale interactive part-centric dataset where we
gather 1,166 articulated objects from the PartNet-Mobility
dataset [61] and the AKB-48 dataset [32]. We put in great
effort in identifying and annotating semantic labels to 8,489
GAPart instances. Moreover, we systematically align and
annotate the GAPart poses, which we believe serve as the
bridge between visual perception and manipulation. Our
class-level GAPart pose definition highly couples the part
poses with how we want to interact with the parts. We show
that this is highly desirable – once the part poses are known,
we can easily manipulate the parts using simple heuristics.

Based on the proposed dataset, we further explore three
cross-category tasks based on GAParts: part segmentation,
part pose estimation, and part-based object manipulation,
where we aim at recognizing and interacting with the parts
from novel objects in both known categories and, moreover,
unseen object categories. In this work, we propose to use
learning-based methods to deal with perception tasks, after

which, based on the GAPart definition, we devise simple
heuristics to achieve cross-category object manipulation.

However, different object categories may contain differ-
ent kinds of GAParts and provide different contexts for the
parts. Each object category thus forms a unique domain for
perceiving and manipulating GAParts. Therefore, all three
tasks demand domain-generalizable methods that can work
on unseen object categories without seeing them during
training, which is very challenging for existing vision and
robotic algorithms. We thus consult the generalization liter-
ature [12,13,25] and propose to learn domain-invariant rep-
resentation, which is often achieved by domain adversarial
learning with a domain classifier. During training, the clas-
sifier tries to distinguish the domains while the feature ex-
tractor tries to fool the classifier, which encourages domain-
invariant feature learning. However, it is highly non-trivial
to adopt adversarial learning in our domain-invariant fea-
ture learning, due to the following challenges. 1) Handling
huge variations in part contexts across different domains.
The context of a GAPart class can vary significantly across
different object categories. For example, in training data,
round handles usually sit on the top of lids for the Cof-
feeMachine category, whereas for the test category Table,
round handles often stand to the front face of the drawers.
To robustly segment GAParts in objects from unseen cate-
gories, we need the part features to be context-invariant. 2)
Handling huge variations in part sizes. Parts from different
GAPart classes may be in different sizes, e.g., a button is
usually much smaller than a door. Given that the input is a
point cloud, the variations in part sizes will result in huge
variations in the number of points across different GAParts,
which makes feature learning very challenging. 3) Han-
dling the imbalanced part distribution and part-object rela-
tions. Object parts in the real world distribute naturally un-
evenly and a particular part class may appear with different
frequencies throughout various object categories. For ex-
ample, there can be more buttons than doors on a washing
machine while the opposite is true in the case of a storage
furniture. This imbalanced distribution also adds difficulties
to the learning of domain-invariant features.

Accordingly, we integrate several important techniques
from domain adversarial learning. To improve context in-
variance, we propose a part-oriented feature query tech-
nique that mainly focuses on foreground parts and ignores
the background. To handle diverse part sizes, we propose
a multi-resolution technique. Finally, we employ the fo-
cal loss to handle the distribution imbalance. Our method
significantly outperforms previous 3D instance segmenta-
tion methods and achieves 76.5% AP50 on seen object cat-
egories and 37.2% AP50 on unseen categories.

To summarize, our main contributions are as follows:
1. We provide the concept of GAPart and present a large-

scale interactive dataset, GAPartNet, with rich part seman-
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tics and pose annotations that facilitates generalizable part
perception and part-based object manipulation.

2. We propose a first-ever pipeline for domain-
generalizable 3D part segmentation and pose estimation via
learning domain-invariant features, which significantly out-
performs the baselines.

3. We provide a new solution to generalizable object ma-
nipulation by leveraging the concept of GAParts. Thanks
to innate generalizability and actionability, minimal human
effort is needed when designing interaction guidance to
achieve generalizable and robust manipulation policies.

2. Related Work
Part Instance Segmentation from Point Cloud Observa-
tions. Large-scale datasets of 3D shapes are fundamen-
tal to 3D part segmentation works, e.g., ShapeNet (2∼5
parts per object) [3, 66] and PartNet (15 parts per object
on average) [37]. Based on such datasets, much progress
has been made on unified architectures for point cloud
learning [28, 43, 44, 58], specialized supervised segmenta-
tion networks [56, 67], shape abstraction and part discov-
ery [35, 40, 63, 65], etc. However, these works all approach
object perception in an intra-category manner. We instead
tackle 3D part instance segmentation in a cross-category
way, based on our newly proposed GAPartNet dataset.

Domain Generalization. To tackle the out-of-
distribution problems, domain generalization methods
try to learn from multiple source domains to generalize to
the unseen domains, which can be divided into the follow-
ing three categories [55]: 1) data manipulation methods
(e.g., data augmentation [72], data generation [45, 71]); 2)
learning strategy design (e.g., ensemble learning [64, 72],
meta learning [23, 24], automated machine learning [7]);
3) domain-invariant representation learning (e.g., explicit
feature alignment [42, 70], domain adversarial learn-
ing [12, 13, 25, 29, 39]). However, works on domain
generalization mainly focus on 2D tasks (e.g., image
classification), whose techniques are not suitable to be
directly used in our 3D multi-stage part segmentation and
pose estimation tasks. [33, 34] try to discover parts in a
category-agnostic manner, but their task settings are also
different from ours. In our tasks, we need to tackle irreg-
ular point cloud representation and take the multi-stage,
multi-part setting into account.

Category-level Object Pose Estimation. Pose estima-
tion has been studied at instance-level as well as category-
level. Instance-level object pose estimation works [18, 22,
30,41,47,52,62] assume known CAD models and thus have
their limitations. Other works, on the other hand, deal with
3D bounding boxes prediction and 6D pose estimation at
category-level, including single-frame pose estimation such
as NOCS [53], FS-Net [6], CASS [4, 54], and category-

level tracking such as 9-PACK [51], CAPTRA [59]. Wang
et al. [53] innovates Normalized Object Coordinate Space
(NOCS), a unified coordinate space where objects from the
same category are normalized, canonicalized and share an
identical orientation. CASS [4] learns a canonical latent
shape space for certain object categories, while [48] lever-
ages category shape priors and models shape deformations
to handle intra-class shape variations. FS-Net [6] designs
a fast shape-based network that extracts efficient category-
level pose features. [54] uses a cascaded relation network to
relate 2D, 3D, shape priors, and proposes a recurrent recon-
struction network to make iterative improvements.

Generalizable Object Manipulation. On the front of ob-
ject manipulation, Mu et al. proposes [38] a challenge
to learn generalizable manipulation skills for articulated
objects from known categories. Although some previous
methods [14, 15, 36] have certain generalizability, robotic
manipulation in a novel environment still calls for the abil-
ity to handle novel object categories. Although, for sim-
ple rigid objects, there is existing literature on robust and
object-agnostic object grasping [2, 9, 20] and planar push-
ing [26, 69] algorithms, while very few works have been
devoted to interacting with articulated objects that contain
movable parts. Recently, Mo et al. [36] and Wu et al. [60]
tackle this problem by leveraging low-level generalizability.
The most related work to us is Gadre et al. [11] which pro-
poses an interactive perception pipeline learning to touch,
watch, then segment the object into movable parts. How-
ever, this work does not consider the consistent geometry
and actionability patterns behind parts from the same class
and can only deal with simple objects with up to three parts
on the table surfaces, e.g., scissors and eyeglasses.

3. GAPart Definition and GAPartNet Dataset

3.1. GAPart Definition

Different from previous works, we give a rigorous def-
inition to the GAPart classes, which not only are General-
izable to visual recognition but also share similar Action-
ability, corresponding to the G and A in GAPartNet. Our
main purpose of such a definition is to bridge the perception
and manipulation, to allow joint learning of both vision and
interaction. Accordingly, we propose two principles to fol-
low: firstly, geometric similarity within part classes, and
secondly, actionability alignment within part classes.

GAPart Semantics. Based on such principles, we iden-
tify 9 common GAPart classes across 27 object categories:
line fixed handle, round fixed handle, hinge handle, hinge
lid, slider lid, slider button, slider drawer, hinge door, hinge
knob. Note that based on different actionability, handles
are split into fixed handles and hinge handles, while lids are
split into hinge lids and slider lids. We further identify line
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All Bo Bu Ca Co Di Do Ke Ki La Mi Ov Ph Pr Ref Rem Sa St Su Ta Toa Toi Tr Wa Bo-A Bu-A Dr-A Tr-A
Object 1,166 25 31 32 41 41 14 31 20 48 16 23 15 28 37 49 29 324 10 77 19 66 52 17 40 37 22 22

Ln.F.Hl. 922 2 – – 10 28 2 – 40 – 5 29 – – 43 – 1 667 – 60 – – 35 – – – – –
Rd.F.Hl. 151 – – – 8 – 9 – 14 – – – – – – – – 54 – 65 – – 1 – – – – –
Hg.Hl. 78 – 31 – – – – – – – – – – – – – – – 10 – – – – – – 37 – –
Hg.Ld. 260 49 – – 1 – – – – 48 – 1 – – – – – 1 7 – – 55 31 5 40 – – 22
Sd.Ld. 89 – – 1 19 – – – 20 – – – – – – – – – – – – 44 5 – – – – –
Sd.Bn. 5,526 – – 208 140 5 – 2,934 1 – 39 17 227 311 – 1,433 89 – 2 – 24 15 – 81 – – – –
Sd.Dw. 546 1 – – – 1 – – – – – – – 6 – – – 333 – 161 – – 7 – – – 37 –
Hg.Dr. 678 – – – – 41 18 – – – 16 28 – – 60 – 29 433 – 24 – – 15 14 – – – –
Hg.Kb. 239 – – 11 47 2 – – – – 8 77 – 1 – 1 37 – – – 28 – – 27 – – – –

Table 1. GAPartNet Statistics. We show how the GAPart instances distribute across all object categories, where object categories titles
are in the same order as in Fig. 3, e.g., Bo = Box, Bu = Bucket, etc. The first row Object shows the object number for each object category.
The following rows, i.e., line fixed handle, round fixed handle, hinge handle, hinge lid, slider lid, slider button, slider drawer, hinge door,
and hinge knob, show the number of GAPart instances in each object category.
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Figure 2. GAPart Classes. Here we highlight the parts from 9
GAPart classes along with their normalized part coordinate spaces.
On the top, we show the four GAPart classes that have continuous
rotation symmetry along the z axis, denoted with the red-dashed
line and the ∞ remark; the bottom-left shows the two GAPart
classes that have 180◦ mirror symmetry along the z axis; and the
bottom-right shows the rest three asymmetric GAPart classes.

fixed handles and round fixed handles according to their dif-
ference in geometry.

GAPart Poses. Following previous works [27,53], we de-
fine the canonicalized part position and orientation in Nor-
malized Part Coordinate Space (NPCS) for each GAPart
class. We illustrate our pose definition in Fig. 2. Note that
some of the GAPart classes have innate symmetry, which
should be taken care of when dealing with their poses.

Based on the rigorous and manipulation-oriented defini-
tion, simple heuristics can be designed to achieve general-
izable part-based manipulation across different object cate-
gories, once we know the part classes and the part poses.

3.2. GAPartNet Dataset

Following the GAPart definition, we construct a large-
scale part-centric interactive dataset, GAPartNet, with rich,
part-level annotations for both perception and interaction
tasks. Our 3D object shapes come from two existing
datasets, PartNet-Mobility [61] and AKB-48 [32], which
are cleaned and provided with new uniform annotations
based on our GAPart definition. The final GAPartNet has
9 GAPart classes, providing semantic labels and pose an-
notations for 8,489 GAPart instances on 1,166 objects from
27 object categories. On average, each object has 7.3 func-
tional parts. Each GAPart class can be seen on objects from
more than 3 object categories, and each GAPart class is
found in 8.8 object categories on average, which lays the
foundation for our benchmark on generalizable parts.

Tab. 1 and Fig. 3 show the statistics and selected exam-
ples of GAPartNet.

3.3. Data Annotation

We direct systemic works to guarantee cross-category
generalizable part semantics and pose annotations. We fol-
low the steps below to clean and annotate our data: 1) Fix-
ing imperfect meshes and re-merging the meshes into new
parts. The average fixing time per object is 15 minutes,
while the average re-merging time per part is 5 minutes.
Over 100 object instances are fixed and over 1,000 GAPart
instances are newly merged. 2) Annotating cross-category
semantic labels. 3) Aligning and Annotating poses. We
spend more than 200 hours building a whole pipeline as well
as several manually designed rules to align and annotate the
poses of all GAParts.

More dataset visualizations and annotation details can be
found in the appendix.

4. Problem Formulation
Given the GAPart definition and the proposed GAPart-

Net dataset, we investigate the problems of cross-category

4



Box Bucket   Camera  CoffeeMachine  Dishwasher   Door Keyboard   KitchenPot   Laptop  Microwave   Oven    Phone   Printer   Refrigerator

Remote   Safe  StorageFurniture   Suitcase       Table         Toaster    Toilet   TrashCan  WashingMachine Box-A   Bucket-A   Drawer-A   TrashCan-A

Figure 3. GAPartNet Objects. Objects collected from AKB-48 [32] end with ’-A’, while the others are from PartNet-Mobility [61].
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Figure 4. An Overview of Our Domain-generalizable Part Segmentation and Pose Estimation Method. We introduce a part-oriented
domain adversarial training strategy that can tackle multi-resolution features and distribution imbalance for the domain-invariant GAPart
feature extraction. The training strategy tackles the challenges in our tasks and dataset, significantly improving the generalizability of our
method for part segmentation and pose estimation.

generalizable object perception and manipulation.

Perception. The input to our pipeline is a partial col-
ored point cloud observation of the object P ∈ RN×3,
where N denotes the number of points. Assume the ob-
ject contains L GAParts and the i-th part is with a class
label pi ∈ {1, ..., 9}. Then the goal for perception is as
follows: for each individual GAPart, locating its segmenta-
tion masks Ci and recognizing its part pose, i.e., a rotation
Ri ∈ SO(3), a translation ti ∈ R3, and a size si ∈ R3.

Note that the perception tasks are carried out in a cross-
category, domain-generalizable fashion, i.e., the perception
network is trained on objects from a set of seen object cat-
egories {OS

j }j (i.e., seen domains {DS
j }j), and is expected

to generalize to unseen object categories {OU
j }j (i.e., un-

seen domains {DU
j }j).

Manipulation. We need to develop a pose-based inter-
action policy π for generalizable part-based object manip-
ulation. Given a single partial point cloud observation
P ∈ RN×3, the robot needs to manipulate the target part us-
ing the previous understanding for the GAParts, e.g., open

a door on an object from a previous unseen object category.

5. Method

Our proposed pipeline for domain-generalizable 3D part
segmentation and pose estimation is shown in Fig. 4.

5.1. Domain-generalizable 3D Part Segmentation

Architecture Overview. Following the previous works
[19, 50], with the input point cloud P, our 3D part segmen-
tation network leverages a Sparse UNet [16] as the back-
bone to extract point-wise feature F with K channels, fol-
lowed by a Dual Set Grouping module introduced by [19]
to generate M ′ mask proposals C′ = {C ′

1, C
′
2, . . . , C

′
M ′}.

The proposals are then passed through a Scoring module
which predicts confidence scores S, with Si as the score
for the proposal i, followed by Non-Maximum Suppres-
sion (NMS) to output final M segmentation masks C =
{C1, C2, . . . , CM}. Most importantly, to enable domain-
invariant feature extraction for mask proposals and tackle
the aforementioned challenges, we introduce a domain ad-
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versarial training strategy for 3D part segmentation to help
learn domain-invariant features.

Domain-invariant GAPart Feature Learning. Inspired
by [12, 13, 25] , we introduce a domain classifier D and
a Gradient Reverse Layer (GRL) at the training time for
domain adversarial training, as shown in Fig. 4. Specifi-
cally, the classifier D takes the features as input and tries
to distinguish the different domains, while the GRL passes
the negative gradients of the classification back to the fea-
ture extractor, which encourages domain-invariant feature
extraction during this adversarial training procedure.

Furthermore, to address the challenges mentioned in
Sec. 4, we consider 1) how to process the feature from
the part segmentation pipeline to make the GAPart feature
domain-invariant, 2) where to place the domain classifier to
better tackle parts with different sizes, and 3) how to do
domain adversarial training to deal with the distribution-
imbalance. The designed techniques are as follows.

1) Part-oriented Feature Query (Q). To better handle the
huge variations in part contexts across different domains,
the part features need to be context-invariant and contain
less domain-relative information. An intuitive design is to
make the domain classifier D part-oriented (i.e., taking fore-
ground part features as input and domain labels as output),
which can help the feature extractor focus on the foreground
(i.e., the GAParts) rather than the background (i.e., the rest
of the object bodies). Specifically, we query the features
of mask proposals {FC′

i
}i with scores above the threshold

sthre from the feature F and pass them to the domain clas-
sifier. The domain discrimination loss is

LQ−adv(F) =
1

M ′
s

M ′∑
i=1

1{Si>sthre}L
adv
cls (D(FC′

i
), di),

where M ′
s indicates the number of proposals with scores

above the threshold, di is the domain label (i.e., object cat-
egory) of the mask proposal C ′

i, and Ladv
cls (·, ·) denotes the

domain classification loss.
2) Multi-resolution (R). Part instances come in signifi-

cantly different sizes, e.g., a door can be an order of mag-
nitude larger than a handle. We thus propose to extract the
mask proposal features from different UNet layers in dif-
ferent resolutions, so that the size variances of GAParts can
be taken care of. In the implementation, we choose three
hidden layers from the UNet decoder and query proposal
features from the three features {Fl}l respectively.

Combined with multi-resolution, LQ−adv can be re-
written as follows:

LQR−adv({Fl}l) =
3∑

l=1

wlLQ−adv(F
l),

where LQ−adv(F
l) indicates the domain discrimination loss

for features queried from the lth layer and wl is the corre-
sponding weight for each layer.

Note that these multi-resolution features only serve
domain-adversarial learning for parts with different sizes
and are not involved in the grouping for mask proposals.

3) Distribution-balancing (B). As is often the case
in the real world, part instances on different objects can
be extremely imbalanced. We thus introduce a part-level
domain discrimination focal loss inspired by [31] for ad-
versarial training to tackle this problem. Combining with
distribution-balancing, LQ−adv can be modified as follows:

LQB−adv(F) =
1

M ′
s

M ′∑
i=1

1{Si>sthre}w
pi

di
Ladv

cls (D(FC′
i
), di),

wpi

di
= −αpi

di
(1− accpi

di
)γ ,

where for the specific part class pi and the domain di of a
proposal C ′

i, the loss weight wdi
pi

is determined by a hyper-
parameter αpi

di
, negatively correlated with the domain dis-

tribution, accpi

di
, the mean accuracy of the classification for

the domain di in the part class pi, and γ, a hyper-parameter.
With the three techniques introduced, our proposed do-

main adversarial training method is part-oriented and can
tackle multi-resolution features as well as distribution im-
balance, which better encourages domain-invariant GAPart
feature learning. The final domain adversarial loss is

LQRB−adv({Fl}l) =
3∑

l=1

wlLQB−adv(F
l),

and the total loss for domain-generalizable part segmenta-
tion is as follows:

LDG
seg = Lseg + LQRB−adv,

where Lseg is the part segmentation loss without domain ad-
versarial training.

5.2. Part Pose Estimation

NPCS Map Prediction and Pose Fitting. For each pre-
dicted part segmentation mask Ci, we query its mask fea-
ture FCi from the feature F. Then the NPCS-Net is
used for point-wise NPCS coordinates regression. Apply-
ing RANSAC [10] for outlier removal and Umeyama algo-
rithm [49], we estimate the 7-dimensional rigid transforma-
tion and obtain the pose of the predicted part. Based on the
domain-invariant feature, thanks to our domain adversarial
training, the prediction of NPCS values in our pipeline can
be independent of the context, color, etc. of the part. This
can significantly improve the generalizability of our part
pose estimation method.
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Symmetry-aware Pose Estimation and Joint Prediction.
To tackle the symmetries naturally existing in some GAPart
classes, we design a symmetry-aware NPCS regression loss
that can tolerate different symmetry patterns for different
part classes. We then follow our GAPart pose definition to
simplify the joint prediction procedure. For each GAPart
class, the part pose definition contains a wealth of informa-
tion, including the joint position and direction, where we
can directly get the joint position and direction instead of
relying on an additional network for estimation like [27].

5.3. Interaction Policy

Given part segmentation and pose estimation, based on
the proposed GAPart pose definition where actionability
information is included, we design part-pose-based, effec-
tive interaction policies for part-based object manipulation,
which provide the community with a novel approach to
cross-category robotic manipulation and interaction tasks.

More design and implementation details of our method
can be found in the appendix.

6. Experiments

6.1. Data Preparation

With our dataset described in Sec. 3, we render RGB-D
images of objects with annotations using the SAPIEN en-
vironment [61] and obtain point cloud observations from
back-projection. To study the cross-category generalizabil-
ity of our method, we split the 27 object categories into
17 seen and 10 unseen categories, ensuring that all GAPart
classes exist in both seen and unseen object categories. We
train the network on seen categories and evaluate its GAPart
understanding on unseen categories.

6.2. Cross-category Part Segmentation

Evaluation Metrics. Following the previous 3D semantic
instance segmentation benchmarks in ScanNetV2 [8] and
S3DIS [1], we use the widely-adopted metric average pre-
cision to evaluate the performance of part segmentation.
Specifically, AP50, the average precision with Intersection
over Union (IoU) threshold 50%, is used to evaluate the per-
formance on each part class and the overall performance.
As a complementary, we also use AP, the average precision
averages over IoU thresholds from 50% to 95% with a step
of 5%, to evaluate the overall performance.

Main Results. Tab. 2 shows the quantitative comparisons
between our method and previous state-of-the-art meth-
ods of 3D semantic instance segmentation (i.e., PointGroup
[19], SoftGroup [50]). We also set up a baseline modified
from AutoGPart [33], whose task is different from ours thus
we directly combine their methods with the original Point-
Group [19] pipeline for comparison.

Seen Object Categories

Unseen Object Categories

Figure 5. Qualitative Results of Perception. Left two figures
show the results of cross-category part segmentation and pose es-
timation on seen and unseen categories, while the right shows fail-
ure cases. Here we only show the revolute joint estimation results.

In both seen and unseen object categories, our method
shows significant improvement compared to the others.
For AP50, our method achieves 76.5% in seen categories,
which beats the second-runner by absolutely 7.7% and rel-
atively 11.2%. In unseen categories, our method achieves
37.2%, absolutely 6.7% and relatively 22.0% better than the
second-runner, which shows significant relative improve-
ment in unseen categories. It shows that our method could
extract better domain-invariant features for parts and thus
have great generalizability across object categories.

Ablation Studies. We conduct sufficient comparisons to
demonstrate that our techniques contribute significantly to
the generalizability across object categories, as shown in
Table 3. Comparing the top two rows, we show that
the domain adversarial training with the object global fea-
tures as input helps the generalization to unseen categories,
but somewhat at the expense of performance in seen cat-
egories. With our part-oriented feature query technique
(rows 2,3), the performance improves no matter on seen or
unseen categories. The multi-resolution technique also con-
tributes to the performance in the two areas (rows 3,4). The
distribution-balancing technique (rows 4,5) takes the per-
formance of our method a step further and achieves strong
precision and generalizability.

6.3. Cross-Category Part Pose Estimation

Evaluation Metrics. We use the following metrics to
evaluate the performance of part pose estimation: Re (◦),
average rotation error; Te (cm), average translation error;
Se (cm), average scale error; θe (◦) average rotation error
of part interaction axis; de(cm) average translation error of
part interaction axis; 3D mIoU (%), the average 3D IoU be-
tween ground-truths and predicted bounding boxes; 5◦5cm
accuracy (%), the percentage of pose predictions with ro-
tation error < 5◦ and translation error < 5cm; 10◦10cm
accuracy (%), the percentage of pose predictions with rota-
tion error < 10◦ and translation error < 10cm. We evaluate
part pose only when the part is detected.
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Ln.F.Hl. Rd.F.Hl. Hg.Hl. Hg.Ld. Sd.Ld. Sd.Bn Sd.Dw. Hg.Dr. Hg.Kb. Avg.AP Avg.AP50

Seen (%)

PG [19] 86.1 23.0 84.6 80.01 88.3 49.3 62.6 92.8 34.6 57.3 66.8
SG [50] 57.8 93.6 81.2 76.0 89.3 25.2 50.8 93.9 51.5 58.5 68.8

AGP [33] 86.8 20.3 87.7 79.7 89.4 62.3 61.6 92.5 16.7 57.2 66.3
Ours 89.2 54.9 90.4 84.8 89.8 66.7 67.2 94.7 52.9 67.6 76.5

Unseen (%)

PG [19] 32.44 9.8 2.1 26.8 0.0 42.6 57.0 63.9 1.7 21.9 26.3
SG [50] 25.8 5.0 0.4 33.9 0.6 51.5 51.2 69.0 12.1 22.0 27.7

AGP [33] 45.6 4.8 3.1 34.3 0.0 47.8 64.1 63.1 11.5 25.7 30.5
Ours 45.6 40.0 3.1 40.2 5.0 49.1 64.2 69.1 23.4 32.0 37.2

Table 2. Results of Part Segmentation on Seen Object Categories and Unseen Object Categories in terms of Per-part-class AP50
(%), Average AP50 (%), and Average AP (%). Ln.=Line. F.=Fixed. Rd.=Round. Hl.=Handle. Ld.=Lid. Bn.=Button. Dw.=Drawer.
Dr.=Door. Kb.=Knob. PG=PointGroup [19]. SG=SoftGroup [50]. AGP=baseline modified from AutoGPart [33].

Seen (%) Unseen (%)
use
adv

use
Q-adv

use
R-adv

use
B-adv

Avg.
AP

Avg.
AP50

Avg.
AP

Avg.
AP50

% 61.1 71.1 22.2 28.1
! 61.0 70.6 23.2 29.8
! ! 62.8 71.6 27.1 32.3
! ! ! 64.9 73.7 29.6 35.0
! ! ! ! 67.6 76.5 32.0 37.2

Table 3. Ablation Studies for Domain-generalizable Part Seg-
mentation. The left four columns stand for using adversarial
learning, part-oriented feature query technique, multi-resolution
technique, distribution-balancing technique, respectively.

Re ↓ Te↓ Se↓ θe↓ de↓ mIoU ↑ A5 ↑ A10 ↑

Seen
PG [19] 14.3 0.034 0.039 7.947 0.020 49.4 24.4 47.0

AGP [33] 14.4 0.036 0.039 7.955 0.021 48.7 26.8 49.1
Ours 9.9 0.024 0.035 7.4 0.014 51.2 28.3 53.1

Unseen
PG [19] 18.2 0.056 0.073 12.0 0.031 36.2 19.2 42.9

AGP [33] 18.2 0.57 0.076 11.9 0.029 36.3 20.8 46.5
Ours 14.8 0.047 0.067 11.3 0.024 40.6 23.4 51.6

Table 4. Results of Part Pose Estimation on Seen and Unseen
Object Categories in terms of Re (◦), Te (cm), Se (cm), θe

(◦), de (cm), mIoU=3D mIoU (%), A5=5◦5cm accuracy (%),
A10=10◦10cm accuracy (%). PG=baseline modified from Point-
Group [19]. AGP=baseline modified from AutoGPart [33].

Main Results. Tab. 4 shows the results of our method and
the baselines on part pose estimation. We modify Point-
Group [19] and AutoGPart [33] as baselines. Our method
outperforms the baselines on most of the metrics in seen
categories, and on all of the metrics in unseen categories,
which shows the value of our domain-invariant feature ex-
traction. With our domain adversarial training strategy and
the three techniques introduced, the performance of part
pose estimation improves a lot, especially in unseen cate-
gories. Qualitative results are shown in Fig. 5.

6.4. Cross-category Part-based Manipulation

We showcase the usefulness of the concept of GAPart by
performing cross-category, part-based object manipulation
on four basic tasks. We use SAPIEN [61] environment for

Figure 6. Part-based Object Manipulation. Left (a): In the sim-
ulator. Right (b): In the real world. For each subfigure in (b), the
perception result is shown in the left box, while the target part is
shown in the right box.

simulation and set up four tasks based on SAPIEN Manipu-
lation Skill Benchmark [38], i.e., opening drawers, opening
doors, using handles, pressing buttons.

Task Setting. These four tasks exemplify robot manipula-
tion under the motion constraint of a prismatic or a revolute
joint, where a gripper is used on seen and unseen categories.
The success of object manipulation is defined as opening
up the target part for 90% of the motion range within 1,000
time-steps. and coming to a stable stop at the end.

Heuristics Design and Experiments in the Simulator.
We first do cross-category part segmentation and pose es-
timation using our perception method. Based on the pre-
dictions of the part poses, we move the robot arm toward
the target part, turn the gripper in the direction suitable for
grabbing, and then close the gripper. Finally, we move the
gripper along the proposed trajectories toward the target po-
sition, following our GAPart pose definition. The results
show that our perception model and manipulation heuristics
can work well, achieve good performance on these tasks,
and generalize to objects from unseen categories. Exemplar
results are shown in Fig. 6 (a).

Real-world Experiments. Although trained on synthetic
data, our method can be used in the real world. Experi-
ments show that our method can successfully predict part
segmentation and poses on real objects. We further show
that cross-category part-based object manipulation can be
successfully performed by robot arms using our method, as
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shown in Fig. 6 (b).
More experiment details, quantitative and qualitative re-

sults can be found in the appendix.

7. Conclusion

In this work, we reason that learning generalizable and
actionable parts is the key to an intelligent agent capable
of cross-category object perception and manipulation. We
introduce the concept of GAPart and present the GAPart-
Net dataset by annotating cross-category part semantics and
poses. We explore three cross-category tasks based on
GAParts: part segmentation, part pose estimation, and part-
based object manipulation. Our proposed approach, adopt-
ing a domain generalization perspective, outperforms pre-
vious works in segmentation and pose estimation. Further-
more, we design part-pose-based interaction policies that
enable effective and generalizable object manipulation in
both the simulator and the real world, thanks to our GAPart
definition and our domain-generalizable perception model.

Limitations. The cross-category tasks are challenging,
and there is still room for improvement in generalizabil-
ity. Our heuristic method for object manipulation relies
on precise part pose predictions, which is an area for fu-
ture research to achieve more robust manipulation strate-
gies. More discussions can be found in the appendix.
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A. Dataset and Data Annotation

A.1. Data Annotation

To construct a large-scale part-centric interactive dataset,
great effort is needed to clean up and annotate existing ob-
ject shapes. We first identify the issues with the existing
database, and then we develop a systemic pipeline for an-
notating the large-scale dataset.

Data sources. GAPartNet dataset is constructed based
on two existing datasets, PartNet-Mobility [61] and AKB-
48 [32]. Focusing on the GAParts we define, we select 23
object categories from PartNet-Mobility and 4 object cat-
egories from AKB-48. Most of the 3D object shapes in
GAPartNet are from PartNet-Mobility. Since the texture of
shapes in PartNet-Mobility is all synthetic, to mitigate the
sim-to-real gap, we further leverage the shapes from AKB-
48 whose texture is scanned from the real world.

Note that both PartNet-Mobility and AKB-48 have the
object categories Box, Bucket, TrashCan. Although they use
the same category names, their shapes can be very different.
A TrashCan from PartNet-Mobility and one from AKB-48
can have significant differences in geometry, the same as
Box and Bucket. So we do not merge them together into
one object category but keep their original categories.

Issues with Existing Database. The original PartNet-
Mobility [61] and AKB-48 [32] lack of directly usable in-
formation we need for our new annotations. First, they do
not provide directly usable consistent semantic annotations
to similar parts across object categories. For example, some
handles on Door are labeled as door, while some doors on
StorageFurniture are labeled as frame. Secondly, their orig-
inal annotations are not as fine-grained as we need. Specif-
ically, fixed handles, i.e. line fixed handles and round fixed
handles, are not annotated as individual parts, since they are
attached to either base bodies or other movable parts. Their
meshes are merged with others which leaves rare semantic
cues to re-separate them. Finally, there are a lot of meshes
of parts that we care about are imperfect, which seriously
limits either the quality of our pose annotations or the qual-
ity of rendered images.

Data Annotation Effort. To address these issues, we
first manually go over all objects to re-separate the meshes
of fixed handles from the original 3D object shapes. We
also modify the kinematic chains to re-merge these meshes
into new links and add corresponding fixed joints, which
provides more consistent annotations and is beneficial for
following robotic tasks. In this step, more than 1,000 fixed
handles are re-separated and re-merged. Secondly, we go
over all 1,166 objects in GAPartNet and clean all original
semantic annotations to align with our GAPart class defini-
tion. Thirdly, we manually use MeshLab and some heuris-
tics to modify imperfect meshes, not only cutting the re-
dundant meshes off but also fixing the one-sided meshes to

facilitate the annotating and rendering. In this step, more
than 100 object instances are modified.

Finally, with the 1,166 3D object shapes with new se-
mantic annotations and modified meshes, we use a lot of
heuristics to fit the oriented tight bounding boxes of all
8,489 GAParts, corresponding to their canonical orienta-
tions, and add our pose annotations. With our effort,
GAPartNet is capable of detection, segmentation, pose es-
timation, and manipulation on cross-category generalizable
and actionable parts.

A.2. Dataset Rendering

We use the SAPIEN 2.0 environment [61] to render a
large-scale dataset from our GAPartNet objects, consisting
of partial point clouds, part semantic segmentation masks,
part instance segmentation masks, NPCS maps, and part
pose annotations, which covers all the data needed for the
proposed part segmentation, part pose estimation and part-
based object manipulation tasks.

Environment Settings. We turn on the ray-tracing mode
of SAPIEN to get more sense of reality. During rendering,
we randomize the joints’ poses of the articulated objects and
randomly pick a camera position within a reasonable per-
spective. Specifically, we manually set the range of camera
position for each object category to get desirable views of
each object, making sure we do not look at the back of a
StorageFurniture, or from beneath an Oven, neither from
too far nor too close. In the meantime, we randomly dim
the ambient light within [10%, 90%] and randomly rotate
the camera within ±5◦.

The output image resolution is set to 800×800. For each
object, we render 32 RGB images. Along with each RGB
image, we also obtain the segmentation masks and the depth
image using built-in features of the SAPIEN environment.
Additionally, we compute NPCS maps and oriented tight
bounding boxes as part pose annotations for all GAParts.

Point Cloud Sampling. Using camera intrinsics, 2D
RGB images, and depth images, we do back-projection to
obtain dense, partial point clouds. We sample 20,000 points
for each dense point cloud using Farthest-Point-Sampling
(FPS). While sampling the point clouds, we also generate
corresponding ground truth of semantic segmentation, in-
stance segmentation, and NPCS maps. These 20,000-point
point clouds and their annotations are computed offline for
speeding up the following 3D tasks.

B. More Details on Part Segmentation and
Part Pose Estimation

B.1. Details on Network Architecture

Architecture. The vision network has a similar archi-
tecture as PointGroup [19]. Please refer to the original
PointGroup paper for details. In our work, we set the clus-
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ter radius to 0.03 and the cluster point number threshold
to 5 to get good segmentation results in the GAPartNet
dataset. The input point cloud P is first voxelized into a
100 × 100 × 100 voxel grid. The backbone UNet con-
sists of an encoder and a decoder, both with a depth of 7
(with channels of [16, 32, 48, 64, 80, 96, 112]), and outputs
a point-wise feature F with K channels, where K = 16.
After grouping, each mask proposal C ′

i is normalized and
voxelized again into a 50 × 50 × 50 voxel grid and passed
through the Scoring module, which consists of a 2-depth
UNet (with channels of [16, 32]) for point-wise feature ex-
traction, an ROI Pooling layer for foreground feature merg-
ing, and a linear layer for confidence score Si prediction.
During inference, points with binary classification scores
below 0.4 are filtered out as background, and proposals with
fewer than 5 points or a score lower than 0.09 are discarded.
Finally, Non-Maximum Suppression (NMS) with an IoU
(Intersection over Union) threshold of 0.3 is applied to get
the final segmentation masks C.

For domain adversarial learning, we introduce a Gradi-
ent Reverse Layer (GRL) with α = 0.3 for the negative
gradients and three domain discriminators with similar ar-
chitectures as the Scoring module mentioned above for do-
main classification. We place the three discriminators at the
2-nd, 4-th, and 6-th decoder layers of the backbone UNet,
so the three discriminators can take different features from
the three layers of the backbone for domain classification.
Each discriminator takes the queried points and the corre-
sponding features as input and predicts the domain labels.
The domain discriminators are only used during the training
procedure, and the proportion of classification is set to 0.05
in our implementation.

For each segmentation mask Ci, the point-wise feature
FCi

queried from F is passed through the NPCS-Net,
consisting of a 2-depth UNet (with channels of [16, 32]) and
three Multilayer Perceptrons (3-MLP) for poise-wise NPCS
prediction. Note that in practice, we use 9 different groups
of 3-MLP to predict NPCS coordinates in 9 channels, and
we only supervise the channel corresponding to the ground
truth semantic label.

B.2. Details on Supervision

Symmetry-aware Part Pose Estimation. Since each
part class in GAPart has different symmetry patterns, they
should be handled case by case. We design the symmetry-
aware NPCS loss as follows:

Type 1 (i.e., line fixed handle, hinge handle): we tolerate
the 180◦ symmetry along the z axis for this symmetry type.

Type 2 (i.e., hinge door, hinge lid): we tolerate the 180◦

symmetry along the y axis for this symmetry type.
Type 3 (i.e., slider button, slider lid, round fixed handle):

we tolerate the rotation along the z axis and flipping along
the x-y plane for this symmetry type. In our implementa-

tion, we split the continuous rotation angles into 12 discrete
angles for supervision.

Type 4 (i.e., hinge knob): we tolerate the rotation along
the z axis for this symmetry type. In our implementation,
we split the continuous rotation angles into 12 discrete an-
gles for supervision.

Type 5 (No symmetry, i.e., slider drawer) : we do not
tolerate any symmetry for this symmetry type.

The design of NPCS loss LNPCS is similar to [53]. We
use soft-L1 loss and for each tolerated symmetry pattern,
we supervise the minimal loss in the set. For more imple-
mentation details, please refer to [53].

Loss Function. The whole training procedure of the net-
work can be divided into four stages.

For the first stage (0-5 epochs), we only supervise the
semantic prediction and the offset prediction branches with
the same loss functions Lsem and Loff as PointGroup [19].
Please refer to [19] for more details.

For the second stage (5-10 epochs), we add the score loss
Lsco for the proposals’ IoU prediction, following the design
of [19].

For the third stage (10-15 epochs), we add the symmetry-
aware NPCS loss LNPCS for the NPCS prediction, as intro-
duced above.

For the fourth stage (after 15 epochs), we introduce our
domain adversarial learning strategy after the part segmen-
tation network can output good proposals and correspond-
ing proposal scores, similar to [13]. The total loss in this
stage can be formulated as

L = LQRB-adv + Lsem + Loff + Lsco + LNPCS,

where LQRB-adv denotes the domain adversarial loss.

B.3. Details on Pose Fitting and Joint Prediction

Pose Fitting. Given a predicted 3D part mask with
its NPCS map, we use RANSAC [10] for outlier removal
and Umeyama algorithm [49] to estimate the 7-dimensional
rigid transformation.

Joint Parameter Prediction. We simplify the joint pa-
rameter prediction process thanks to the unified definition
of our GAParts. After estimating the bounding box for each
part, we can leverage the definition of the GAPart to di-
rectly calculate the joint parameters. For example, given
the bounding box of a slider button, we can directly query
its prismatic joint parameter, which is along the z axis in the
part canonical space.

B.4. Training Procedure

Our model is trained in an end-to-end manner with max-
imum training epochs of 200. We use the Adam optimizer
with a batch size of 32 and a learning rate of 0.001. The
whole training procedure takes around 1.5 days on a single
NVIDIA GeForce RTX 2080 Ti GPU. Note that the domain
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adversarial training is very unstable, we thus use five seeds
to train it and select the best one. What’s more, to boost per-
formance, we progressively use the multi-resolution train-
ing strategy, which improves performance.

B.5. Seen/Unseen Object Categories Splitting

17 Seen Categories. Box, Bucket, Camera, CoffeeMa-
chine, Dishwasher, Keyboard, Microwave, Printer, Remote,
StorageFurniture, Toaster, Toilet, WashingMachine, Bucket
(AKB-48), Box (AKB-48), Drawer (AKB-48), Trashcan
(AKB-48).

10 Unseen Categories. Door, KitchenPot, Laptop,
Oven, Phone, Refrigerator, Safe, Suitcase, Table, TrashCan.

B.6. Baseline Experiments

PointGroup [19]. The PointGroup baseline is modi-
fied from [19]. We add our NPCS prediction branch to
the vanilla PointGroup. The final loss can be formulated
as LPointGroup = Lseg + LNPCS, where LNPCS is the same as
our method.

AutoGPart [33]. Following AutoGPart [33], we in-
troduce a similar intermediate supervision for generaliz-
able part segmentation. We build a parametric supervision
model M(·|θ) to find a proper intermediate part segmen-
tation supervision, which can be learned through a “pro-
pose, evaluate, update” strategy. We use each object cate-
gory as each “sub-domain” in AutoGPart and use the same
hyper-parameters for the intermediate auxiliary loss. We
still add our NPCS prediction branch to the network for
part pose estimation. The final loss can be formulated as
LAGP = Lseg + Lintermediate + LNPCS. For more details
about the intermediate auxiliary loss and the training strat-
egy, please refer to [33].

C. More Details on Part-based Object Manip-
ulation

C.1. Interaction Policy

(1) Round Fixed Handle: For a round fixed handle, we
use the gripper to approach the handle from the positive di-
rection of the z axis, open the gripper to a width that ex-
ceeds the side length of the bounding box, and then close
the gripper to complete the grasping.

(2) Line Fixed Handle: The interaction policy for a line
fixed handle is similar to a round fixed handle. Note that we
want the opening direction of our gripper and the line fixed
handle to be perpendicular, so we turn the opening direction
parallel to the y axis of the predicted bounding box.

(3) Hinge Handle: The interaction policy for a hinge han-
dle is similar to a line fixed handle. After approaching and
grasping the hinge handle, we can rotate it along the pre-
dicted axis of the revolute joint.

(4) Slider Button: For a slider button, we close the grip-
per, approach the button from the positive direction of the z
axis, and then press the button.

(5) Hinge Knob: For a hinge knob, we clamp the knob
like a round fixed handle and rotate the end-effector to com-
plete the manipulation.

(6) Slider Drawer: A gripper approaches an open drawer
along the z axis to fetch something in the drawer, and ap-
proaches a drawer against the x axis to open it. More often
than not, we expect to grab a handle hopefully located on
the front face of a drawer.

(7) Hinge Door: For a hinge door with a handle on the
front face, we try to grab the handle to open the door. Af-
ter grabbing the handle, the gripper rotates around the pre-
dicted shaft of the door to complete the opening or closing.
For a door without any handles, if the door is not closed, we
use the gripper to clamp the outer edge along the y axis of
the bounding box to open the door.

(8) Hinge Lid: for a hinge lid, we use an interaction pol-
icy similar to a hinge door.

(9) Slider Lid: for a slider lid with a handle, we grab the
handle to open the lid. Otherwise, we use the gripper to
clamp the edge of the lid along the x-y plane of the bound-
ing box, and then move up and down along the z axis to
open and close the lid.

C.2. Simulation Experiments

Benchmark Settings. We set up our interaction envi-
ronment using the SAPIEN [61] simulator, modified from
the ManiSkill challenge [38]. We benchmark our method
on 4 tasks, i.e., using a single Franka gripper to open a
drawer, open a door, manipulate a handle, and press a but-
ton. These tasks exemplify robot manipulation under the
motion constraint of a prismatic or a revolute joint. For
evaluation, we randomly pick unseen objects that contain
doors, drawers, handles, and buttons from seen object cat-
egories. Considering the limitation of the single gripper,
we select such objects that, given the ground truth of their
segmentation and pose, can be opened successfully using
the heuristics under our benchmark setting. Furthermore, to
evaluate the cross-category generalizability of our method,
we also randomly pick unseen objects from previously un-
seen object categories. Compared to the ManiSkill Chal-
lenge [38], we limit our observation to a first-frame-only
partial point cloud of the object, with only one point around
the part center indicating which part to interact with. Given
the initial state of the robot, it performs the whole manip-
ulation only based on the observation at the first time step.
The action space of the robot is the motor command of the 6
joints of the robot to determine the pose of the gripper, and
we use position control to open or close grippers. A success
in opening the drawer, opening the door, using the handle,
and pressing the button is defined as manipulating the part
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for 90% of the motion range within 1,000 steps with a stable
stop at the end. For each task, we use 20 objects from seen
categories and 20 from unseen categories to construct our
benchmarks, respectively. Overall, we conduct 4 manipu-
lation tasks in the simulator with 160 objects from 6 seen
object categories and 6 unseen object categories.

Part-pose-based Manipulation Heuristics. We use the
interaction policy based on the heuristics introduced in Ap-
pendix C.1 to open drawers, open doors, manipulate han-
dles, and press buttons. Specifically, when we get the part
pose, we can immediately get the grasping pose with our
policy. Then we use a motion planning library (i.e., mplib,
provided by SAPIEN [61]), to move our gripper to the
grasping pose. Then, with our interaction policy and axis
predicted from our method, we design the end-effector tra-
jectory just along the trajectory of the part moving and in-
terpolate the trajectory with a time step of 1

250 . With the
IK (Inverse Kinematics) algorithm and a PID controller, we
solve the poses of joints and move the end-effector along the
trajectory. All of our implementations are decoupled from
ROS and can be easily implemented in other simulators.

Baselines for Object Manipulation. (1) Where2act
[36] (Oracle input for the first two tasks). We modified the
Where2act interaction pipeline to finish our tasks. We use
a similar pulling motion for the first three tasks and a push-
ing motion for the fourth task. Giving only a point to indi-
cate the part to be interacted with makes it challenging for
Where2act to perform proper actions, especially for open-
ing drawers and doors. We thus provide additional infor-
mation (i.e., the handle center of the target door or drawer
as a special indicator), and we directly select this point as
the point to be interacted with. Then, after motion direction
selection, the action is performed to finish the task. We con-
strain Nw2a = 10 action steps to finish these tasks. (2)Man-
iSkill [38] (Oracle baseline). ManiSkill provides a method
for similar vision-based tasks in a reinforcement learning
setting. To satisfy the settings in this baseline, we further
provide oracle inputs (i.e., per-frame point cloud observa-
tions and ground truth part masks). We also design similar
dense rewards for each task and train the policy with the
same hyper-parameters as ManiSkill. Please refer to [38]
for more details.

C.3. Real-world Experiments

Implementation Details. To evaluate the robustness and
generalizability of our method, we use two robot arms (i.e.,
KINOVA and FRANKA) to manipulate previously unseen
objects with only partial point cloud observations in the real
world. We use similar motion planning and a similar end-
effector trajectory as what we do in the simulator. A partial
point cloud of the target object is acquired from the RGB-D
camera (Okulo P1 ToF sensor in our experiments). To set
up the interaction environment, we place the object and the

robot arm in a proper position for interaction and use ArUco
markers to calibrate the camera sensor. We also provide a
point indicating the part to interact with, just like in the sim-
ulator. During manipulation, we first estimate the bounding
box of the target part and calculate the trajectory using the
heuristics, then use the control API provided by the robot
arm to follow the trajectory and finish the task. Overall, we
conduct 4 manipulation tasks, i.e., opening doors, opening
drawers, lifting lids, and pressing buttons, in the real world
with 11 objects from 2 seen object categories and 3 unseen
categories.

Figure 7. More Qualitative Results for Part-based Object Ma-
nipulation in the Real-world.

D. Visualization of GAPartNet Dataset

Exemplar objects of each GAPart class from seen cate-
gories and unseen categories in the GAPartNet dataset are
shown in Fig. 8.

E. More Results of Part Segmentation and Part
Pose Estimation

We visualize more results of part segmentation and part
pose estimation in Figs. 9 to 11.

F. More Results of Part-based Object Manipu-
lation

For the simulation experiments, the quantitative results
are shown in Tab. 5. Our method significantly outperforms
the baselines on all 4 tasks, showing good generalizability
and proving the effectiveness of our part-pose-based manip-
ulation policy. More qualitative results are provided in the
video 04:30-04:46 on our project page.

For the real-world experiments, more qualitative results
are provided in Fig. 7 and the video 04:47-05:12 on our
project page.

G. More Discussions

G.1. Real Depth Signal and Sim-to-Real Gap

In our experiments, we find that depth quality is crucial
to our perception and downstream manipulation. Actually,
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Success Rate(%) Drawer Door Handle Button
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Where2act [36] 69.9 54.5 44.4 18.2 78.7 49.2 82.2 80.9
ManiSkill [38] 32.9 26.6 27.8 28.3 53.9 42.1 65.5 54.5

Ours 95.0 90.0 70.0 55.0 90.0 85.0 100.0 95.0

Table 5. Results for Cross-category Object Manipulation in SAPIEN Simulator [61].

for our real-world experiments, we have to spray the con-
trast aid paint onto the transparent lid and use a structural
sensor to closely scan the remote and the calculator for ob-
taining good and detailed geometry. For diffuse objects with
okay depth quality, we argue that further leveraging do-
main adaptation would be beneficial; however, for certain
metallic or transparent objects, their depth will be incom-
plete, falling into a completely different problem. We leave
a more fundamental solution to predict/refine geometry for
future works.

G.2. Outlier Part Shapes

In our work, GAParts are defined to be functional parts
with similar geometry and actionability. So how can our
framework tackle the parts with outlier shapes?

Here we take the curvy or irregular handles on doors as
an example. For certain handles, their perception is basi-
cally an out-of-distribution perception problem and can the-
oretically be tackled within our framework; however, we
admit the pose of those outliers may not be so informative,
which may lead to failure in manipulation heuristics. We
argue that the function and actionability of outlier door han-
dles, e.g., revolving to open, is still the same as the regular
ones. So learning a manipulation policy based on action-
able information instead of relying on heuristics would be
promising (see our further discussion in Appendix G.3) and
can potentially handle those outliers.

G.3. Part Information for Manipulation in RL

By definition, the GAPart carries abundant information
about the part’s pose, function, actionability, etc., which is
valuable to facilitate manipulation policy learning in RL.
Here we provide a pilot study and some preliminary results
to showcase the usefulness of GAPart information. We con-
duct experiments on learning cross-category manipulation
policy from state observations for opening door and opening
drawer tasks using PPO under dense rewards, as shown in
Tab. 6. We take proprioceptive information and the bound-
ing box of the door/drawer as state input. The distinction
between w/ and w/o pose is whether an additional state in-
put, ground truth handle pose, is used. The results demon-
strate that oracle GAPart information can significantly ben-
efit policy learning. This would hopefully shed light on
more advanced RL designs in future research, such as in-
corporating part pose estimation into reward functions and

leveraging the part pose to canonicalize visual signals.

Train Test Set
Set S.C. U.C.

Opening w/o Pose 26.1±4.9 22.0±2.3 18.1±2.8
Door w/ Pose 58.3±3.9 37.9±2.5 18.3±2.9

Opening w/o Pose 59.8±4.2 40.9±4.5 18.4±3.3
Drawer w/ Pose 91.2±5.2 87.1±6.7 35.6±3.8

Table 6. Part poses improve RL success rate. S.C.=Unseen
objects in seen categories. U.C.=Unseen objects in unseen cate-
gories. A larger benchmark for RL with # instances: 258/63/77
for doors, 138/57/96 for drawers.
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Cross-Category Generalizable and Actionable Parts in GAPartNet

Seen Object Categories Unseen Object Categories
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Figure 8. Exemplar Objects of Each GAPart Class from Seen Categories and Unseen Categories. We show objects in gray scale,
GAPart segmentation masks in color, and GAPart poses using oriented tight bounding boxes.
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Qualitative Results of Part Segmentation and Part Pose Estimation (Seen Category Unseen Instance)

Part Segmentation Part Pose Estimation

AutoGPartPointGroup Ours OursSoftGroup

Input

Point Cloud GTGT

Figure 9. Part Instance Segmentation and Pose Estimation Results on the Unseen Instances from the Seen Categories. Here we
compare our method on part instance segmentation task with PointGroup [19], SoftGroup [50], and AutoGPart (modified from [33]).
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Qualitative Results of Part Segmentation and Part Pose Estimation (Unseen Category Unseen Instance)

Part Segmentation Part Pose Estimation

AutoGPartPointGroup Ours OursSoftGroup

Input

Point Cloud GTGT

Figure 10. Part Instance Segmentation and Pose Estimation Result on the Unseen Instances from the Unseen Categories. Here we
compare our method on part instance segmentation task with PointGroup [19], SoftGroup [50], and AutoGPart (modified from [33]).
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Qualitative Results of Part Segmentation and Part Pose Estimation (Real World)

Part Segmentation Part Pose EstimationInput Result

Figure 11. Part Instance Segmentation and Pose Estimation Result on the Unseen Objects from the Real World.
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