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Abstract

Vision Transformers (ViTs) have gained significant pop-
ularity in recent years and have proliferated into many ap-
plications. However, their behavior under different learning
paradigms is not well explored. We compare ViTs trained
through different methods of supervision, and show that they
learn a diverse range of behaviors in terms of their atten-
tion, representations, and downstream performance. We
also discover ViT behaviors that are consistent across su-
pervision, including the emergence of Offset Local Atten-
tion Heads. These are self-attention heads that attend to
a token adjacent to the current token with a fixed direc-
tional offset, a phenomenon that to the best of our knowl-
edge has not been highlighted in any prior work. Our anal-
ysis shows that ViTs are highly flexible and learn to pro-
cess local and global information in different orders de-
pending on their training method. We find that contrastive
self-supervised methods learn features that are competitive
with explicitly supervised features, and they can even be su-
perior for part-level tasks. We also find that the representa-
tions of reconstruction-based models show non-trivial simi-
larity to contrastive self-supervised models. Project website
and code are publicly available.

1. Introduction

The field of Computer Vision has advanced massively
in the past decade, largely built on the backbone of Con-
volutional Neural Networks (CNNs). More recently, Vi-
sion Transformers (ViTs) [18] have shown the potential
to overtake CNNs as the go-to visual processing model.
Prior works have asked the question do ViTs see like CNNs
do? [52], but in this work, we ask: how do ViTs learn un-
der different supervision? Past examinations of ViTs have
largely focused on models trained through full supervision.
Instead, we aim to characterize the differences and similar-
ities of ViTs trained through varying training methods, in-
cluding self-supervised methods. Unlike CNNs, the ViT ar-
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Figure 1. ViTs exhibit highly varied behaviors depending on
their method of training. In this work, we compare ViTs through
three domains of analysis representing the How, What, and Why of
ViTs. How do ViTs process information through attention? (Top)
Attention maps averaged over 5000 images show clear differences
in the mid-to-late layers. What do ViTs learn to represent? (Left)
Contrastive self-supervised ViTs have a greater feature similarity
to explicitly supervised ViTs, but also have some similarity with
ViTs trained through masked reconstruction. Why do we care
about using ViTs? (Right) We evaluate ViTs on a variety of global
and local tasks and show that the best model and layer vary greatly.

chitecture imposes few structural biases to guide the learn-
ing of representations. This gives them the flexibility to
learn diverse information processing strategies, and through
our analyses, we uncover a wide array of ViT behaviors.

There are countless ways to analyze ViTs, so to guide
this analysis we choose three major domains which corre-
spond to the How, What, and Why of ViTs. For the How,
we focus on how ViTs process information through Atten-
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tion. Multi-Headed Attention (MHA) layers are arguably
the key element of ViTs, and they most distinguish them
from CNNs. For the What, we examine the Features of
ViTs, as these are typically what practitioners take away
from them. Finally for the Why, we focus on Downstream
Tasks, which are why we care about using ViTs.

Our work unveils that a powerful aspect of the ViT ar-
chitecture is its local-global dual nature, which plays a
role in all three aspects of our analyses. While standard
CNNs are restricted to building representations hierarchi-
cally from local to global, in a ViT each token can attend
to information from any other image region at any time.
And unlike popular CNN modifications like Spatial Pyra-
mids [20, 28, 33, 35] and top-down strategies [6, 47, 56],
ViTs have the freedom to decide when and where global in-
formation should be integrated. In this study, we show that
the order and the relative ratio of local and global attention
in ViTs varies dramatically based on the method of supervi-
sion. We also find clearly different trends in the allocation
of attention in the mid-to-late layers of these networks, as
highlighted in Figure 2. This local-global dual nature is also
embedded into the structure and features of the ViT, which
encodes both local spatial tokens and a non-local classifier
(CLS) token throughout its entire depth. We analyze the
features of ViTs for both the CLS and spatial tokens, and
assess how they align with semantics at the image, object,
part, and pixel-level. We perform this analysis at every layer
of the ViT to show the emergence of different levels of se-
mantic information. Finally, we assess ViTs on a number of
local and global downstream tasks.

Overall, our contributions are: [1] A detailed comparison
of ViTs trained with six different methods, including both
fully supervised and self-supervised training. [2] A cross-
cutting analysis spanning three major domains: Attention,
Features, and Downstream Tasks. [3] Multiple insights into
the inner workings of ViTs to guide future development of
ViT variants, training strategies, and applications.

In addition, we summarize some of our key observations
about ViT behavior: [1] The attention maps of explicitly
supervised ViTs devolve into Sparse Repeating Patterns
in the mid-to-late layers, but the quality of features con-
tinues to improve in these layers (Section 4.1). [2] All
ViTs studied learn to use Offset Local Attention Heads,
suggesting they are fundamentally necessary in ViTs (Sec-
tion 4.2). To the best of our knowledge, no prior work has
brought attention to this phenomenon. [3] ViTs learn to pro-
cess local and global information in different orders depend-
ing on their method of supervision (Section 4.3). [4] All
ViTs studied differentiate salient foreground objects by the
early-to-mid layers (Section 4.4). [5] Reconstruction-based
self-supervised methods can learn semantically meaningful
CLS representations, even when the CLS token is only a
placeholder (Section 5.1, 5.2). [6] Supervised method’s fea-
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Figure 2. Clear differences in attention emerge in the mid-to-
late layers under different supervision methods. These plots
show the attention maps of CLS tokens averaged over 5000 Ima-
geNet images. Rows indicate layers and columns indicate heads.
For brevity, we show only three heads per layer. The bracketed
numbers in the lower half denote the layer and head.

tures are the most semantically rich, but contrastive self-
supervised methods are comparable or even superior in
some cases (Section 5.2, 5.3). [7] For localized tasks,
the best performance often comes from a mid-to-late layer
(Section 6.2). [8] There is no single “best” training method
or layer for all downstream tasks (Section 6.3).

2. Related Work
Previous works have attempted to understand the rep-

resentation quality for both supervised and self-supervised
training for Convolutional Neural Networks (CNNs). [5]
focuses on understanding the concepts learned by individ-
ual neurons while [41] looks at explaining their compo-
sitionality in the case of supervised networks. Simulta-
neously, due to the popularity of self-supervised learning
methods [3, 4, 9–11, 26, 27, 29, 40, 43, 60, 73] multiple
works have analyzed these representations learned from no
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labels. Under this umbrella, [13, 62] tried to understand the
effect of training data in terms of both the number and type
of samples. Some works [66, 67] analyze the alignment,
separability, and uniformity of features while [49] looks
at invariance to augmentations like occlusion, illumination,
and viewpoint change in the learned representation. [64]
looks at the downstream performance of self-supervised
networks on fine-grained tasks. Finally, [21, 23, 32] an-
alyze multiple self-supervised methods and compare their
performance based on representation similarity and down-
stream task performance over multiple datasets along with
comparisons to supervised methods.

Since the proliferation of ViTs, a number of works have
tried to understand and explore the different properties of
the representations learned by these networks. A few works
[45, 55, 75] have analyzed the robustness of ViT features
against corruptions, perturbations, distribution shifts, and
adversarial examples while also analyzing the role of self-
attention for robustness. [34] benchmarks different pre-
trained ViTs as backbones for object detection. [7] provides
a theoretical understanding of how MAEs work while [53]
analyzes attention using convex duality. [61] gives insights
to train and use ViTs more efficiently. [44] gives a deeper
understanding of how Multi-Headed Attention layers work
while comparing and contrasting to how convolution layers
behave in terms of the loss landscapes and low-pass/high-
pass filtering. [52] compares fully supervised ViTs and
ResNets in terms of the local and global information en-
coded at different depths, the role of skip connections, and
the uniformity of representations.

All these prior works either examine the impact of super-
vision on CNNs or compare CNNs and ViTs trained with
full supervision. Some recent and concurrent works have
compared the properties of differently supervised ViTs,
though typically focused on a particular task and only two
methods of supervision at a time. [1] compares the proper-
ties of fully supervised and DINO ViT features in the con-
text of dense feature descriptors, and [2] further compares
these two across several semantic correspondence tasks.
[19] compares fully supervised and CLIP ViTs through
feature visualizations. To the best of our knowledge, we
present what is to date the broadest and the most in-depth
comparison of ViTs with varying supervision, including
six different methods covering three supervision subcate-
gories. Additionally, we propose new attention-based anal-
ysis methods along with evaluations on multiple down-
stream tasks focused on both local and global information.

3. Experimental Design

3.1. A Primer on Vision Transformers

Vision Transformers (ViTs) [18] are adapted from Trans-
formers [65] for the Natural Language Processing domain.

A ViT consists of an array of tokens, each representing
an image patch. In addition, most ViTs include an ex-
tra “classifier” or “CLS” token, which is connected to the
task-specific output layers during training. ViTs use Multi-
Headed Attention (MHA) layers [65], which use a Query-
Key-Value system that allows each token to attend to all
other tokens with a variable intensity attention map. This
is in stark contrast to the limited receptive fields of con-
volutions. These layers are “multi-headed” because they
repeat this process multiple times in parallel, allowing to-
kens to apply multiple attention strategies concurrently. A
ViT architecture includes multiple blocks, each with one
MHA layer followed by a position-wise fully connected
layer. Unlike CNNs, which usually get narrower in deeper
layers, ViTs maintain the same “width” (number of to-
kens) throughout. There are some transformer variants,
like SWiN transformers [37], that introduce a narrowing
width, but for our analyses, we focus on only traditional
ViTs. Specifically, our primary analysis focuses on ViT-
Base models with patch size 16 × 16 (ViT-B/16) and input
size 224 × 224, which results in a 14 × 14 spatial token
array. ViT-Base has 12 blocks and 12 attention heads per
MHA layer. In the Appendix, we provide additional results
on a wider range of ViTs, including variations in architec-
ture size and patch size.

3.2. Methods of Supervision

Although a large number of ViT training methods have
been proposed in a short span of three years, many of the
most popular methods can be loosely categorized into the
following three groups. From each group, we select two
representative models for in-depth analysis. We further dis-
cuss these models’ details in Appendix B.2.

Explicit Supervision. These models are trained with an
explicit objective that is defined either by human annota-
tions or by labels derived from another source, like paired
image captions. For this category, we use a Fully Super-
vised (FS) ViT pretrained on ImageNet21k and fine-tuned
on ImageNet1k [58, 69], as well as a CLIP ViT [51].

Self-Supervision (Contrastive). Self-supervised learn-
ing methods broadly attempt to train a model through a pre-
text task that can be directly derived from the input data.
Among the more popular pretext tasks are contrastive learn-
ing methods [27, 70] which generally present a model with
multiple augmented views of the same image alongside dis-
tractor views of other images. The model must learn to
identify which of the views came from the same image. For
this category, we select DINO [9] and MoCo-v3 [12] which
we denote simply as MoCo for the rest of this paper.

Self-Supervision (Reconstruction). Another popu-
lar category of self-supervision is reconstruction meth-
ods, which train models to predict the missing content
from masked or otherwise corrupted images. We select
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MAE [26] and BEiT [4] for this category. Note that MAE
has a separate decoder which is discarded after pretraining,
while BEiT’s decoder is learned in the same ViT. This has a
strong impact on the behavior of the later layers of BEiT.

3.3. Datasets

We study the ViTs on multiple datasets and down-
stream tasks. Unless otherwise specified, we use ImageNet-
50 [63], a subset of ImageNet [16] which narrows the
dataset down to 50 representative categories. We sample
100 images per class to create a diverse collection of 5000
images. We additionally use PartImageNet [25] to mea-
sure Attention Saliency and part-level feature purity, as well
as COCO [36] to measure object-level feature purity. We
use revisited [50] Oxford [46] (ROxford5k) for evaluating
image retrieval, DAVIS [48] for video segmentation, and
SPair-71k [39] for keypoint correspondence.

3.4. Proposed Analyses

Our analysis is broadly divided into three domains cov-
ering the How, What, and Why of ViTs:
How ViTs process local/global information (Attention).
Do self-attention heads learn to operate in different ways
depending on their method of training? Are there distinctive
modes of attention behavior? How does supervision impact
the processing order of local and global information?
What we take away from ViTs (Features). How do the
final and intermediate representations of a ViT change de-
pending on the method of supervision? Are these trends
similar or different for CLS vs. spatial tokens?
Why we use ViTs (Downstream Tasks). Which forms of
supervision are best suited for different downstream tasks?
Which layers of a ViT produce features that are best for
different local and global tasks?

4. Attention Analysis
Multi-Headed Attention layers are one of the defining

components of the Transformer architecture, and the atten-
tion maps they generate can give key insights into what
is similar or different about ViTs trained through different
methods. We perform an in-depth examination of the self-
attention maps of ViT-B/16 models at every layer. Through
this study, we uncover a diverse range of attention head be-
havioral modalities. Additional visualizations are provided
in Appendix C for a wide range of ViT variants.

4.1. Attention Visualizations

We start by examining the attention maps of the CLS
tokens of each head and layer. To gain a comprehensive un-
derstanding of each head’s behavior, we compute the aver-
age attention maps over 5000 ImageNet images, as shown
in Figure 2. For brevity, we display only three heads per
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Figure 3. Multiple distinct forms of local attention exist. We
visualize spatial token attention using Aligned Aggregated Atten-
tion Maps, and highlight different types of local attention heads,
including Strict, Soft, Axial, and Offset Local Attention Heads. In
row 4 we draw the mid-lines in red as a visual aid.

layer, but complete plots can be found in Appendix C.1,
along with additional visualizations for spatial token atten-
tion and individual input images.

One of the clearest differences can be seen by comparing
the mid-to-final layers. For the contrastive self-supervised
methods, DINO and MoCo, the attention maps tend to
be centered blobs. These heads tend to focus on salient
foreground objects, so these blobs simply reflect object-
centered photography bias. For the reconstruction-based
methods, MAE and BEiT, we see a more diverse group of
attention maps. This is likely because these methods must
reconstruct all image regions, and thus their attention in the
final layers must be more diverse and cover more of the im-
age. Finally, for the explicitly supervised methods, FS and
CLIP, the mid-to-final layers do not focus on salient object
regions and instead focus on Sparse Repeating Patterns
with seemingly no spatial meaning. This occurs for both
the CLS tokens and spatial tokens, and the patterns are re-
peated across both heads and layers. We hypothesize that
these patterns occur because the mid-to-late layers are no
longer focused on parsing the scene structure, and instead
are using their processing power to generate their final de-
cisions for their respective tasks. This phenomenon helps to
explain why the attention maps of the later layers of fully-
supervised ViTs are poorly suited for segmentation tasks, as
was observed by [9].
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4.2. Emergence of Offset Local Attention Heads

It has been shown that ViTs use a mixture of short-range
“local” and long-range “global” attention heads in any given
layer [9, 18]. To gain a better understanding of local atten-
tion, we propose a visualization strategy of Aligned Aggre-
gated Attention Maps (AAAMs). We extract all spatial
token attention maps for 5000 ImageNet images, but before
averaging them, we first realigned them so the current spa-
tial token is always in the center of the array. Additional
samples of AAAMs are provided in Appendix C.1. Study-
ing these aligned views reveals multiple forms of local at-
tention, shown in Figure 3. We find Strict Local Attention
Heads, which attend almost completely to their own posi-
tion, as well as Soft Local Attention Heads, which attend
to a wider neighborhood around them. We also find Axial
Local Attention Heads, which are elongated to attend to the
local neighborhood along one or both spatial axes.

But perhaps the most noteworthy type of head we ob-
serve is the Offset Local Attention Head. These are heads
that attend locally, but to a point or region offset from the
current token in a vertical or horizontal direction. We find
instances of Offset Local Attention Heads in all the models
examined, suggesting they are fundamentally necessary for
ViTs. To the best of our knowledge, ours is the first work
to draw attention to this phenomenon. We believe that such
heads are absolutely necessary because ViTs, unlike CNNs,
do not have an easy built-in way to test if two features occur
next to each other with a particular spatial arrangement. In
a CNN, this type of check is naturally embedded into the
convolution operator. But in a ViT, there is no inductive
bias to induce such a check. For comparison, Soft Local
Attention Heads are able to identify if a certain feature is
near another feature, but they cannot identify their specific
directional arrangement due to their symmetrical attention
pattern. The existence of Offset Local Attention Heads im-
plies one possible path for improvement for the ViT archi-
tecture, possibly by adding a self-attention variant that in-
troduces some implicit directional structure.

4.3. Average Attention Distance

We measure the Average Attention Distance [18, 52] of
each head to assess if particular heads have a short-range
“local” focus or a long-range “global” focus. This metric is
computed by measuring the distance from each spatial to-
ken to all other tokens and taking a weighted average using
the attention map. We normalize the distances so the token
grid is embedded on a 1 × 1 square. [52] observed that for
a well-trained fully-supervised ViT, the early layers have a
mixture of local and global attention heads, while the later
layers have only global attention heads.

Figure 4 (left) shows the Average Attention Distances of
all heads organized by layer and model. Like [52], we see
that most layers use a mixture of local and global attention
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Figure 4. Different methods of supervision lead to different or-
derings and ratios of local and global processing. We show the
Average Attention Distance of all ViT attention heads organized
by layer (left), and the per-layer averages (right).
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Figure 5. Attention IoU with salient content plateaus early for
all ViTs evaluated. We calculate the alignment of ground-truth
segmentation masks with CLS token attention maps (left) and the
average of spatial token attention maps (right).

heads, however, we also find that the ordering of local and
global processing varies greatly with the supervision type.
FS, CLIP, DINO, and MoCo all use exclusively global at-
tention heads in the last layers, but the reconstruction-based
methods MAE and BEiT use a diverse range of heads in
their later layers. Figure 4 (right) compares the combined
Average Attention Distances at the per-layer level. In all
models, we observe a greater number of global attention
heads in the initial layers, followed by decreased distances
around layers 3-6. This result is again in contrast to [52].
The behaviors diverge in the mid-to-late layers. For the
models trained with explicit or contrastive supervision, the
Attention Distance trends upward in the later layers. For the
reconstruction-based methods, the Average Attention Dis-
tances stay lower. These results show that, unlike CNNs,
ViTs can learn a variable local/global processing order de-
pending on the training method used.

4.4. Attention Alignment with Salient Content

One of the most desirable (and exploitable) features of
DINO is that the CLS token attention maps of the last layer
tend to be well-aligned with salient foreground objects [9].
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ViTs for their CLS tokens (left) and spatial tokens (right).

Several methods propose to use DINO attention maps, fea-
ture maps, or a combination of the two to generate segmen-
tations in a self-supervised manner [24, 57, 68]. We conduct
a quantitative analysis of this property at all layers of the
ViTs, both to measure the usefulness of masks and to assess
how early the ViTs differentiate salient object regions. Like
[9], we threshold the CLS token attention masks keeping
60% of the total attention mass. We then compute the Inter-
section over Union (IoU) of said masks with ground-truth
segmentations from PartImageNet [25]. As an alternative
to CLS token attention, we also extract masks using the av-
erage of spatial token attention maps. We present results for
the single “best” head per layer in Figure 5.

We see a clear drop in FS and CLIP mask IoU around
the middle of the network, which directly corresponds to
the emergence of the Sparse Repeating Patterns observed in
Section 4.1. We also find that the IoUs plateau around layers
3-6 for all networks. This demonstrates that ViT models al-
ready have a solid understanding of foreground/background
separation by the middle layers. While the later atten-
tion maps of FS and CLIP are much worse than their self-
supervised counterparts, their early-to-mid layers are more
comparable. We find that MoCo, MAE, and BEiT can all
produce attention maps with IoUs that are comparable with
DINO. In addition, we see that the average of spatial tokens
produces maps that are comparable with the CLS token, and
for CLIP the IoU increases greatly in the final layer.

5. Feature Analysis
In this section, we directly compare ViT features

across models and layers using Centered Kernel Alignment
(CKA) [14, 31]. We also study unsupervised clustering per-
formance to compare global and local semantic information
in the learned representations. We present addition analysis
in Appendix D.4 focused on ViT residual connections.

5.1. Last Block Feature Comparisons

Comparing representations is non-trivial due to vary-
ing feature sizes, large feature representations, and lack of
alignment between them. To overcome this, we use batched
Centered Kernel Alignment (CKA) [14, 31, 42] which can

align features and compute a similarity score. We compare
the last layer outputs for each model.

Figure 6 (left) shows that the CLS token representations
are usually similar for similar supervision strategies (ex-
plicit, contrastive, reconstruction). The contrastive meth-
ods, MoCo and DINO, show very high similarity to each
other, indicating that the CLS token encodes the same type
of information for both these methods. There is also an in-
creased level of similarity between the explicitly supervised
methods, FS and CLIP, and the contrastive methods. In-
terestingly, we see that MAE has as high a similarity with
DINO and MoCo as it does with BEiT. This result is sur-
prising because MAE’s CLS token has no explicit training
objective or loss, and the way these approaches are trained
is very different. This presents evidence that training au-
toencoders with a high masking percentage indeed forces
the model to learn image-level semantics.

In Figure 6 (right), we look at the similarity of the last-
layer spatial token representations. Unlike the CLS token
representations, CLIP and FS have low similarity in their
spatial representations. The self-supervised methods DINO,
MAE, and MoCo show a high level of similarity to each
other, and a lower level of similarity to BEiT. MoCo and
DINO show the highest similarity due to their similar kind
of self-supervision. Once again, MAE has a high similarity
to MoCo and DINO despite their very different supervision.

5.2. Feature Clustering for Global Semantics

Through this analysis, we aim to test how well the
learned CLS and spatial token representations encode
global (image-level) semantic information at every layer.
We extract the CLS token features from the end of each
block for 5000 ImageNet images, and we generate k-Means
cluster assignments with k = 50. We present results for
cluster purity measured with respect to ground truth image
labels, but additional clustering metrics are also presented
in Appendix D.5. For the spatial tokens, we follow the
same process except we average-pool over all positions be-
fore clustering. We also compute a random chance score by
replacing the ViT features with Gaussian random noise.

For CLS token features, shown in Figure 7 (left), clus-
ter purity improves with depth with the exception of the
last layers of BEiT. This is likely because the last lay-
ers of BEiT serve as a task-specific decoder, unlike MAE,
where the decoder is separate and discarded after pretrain-
ing. Unsurprisingly, FS achieves the best cluster purity, fol-
lowed by CLIP. The contrastive methods, DINO and MoCo,
achieve scores close to the explicitly supervised methods.
The reconstruction-based methods, MAE and BEiT, have
the lowest cluster purity, but they are still above random
chance, which again indicates that they do learn to encode
some image-level semantic information in their CLS tokens.
Also, we find that semantic information emerges earlier for
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Figure 7. Clustering purity analysis with image-level labels in
ImageNet-50 for CLS features (left) and average-pooled spatial
token features (right).
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Figure 8. Clustering purity of spatial token features gathered at the
object-level in COCO (left) and part-level in PartImageNet (right).

DINO and MoCo. For the spatial token features, shown in
Figure 7 (right), the cluster purity of FS rises earlier com-
pared with the FS CLS token. This suggests that the FS spa-
tial tokens do more work gathering semantic information in
the early layers. For all other ViTs, the spatial feature purity
is lower in the final layers, but is comparable in layers 1-7.

5.3. Feature Clustering for Local Semantics

We next measure how well the spatial token features dif-
ferentiate salient image content at the object or part-level
using COCO [36] and PartImageNet [25] respectively. We
use a tiling strategy to extract a denser array of features,
which we detail in Appendix B.4. Using ground truth seg-
mentation masks, we extract and average the features of the
tokens overlapping with the masks. This generates a collec-
tion of object-level or part-level features which we cluster
just like Section 5.2. The results for object-level features
are shown in Figure 8 (left). We see that the supervised
methods CLIP and FS have the highest feature purity by far,
followed by the contrastive methods DINO and MoCo. The
purity is much lower for the reconstruction methods MAE
and BEiT. For part-level features, shown in Figure 8 (right),
FS achieves the best purity, but the contrastive methods are
very competitive in this case, surpassing CLIP completely.
In addition, while still being the lowest scoring, MAE and

BEiT are much more competitive at the part-level. Like
the image-level purity, the object and part-level feature pu-
rity tend to improve with depth, but the purity peaks early
around layers 9 to 11. The peak for BEiT is even earlier,
likely due to its integrated decoder.

6. Downstream Task Analysis
Finally, we analyze the performance of these models on

downstream tasks that can be performed directly without
any fine-tuning or training. We follow the evaluation proto-
cols of [9, 30] for k-NN classification, image retrieval, and
video object segmentation. We also perform keypoint corre-
spondence as a more local-focused task. Again we compute
random chance scores by replacing all ViT features with
Gaussian noise.

6.1. Global Tasks

ImageNet Classification. We perform k-Nearest Neigh-
bor (k-NN) image classification on ImageNet [16] with
k = 20. We use the CLS token features from each network
and assign the label for a test sample based on the train-
ing set features and labels. As can be seen from Figure 9
(left), FS performs the best as it has been trained to classify
the same dataset. DINO and MoCo follow a similar trend
as Section 5.2 and better encode semantic information in
the earlier layers. FS and CLIP also follow a similar trend
where their performance shoots up in the last few layers.
It is also interesting to see how MAE and BEiT, for which
the CLS tokens have no explicit objective, do better than
chance, although MAE is considerably better than BEiT.

Image Retrieval. Similar to k-NN classification, we uti-
lize the CLS token representation for retrieval. We evaluate
on ROxford5k [50] for the Medium (M) split and report the
Mean Average Precision (mAP). In Appendix E.2 we also
report results for the Hard (H) split and the RParis6k [50]
dataset, which follow similar trends. The results, shown in
Figure 9 (right), align closely with those for k-NN Clas-
sification on ImageNet. FS performs the best followed by
CLIP and then DINO and MoCo, and finally by MAE and
BEiT with the lowest performance. We hypothesize that the
local/global crops used in DINO training help it perform
competitively in these global tasks.

6.2. Local Tasks

DAVIS Segmentation Propagation. DAVIS Seg-
mentation Propagation is a dense prediction-based video
localized task where frame-by-frame features are used to
propagate the first frame segmentation mask to subsequent
frames. Like Section 5.3, we use a tiling-based dense fea-
ture extraction strategy. Results are shown in Figure 10
(left). The contrastive techniques of DINO and MoCo per-
form the best while FS and CLIP, which are more image-
level approaches, face a drop in performance towards the

7



1 3 5 7 9 110
20
40
60
80

k-NN Classification

To
p-

1 
Ac

cu
ra

cy

Layer
1 3 5 7 9 110.0

0.1
0.2
0.3
0.4

Image Retrieval

m
AP

Layer

Figure 9. Global (image-level) downstream task analysis using
the CLS token. We present k-NN classifier Top-1 Accuracy on
ImageNet (left) and image retrieval mAP on ROxford5k (right).
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later layers. The local reconstruction-based methods, MAE
and BEiT, are also much more competitive in this task.
These results show that for purposes of constructing highly
descriptive local features, contrastive methods like DINO
and MoCo and reconstructive methods like BEiT can sur-
pass features trained with explicit image-level supervision.

Keypoint Correspondence. We choose keypoint corre-
spondence as an additional local-focused downstream task.
Given an image with annotated keypoints, the model must
predict the position of corresponding keypoints in a paired
image with similar content. We use the SPair-71k [39]
dataset and follow the evaluation protocol of [1] and report
the Percentage of Correct Keypoints (PCK) [72]. The re-
sults are summarized in Figure 10 (right). CLIP excels at
this task, closely followed by both FS and DINO. Mean-
while, MoCo, BEiT, and MAE are all very competitive also.
The position of the best layer varies significantly, from 8 for
CLIP and BEiT to 11 for MAE.

6.3. Summary of Downstream Tasks

We summarize the best results for all downstream tasks
in Table 1. We denote the best-performing layers in paren-
thesis. These results show that ViTs with different supervi-
sion methods [1] peak at different layers, and [2] perform
best at different tasks. In image-level tasks like k-NN clas-

Table 1. Best performance for each ViT on each downstream task
with the corresponding best layer in parenthesis.

Model Task Performance (Best Performing Layer)

Dataset ImageNet ROxford5k (M) Davis SPair-71k
Metric Top-1↑ mAP↑ J and F Mean↑ PCK@0.1↑

FS 83.79 (12) 0.45 (12) 0.59 (8) 28.56 (9)
CLIP 75.75 (12) 0.40 (12) 0.60 (9) 30.70 (8)
DINO 76.06 (12) 0.37 (12) 0.60 (12) 28.28 (9)
MoCo 71.59 (12) 0.31 (12) 0.61 (11) 25.85 (9)
MAE 45.19 (12) 0.15 (10) 0.54 (12) 22.74 (11)
BEiT 26.84 (8) 0.14 (8) 0.58 (9) 24.11 (8)
Random 0.10 0.02 0.06 1.32

sification and retrieval, usually, the last layer works the best.
For localized tasks like keypoint correspondence and video
object segmentation, most models’ peak performance hap-
pens a few layers before the last one. This shows that always
picking the last layer output is not optimal.

7. Conclusion

In this work, we have performed an in-depth comparison
of ViTs trained through different methodologies by exam-
ining their attention patterns, learned representations, and
downstream task performance. We review some of the key
findings of our analyses. First, different methods of su-
pervision lead to ViTs that process local and global infor-
mation in different orders. All ViTs have heads that align
well with salient image content, but for the explicitly su-
pervised models, the late-layer attention maps change into
Sparse Repeating Patterns. In addition, all ViTs examined
have learned to use Offset Local Attention Heads in multi-
ple layers. While explicitly supervised ViTs have the most
semantically rich representations at the image level, con-
trastive methods are competitive, and reconstruction-based
methods can also learn meaningful CLS token representa-
tions even though said token is a placeholder and has no
explicit supervision. Finally, there is no single best model
for all the downstream tasks, and the best layer to extract
representations from also varies greatly by task and model,
so one should not simply take the last layer representation.
ViTs have shown a great deal of potential, and we expect
they will become more widely used in the coming years.
We hope these insights can help with the future develop-
ment of losses and architectures for Vision Transformers.
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[57] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin,
Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud
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A. Appendix Overview
In our primary results, we focused on comparing ViT-

B/16 models trained with different supervision methods. In
this Appendix, we present additional results for a wider
range of ViT variants including different architecture sizes
and patch sizes. This analysis includes 20 models in total,
summarized in Table 2. This Appendix is organized follow-
ing the same three major domains: Attention, Features, and
Downstream Tasks. We summarize all the key findings of
our work in Table 3.

B. Additional Experimental Details
B.1. ViT Variants Examined

To provide a uniform platform for comparison, our pri-
mary results focus on ViT-B/16 models trained with six
methods: Full Supervision, CLIP [51], DINO [9], MoCo-
v3 [12], MAE [26], and BEiT [4]. In this Appendix, we
present additional results examining different ViT variants
for the above methods as provided by their original authors.
In total, this expanded ViT collection contains 20 models
including instances of ViT Small, Base, Large, and Huge
as well as patch sizes 8, 14, 16, and 32. We continue to
process all images at a 224 × 224 input resolution, mean-
ing the number of spatial tokens for a given model will vary
by patch size, from 47 spatial tokens for models with patch
size 32 up to 784 spatial tokens for patch size 8. Overall,
the models evaluated are summarized in Table 2. Note that
the MoCo ViT-Small model is a modified variant with 12
heads per layer instead of 6.

B.2. ViT Training Details

In this section, we briefly outline the training protocols
that were used to train each of the ViTs examined in this
work. The CLIP, DINO, MoCo, MAE, and BEiT models
are all official pre-trained models released by their original
authors.

Fully Supervised (FS). For FS, we work with models
from the TIMM repository [69]. The FS models are pre-
trained on ImageNet21k and fine-tuned on ImageNet1k.
The FS models are the only models in this study that are
fine-tuned with ImageNet-1k labels. They are trained fol-
lowing the augmentation protocols of [58]. Specifically, the
ViT-Base and Large models are trained using a combination
of RandAugment [15] and Mixup [74], while the ViT-Small
models use only RandAugment. All FS models also use
weight decay [38].

CLIP. The goal of CLIP (Contrastive Language-Image
Pre-Training) is to train models with open-ended supervi-
sion provided by paired captions. The learning objective is
simply to match images with their corresponding captions.
CLIP models are joint vision and language models, which
include separate encoder networks for the image and text

Table 2. Summary of all ViT Variants used in Appendix analysis.
*MoCo S/16 uses 12 heads per layer instead of 6.

Model Layers Heads Spatial Token
Grid Size

FS S/32 12 6 7x7
FS S/16 12 6 14x14
FS B/32 12 12 7x7
FS B/16 12 12 14x14
FS B/8 12 12 28x28
FS L/16 24 16 14x14
CLIP B/32 12 12 7x7
CLIP B/16 12 12 14x14
CLIP L/14 24 16 16x16
DINO S/16 12 6 14x14
DINO S/8 12 6 28x28
DINO B/16 12 12 14x14
DINO B/8 12 12 28x28
MoCo S/16* 12 12 14x14
MoCo B/16 12 12 14x14
MAE B/16 12 12 14x14
MAE L/16 24 16 14x14
MAE H/14 32 16 16x16
BEiT B/16 12 12 14x14
BEiT L/16 24 16 14x14

inputs. For our analysis, we focus only on the properties
of the visual encoding network. The authors pretrain the
model on 400M image-text pairs with a batch size of 32768
and mixed-precision to accelerate training and reduce mem-
ory usage. The only augmentation used is taking a random
square crop from the resized image. They also use a cosine
learning rate decay schedule.

MoCo. The Momentum Contrast (MoCo) method
trains using contrastive learning with a momentum en-
coder, which is an exponential moving average of previ-
ous versions of the encoder. Under the contrastive objec-
tive, the encoder must generate representations for query
image views that are similar to corresponding representa-
tions of key image views as generated by the momentum
encoder. This strategy was proposed for CNNs and ex-
tended to ViTs. For MoCo v3 [12], the authors pretrain the
model on ImageNet-1k without labels with a batch size of
4096. They follow a cosine learning rate decay. They use
data augmentations like random resized cropping, horizon-
tal flipping, color jittering, grayscale conversion, blurring,
and solarization. They take two 224 × 224 crops for each
image for each iteration.

DINO. The authors of DINO [9] describe their method
as a form of self-distillation with no labels. Their training
strategy is based on MoCo [27] and they also use a momen-
tum encoder, though they instead view their method as a stu-
dent/teacher knowledge distillation framework. They pre-
train the models on ImageNet-1k without labels with batch
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Table 3. A comprehensive summary of the key observations of this work, including both the main paper and appendix results.

Key Observations Analysis Methods Sections Figures & Tables

The attention maps of explicitly supervised ViTs devolve into
Sparse Repeating Attention Patterns in the mid-to-late layers. Average CLS Attention Maps 4.1 Figure 2

All ViTs studied learn to use Offset Local Attention Heads, sug-
gesting they are fundamentally necessary in ViTs. Aligned Aggregated Attention Maps 4.2 Figure 3

ViTs learn to process local and global information in different or-
ders depending on their method of supervision. Average Attention Distance 4.3 Figure 4

All ViTs studied differentiate salient foreground objects by the
early-to-mid layers. Attention Saliency IoU 4.4 Figure 5

Reconstruction-based self-supervised methods can learn semanti-
cally meaningful CLS representations, even when the CLS token is
only a placeholder.

CKA Feature Similarity,
Image Clustering by CLS Features 5.1, 5.2 Figures 6, 7

Supervised method’s features are the most semantically rich, but
contrastive self-supervised methods are comparable or even supe-
rior in some cases.

Image-, Object-, and Part-Level
Feature Clustering 5.2, 5.3 Figures 7, 8

For localized tasks, the best performance often comes from a mid-
to-late layer. Local Downstream Tasks 6.2

Figure 10
Table 1

There is no single “best” training method or layer for all down-
stream tasks. Local & Global Downstream Tasks 6.3

Figures 9, 10
Table 1

The positions of maximal activation in the Sparse Repeating Atten-
tion Patterns vary by input. CLS Attention Maps C.1 Figures 11-13

All models studied learn to use Offset Local Attention Heads, and
some larger models even learn ones with diagonal offsets. Aligned Aggregated Attention Maps C.1 Figure 14

The order of local vs. global information processing in a ViT is
primarily determined by the method of supervision and is largely
unaffected by changes in architecture and patch size.

Average Attention Distance C.2 Figure 15

For the expanded ViT collection, again all models differentiate
salient foreground objects by the early-to-mid layers. Attention Saliency IoU C.3 Figure 16

Explicitly supervised ViTs with patch size 32 are less impacted by
Sparse Repeating Attention Patterns, suggesting they may be an
indication of overfitting.

Averaged CLS Attention Maps C.1, C.3 Figure 17

The last layer spatial representations of self-supervised methods are
similar across changes in architecture size and patch size, but this
is not consistently true for explicitly supervised methods.

CKA Feature Similarity D.2 Figure 19

Both MAE and BEiT show X patterns in their depth-wise feature
CKAs, suggesting an encoder/decoder internal structure. CKA Feature Similarity D.3 Figures 21, 22

For larger MAE ViTs, the later layers appear to act more like de-
coder layers, even thought MAE has a separate decoder. CKA Feature Similarity D.3 Figure 21

Residual connection analysis provides further evidence of a funda-
mental shift in information processing in the mid-to-late layers of
explicitly supervised ViTs.

Residual Connection Analysis D.4 Figure 23

BEiT L/16 learns extremely expressive part-level features com-
pared with BEiT B/16. Part-Level Feature Clustering D.5 Figure 27

Larger architectures tend to give better feature quality and down-
stream performance.

Feature Clustering, Local &
Global Downstream Tasks D.5, E.2 Figures 24-31

ViTs with smaller patch sizes unsurprisingly perform better at lo-
calized downstream tasks. Local Downstream Tasks E.2 Figures 30, 31

Reconstruction-based ViTs show the largest variance in their per-
formance characteristics on downstream tasks. Local & Global Downstream Tasks E.2 Figures 28-31

For the expanded group of ViTs, once again there is no single “best”
training method or layer for all downstream tasks. Local & Global Downstream Tasks E.2

Figures 28-31
Table 5
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size 1024. They follow a cosine learning rate and weight de-
cay. They use data augmentations like color jittering, gaus-
sian blur, and solarization similar to BYOL [22]. Multi-
crop [8] is also used.

MAE. The Masked Autoencoder (MAE) [26] method is
a reconstruction-based training objective where a large por-
tion of input patches/tokens are masked out. The rational
of MAE is that, because a large percentage of the image
content is missing, the network must learn representations
that embed meaningful high-level semantics to reconstruct
the missing regions. MAE uses both an encoder and de-
coder network, though the decoder is discarded after pre-
training. The authors pretrain the model on ImageNet-1k
without labels with a batch size of 4096. They do not use
color jittering, drop path or gradient clipping and only ap-
ply random resized crop augmentation. They use a masking
ratio of 0.75 which also improves the efficiency of training
by significantly decreasing the token count in the encoder.
They also use a cosine learning rate decay schedule.

BEiT. BEiT [4] stands for Bidirectional Encoder rep-
resentation from Image Transformers, and it is based on
BERT [17], a well-known masked reconstruction learning
method for NLP. In contrast to MAE, BEiT does not per-
form pixel-level reconstruction, but instead uses a tokenizer
to convert image patches into discrete tokens. The BEiT
learning objective is to predict the token values for the
masked patches. Unlike MAE, BEiT does not include a sep-
arate decoder network. BEiT is trained with a masking ratio
of roughly 0.4, though they also employ a block-masking
method which masks out larger adjacent groups of tokens.
They pretrain BEiT on ImageNet-1k with a batch size of
2048, and they include random resized cropping, horizontal
flipping, and color jittering augmentations. They also utilize
cosine learning rate decay. Note that the authors have pro-
vided both BEiT models before and after fine-tuning with
ImageNet labels. For our analysis, we work with the non-
fine-tuned versions, in order to focus on just the effects of
the BEiT pretraining method.

For more details and exact parameters, please refer to the
corresponding papers and codebases for each of the models.

B.3. Random Chance Scores

During our Feature Clustering and Downstream Task
Analysis, we present random chance scores for both the
clustering metrics and downstream task scores. To evalu-
ate these scores, we repeat the task analysis replacing all
ViT features with uniformly distributed Gaussian noise. To
be more specific, we generate arrays of Gaussian noise with
the exact same dimensions as the extracted feature arrays of
a ViT B/16 model. These random chance scores are heavily
influenced by the underlying data. For example, we see that
the random chance score is quite high for the object-level
clustering purity scores on COCO. This can be attributed

to the dataset’s highly imbalanced object distribution. Still,
this method of random chance evaluation is informative as
it effectively acts as a baseline model where all feature vec-
tors contain absolutely no useful information.

B.4. Dense Feature Extraction

Certain local tasks, like object segmentation, benefit
from having a denser array of high quality features. For an
input image of size 224×224, a ViT with patch size 16 pro-
duces a feature array with size 14× 14. This low resolution
can be very limiting for localized tasks, like DAVIS Video
Segmentation Propagation. While some of the ViTs eval-
uated do support variable input size, others are hard-coded
to operate at a fixed size. To generate a denser feature grid
while also providing a level playing field, we propose a sim-
ple dense feature extraction strategy using image tiling.

We begin by rescaling the smaller image dimension to
size 448 (twice the input resolution). We then scale the
larger image dimension to the nearest integer multiple of the
model patch size, in order to preserve the image aspect ratio
as best as possible. Finally we slice the image into non-
overlapping tiles of size 224 × 224. Then we extract ViT
features for each of the tiles and concatenate the features
together. Unless the image is exactly square, this leaves
some leftover image content along the larger image dimen-
sion. For these areas, we take two additional crops which
do overlap other image tiles, but for these areas the features
are discarded, while the non-overlapping features are con-
catenated to the rest. The final product is a feature array
that is twice as dense as the original while also respecting
the original image aspect ratio.

In Table 4, we present an ablative analysis comparing the
DAVIS Video Segmentation performance of all models with
and without dense feature extraction enabled. All models
see a significant performance boost with dense feature ex-
traction, especially models with patch size 32.

B.5. Code Release

Our analysis codebase includes complete scripts for
replicating the experiments and figures in the main work
and appendix. Our source code is available at www.
github.com/mwalmer-umd/vit_analysis and
our project page can be found at www.cs.umd.edu/
˜sakshams/vit_analysis.

C. Attention Analysis
C.1. Expanded Attention Visualizations

Figure 11 and Figure 12 provide additional visualiza-
tions of CLS token attention maps in ViT-B/16 models for
single input images. These visualizations show all layers
(rows) and all heads (columns). From these views, we can
see clear signs of the Sparse Repeating Attention Patterns
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Table 4. Comparison of Dense vs. Normal feature extraction for
the DAVIS Video Object Segmentation task. Results show for the
best layer per model, with layer number in parenthesis.

Model J and F Mean

Normal Dense

FS S/32 0.18 (12) 0.39 (9)
FS S/16 0.34 (10) 0.58 (8)
FS B/32 0.17 (10) 0.38 (9)
FS B/16 0.34 (10) 0.59 (8)
FS B/8 0.51 (9) 0.68 (9)
FS L/16 0.34 (19) 0.56 (13)
CLIP B/32 0.19 (12) 0.41 (9)
CLIP B/16 0.35 (9) 0.60 (9)
CLIP L/14 0.38 (17) 0.60 (17)
DINO S/16 0.32 (11) 0.61 (11)
DINO S/8 0.52 (11) 0.73 (12)
DINO B/16 0.32 (12) 0.60 (12)
DINO B/8 0.51 (11) 0.73 (10)
MoCo S/16 0.34 (11) 0.6 (10)
MoCo B/16 0.33 (12) 0.61 (11)
MAE B/16 0.29 (12) 0.54 (12)
MAE L/16 0.31 (24) 0.55 (23)
MAE H/14 0.36 (30) 0.59 (30)
BEiT B/16 0.31 (7) 0.58 (9)
BEiT L/16 0.36 (17) 0.61 (15)

in the mid-to-late layers of the FS and CLIP models. These
patterns are strongly repeated across the head and layer
axes. Note that the specific token positions that give strong
activations are different for the different input images.

Figure 13 shows one ViT attention map per model for 10
sample images over a wide array of ViT variants. The final
row displays the average attention over 5000 images. The
head selected is the first head of the final layer of each ViT.
For the explicitly supervised models, FS and CLIP, we again
see mainly Sparse Repeating Attention Patterns. However,
for the models with patch size 32, we also see some atten-
tion on object-centric regions. This holds true for FS S/32,
FS B/32, and CLIP B/32. Because these models use larger
patches, their token grids are a quarter of the size, mak-
ing these models four times narrower than the models with
patch size 16. The fact that Sparse Repeating Attention Pat-
terns do not emerge as strongly for these smaller models
may suggest that they are an indicator of overfitting in ViTs.
For the other FS and CLIP models, we sometimes see faint
traces of salient objects highlight in the attention maps, but
this occurs alongside the Sparse Repeating Attention Pat-
terns. For DINO, MoCo, and MAE, all models produce at-
tention maps that tend to align well with the salient object.
For BEiT, the attention maps do not correlate well. As we
previously noted, the final layers of BEiT must serve as a
built-in decoder, which may explain why its final layers are
dissimilar to DINO, MoCo, and MAE.

We find that every model learns instances of Offset Lo-

cal Attention Heads, and some larger models even have ones
with a diagonal offset. We present one example per model
in Figure 14, but be aware that all models have many Off-
set Local Attention Heads with different offsets. For the
explicitly and contrastively supervised models, Offset Lo-
cal Attention Heads typically only occur in the first 3 to 6
layers, but for the reconstruction-based models, MAE and
BEiT, we can find them in deeper layers too.

To provide the reader a complete view of the size and
number of attention heads in each ViT, we present two plots
that visualize all layers and all heads of all 20 ViTs. Fig-
ure 17 presents the average CLS token attention over 5000
sample images. When viewed this way, it is clear how
widespread the Sparse Repeating Activation Patterns are
over all of the mid-to-later layer heads of the FS and CLIP
models. For FS S/32 and B/32 we can see clear signs of
Sparse Repeating Activation Patterns, but for CLIP B/32
we instead see far more centered circular blobs, similar to
those we observe in the later layers of DINO and MoCo.
We also note that some of the early-layer heads (layers 1-3)
of the DINO models produce semi-repetitive grid-like pat-
terns that somewhat resemble the Sparse Repeating Atten-
tion Patterns seen in CLIP and FS. However, on closer in-
spection, we believe these heads represent a different phe-
nomenon. The attention patterns in these layers have more
variations across heads and layers, and they are not identi-
cally repeated as is seen in the FS and CLIP models. Also,
these heads come in the early layers, not the mid-to-late lay-
ers. For this reason, we hypothesize these heads are learn-
ing to extract an initial sparse down-sampling of the image,
which would be especially beneficial for the DINO mod-
els with patch size 8 due to their much larger token counts.
Finally, Figure 18 shows the Aligned Aggregated Atten-
tion Maps for all the spatial tokens. This view highlights
the great variety of local attention heads used in each ViT.
These figures are best viewed digitally and in color.

C.2. Attention Distance for ViT Variants

In Figure 15 we present the Average Attention Distances
per-layer for the full ViT collection, broken out by supervi-
sion type. For our distance computations, we have normal-
ized the distances such that the token grids are within a 1×1
square, which allows us to compare models with different
patch sizes and hence different token grid sizes. We see that
the trends of local-vs-global processing order is consistent
within supervision groups. For FS, CLIP, DINO, and MoCo
we again see an intial high distance, a dip to lower distances,
and an increase again in the later layers. Meanwhile, for
MAE we again see lower attention distance in the later lay-
ers. This result shows that the order of local-vs-global in-
formation processing in a ViT is primarily impacted by the
method of supervision and is largely unaffected by changes
in architecture size and patch size.
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Figure 11. Visualizing all CLS token attention maps for all heads and all layers in ViT B/16 models for single input images (left). The
FS and CLIP models show Sparse Repeating Attention Patterns in the mid-to-late layers, where a small group of spatial token positions at
seemingly arbitrary positions have strong and consistent activations shared across both heads and layers. Note that the positions of these
strong repetitive activations are different for the two inputs.
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Figure 12. Visualizing all CLS token attention maps for all heads and all layers in ViT B/16 models for a single input image (left).

5000
Images

S/32 S/16 B/32 B/16Input L/16 B/32 B/16 L/16B/8 S/8 B/16 B/8 S/16S/16 B/16 L/16 H/14 B/16B/16 L/16

Fully Supervised CLIP DINO MoCo MAE BEiT

Figure 13. Sample CLS token attention maps for a wide range of ViT variants. For each ViT and input image, we show the the attention
map of the CLS token of the first head of the final layer. The bottom row shows the averaged activation over 5000 ImageNet images.
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Offset Local Attention Heads
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Figure 14. Examples of Offset Local Attention Heads in all
ViT Variants. We find that all ViTs examined learn to use Offset
Local Attention Heads, and some larger models even use ones with
diagonal offsets. Midlines are drawn in red as a visual aid.

C.3. Attention Salience for ViT Variants

In this section, we present additional experimental de-
tails for our Attentional Saliency Analysis, followed by
results for the full ViT collection. In addition to Par-
tImageNet [25], we also performed this analysis with
COCO [36], however the results are extremely similar for
the two datasets. The PartImageNet dataset contains 11 su-
perclasses, whose members contain similar part structures
(biped, quadruped, car). When sampling from PartIma-
geNet, we take 500 samples per superclass, or all samples
for ones with less than 500. Within superclasses, we evenly
sample from each of the subclasses, or if a subclass is fully
sampled we continue to sample evenly from the remaining
classes. This yields a mostly balanced collection of 5294
images. PartImageNet divides different subclasses into the
train, validation, and test partitions, but for our analysis we
work with all three partitions together. For COCO, we sim-
ply sample the first 5000 images of the 2017 validation set.

Figure 16 summarizes the results for both PartImageNet
and COCO with both CLS token attention and average spa-
tial token attention. The patterns of scores are very similar
for PartImageNet and COCO. We see that the explicitly su-
pervised methods again face a decrease in IoU in the mid-

to-late layers with the emergence of Sparse Repeating At-
tention Patterns. This is with the exception of CLIP B/32
which has a much better IoU in the later layers. This result
matches Appendix C.1, where we observed that CLIP B/32
is less impacted by the Sparse Repeating Attention Patterns.
For the other self-supervised methods, we see that the same
general trends hold, usually with slightly higher IoUs from
larger models or models with smaller patches.

D. Feature Analysis
D.1. The CKA metric

In our Feature Analysis section, we compare learned
representations through Centered Kernel Alignment
(CKA) [14, 31], which is able to align and rescale neural
features to enable similarity measurements. Specifically,
we used batched CKA [42], which can be represented as
follows:
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1
k
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where Xi and Yi are the feature representation matrices

of the ith batch from the two models, k is the number of
batches and HSIC1 is as follows:
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− 2
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)
,
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where K̂ and L̂ are K,L with diagonals set to 0 and n is the
batch size. We use the implementation from Subramanian
[59] for our analysis.

D.2. Last Layer Comparisons for ViT Variants

In the main paper we analyzed the last layer CKA be-
tween the CLS and spatial tokens across the B/16 models
separately. Here we expand our analysis to the wider col-
lection of ViT variants. As can be seen from Figure 19
(left), for the CLS tokens, similar supervision strategies cre-
ate similar representations. Groups emerge with DINO and
MoCo forming one subset while MAE and BEiT form an-
other. The FS and CLIP models form their own sub-groups.
Some of the FS models also show comparatively high simi-
larity with MoCo and DINO models. Again we see that the
MAE CLS representations have a moderate similarity with
explicitly and constrastively supervised methods.
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Figure 15. Average Attention Distance for all ViT Variants. Results are plotted against the normalized layer depth.
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Figure 16. Attention alignment with salient image content for all ViT Variants. Results are shown for both CLS token attention and
average spatial token attention on both COCO and PartImageNet. We see that the results are highly similar for the two datasets.
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Figure 17. Average CLS token attention over 5000 images for every head of every ViT Variant.
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Figure 18. Aligned Aggregated Attention Maps over 5000 images for every head of every ViT Variant.
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Figure 19. CKA similarity between final layer features of different ViTs for their CLS tokens (left) and spatial tokens (right).

From Figure 19 (right), we see that the internal similar-
ity within the FS and CLIP groups are more fragmented.
Meanwhile, the self-supervised models show more consis-
tency, having higher spatial feature similarity within and
between self-supervision methods. DINO and MoCo show
very high similarity amongst themselves due to their similar
training methods. The MAE spatial features also show high
similarity to those of DINO and MoCo. BEiT shows com-
paratively high similarity with these other self-supervised
methods. FS and CLIP are not too similar with each other
or with the other models with the exception of CLIP B/32
and a few FS models like B/16 and B/8 which show compar-
atively high similarity with DINO and MoCo models. This
separation of CLIP and FS can be attributed to the super-
vision which is applied to only the CLS token, which may
make their final layer spatial representations less consistent.

D.3. Depth-Wise CKA Analysis

Self-Comparison of ViT B/16 Models. Figure 20 shows
the CKA plots across multiple layers of the same model for
different training methods. For brevity and consistency we
focus on the ViT B/16 models. For all the CKA plots we use
the features from the batch norm layers due to their well-
behaved outputs. We see that the different models show
variations in the development of information. For FS, the
final layers have a lower similarity to the earlier layers, as
compared with CLIP, DINO, and MoCo. For MAE, we see
two distinct blocks of similarity divided around the middle
layer. For BEiT, we see a clear X pattern, which we analyze
more in a subsequent section.
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Figure 20. CKA for all ViT B/16 models showing their feature
similarity across layers. Different supervision techniques result in
different patterns.

Going deeper into MAEs. Figure 21 shows the CKA plot
for MAE models Base, Large and Huge from left to right.
It can be seen that as we move from a smaller model to a
larger model (for example from Base to Large), the bottom
left quadrant of larger models CKA matches the full CKA
for the smaller model. This indicates that a larger model in
this case encodes information in a similar way as the smaller
model in its initial layers but ends up having more special-
ized later layers at the end. A similar trend can be observed
when going from Large to Huge.

X pattern for MAE and BEiT. As shown in Figure 21
and Figure 22, MAE and BEiT show an X-like pattern in
their CKA plot (with the exception of MAE B/16). This
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Figure 21. CKA across Base, Large and Huge MAE models.
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Figure 22. CKA across Base and Large BEiT models.

indicates that the late layer features of these models are
similar to the early layers but not the middle layers. We
hypothesize that this is due to the reconstruction-oriented
nature of the training losses, showing that in their final lay-
ers MAE and BEiT are trying to recreate the same local
information that is present in the initial layers. It should be
noted that this X-pattern arises for all sizes of BEiT, but not
in MAE B/16. We attribute this to the fact that MAE has a
separate decoder module which is discarded after training,
while BEiT does not have a separate decoder. This means
that BEiT needs to inherently learn a decoder which leads to
emergence of this X pattern at both sizes. For MAE, the fact
that the X pattern emerges more clearly for the larger ViT
variants suggests that the additional layers of these models
start specializing for the task of decoding. This has impor-
tant implications for the MAE training method, as it sug-
gests that, for larger MAEs, late layers learn to act in a more
decoder-like way, which may limit the usefulness of these
layers for downstream tasks.

D.4. Residual Connection Analysis

Previously works [52] have contrasted CNNs and ViTs
by comparing the features propagated through the skip con-
nections and normal connections. We extend this analysis
to ViTs trained with varying supervision techniques. Fig-
ure 23 shows the CKA between the features coming from
the skip connection (Y-axis) and the normal pathway (X-
axis) for the MHA layer of each block. For CLIP and FS
we can see a similar trend, initially the skip connection car-
ries similar information as the normal path but after a cer-
tain point the information it carries becomes very different
(dark regions). This also correlates with the emergence of
the Sparse Repeating Patterns observed in Appendix C.1,
providing further evidence that a fundamental shift in infor-
mation processing behavior occurs in the mid-to-late layers
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Figure 23. Residual connection analysis. We show the CKA sim-
ilarity between the features coming from the skip-connect (Y-axis)
and normal pathway (X-axis) for each MHA layer of each block.
Each cell indicates the similarity between the skip connection fea-
tures and output of normal pathway at that location.

of explicitly supervised ViTs. For MoCo and DINO, this
shift in behavior does not happen and as the depth increases
the skip connections and normal pathways still have similar
representations. MAE is another special case where, given
the reconstruction nature of the loss, at multiple depth lo-
cations the normal pathway representation is similar to the
skip connection representation. For BEiT, there is again an
X-like pattern, likely because it needs to start reconstructing
the complete input. MAE does not show an X-like pattern,
despite its similar reconstruction objective. Again we the-
orize that this occurs because MAE has a separate decoder
that is discarded after training.

D.5. Additional Clustering Analysis

In this section, we expand our feature clustering analysis
to the full collection of models. In addition to Cluster Purity,
we also report results for Normalized Mutual Information
(NMI) and Adjusted Random Index (ARI). We see similar
trends for all three clustering metrics.

Image-Level CLS Feature Clustering Results shown in
Figure 24. For FS, CLIP, DINO, and MoCo the same gen-
eral trends hold. Cluster quality rises faster for DINO and
MoCo, but FS and CLIP catch up rapidly and overtake at
the end. For the deeper model variants (FS L/16 and CLIP
L/14) the trends are consistent when plotted against normal-
ized block depth, meaning that semantic information actu-
ally emerges half as quickly. For MAE, the larger model
variants lead to significantly better cluster purity, which also
rises earlier as the models get larger. In contrast, for BEiT
cluster purity is generally worse for the larger L/16 model.

Image-Level Spatial Feature Clustering Results shown in
Figure 25. For FS, CLIP, DINO, and MoCo the same gen-
eral trends show, though with larger models tending to do
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slightly better. Interestingly, the spatial features of BEiT
L/16 have an increase in cluster purity, which is surprising
as its CLS tokens saw a decrease in the previous section.

Object-Level Spatial Feature Clustering Results shown
in Figure 26. For FS, CLIP, DINO, and MoCo again
the general trends hold, with larger models or those with
smaller patch size doing slightly better. However, for FS the
L/16 variant did worse than B/16. For FS the best scores are
achieved by the B/8 variant. Like the previous section, we
see a significant boost for BEiT L/16 over B/16.

Part-Level Spatial Feature Clustering Results shown in
Figure 27. For part-level feature clustering, we previously
observed that, for the B/16 models, the self-supervised
methods are much more competitive with the explicitly su-
pervised methods. This trend still holds here, with BEiT
L/16 performing particularly well, seeing a huge boost over
BEiT B/16. For all metrics, BEiT L/16 is on par with
the best explicitly and constrastively supervised methods.
Larger models and those with smaller patch size generally
provide better part-level feature clusters, with the exception
of MAE, where the large models actually do worse.

E. Downstream Task Analysis

E.1. Keypoint Correspondence Additional Details

As part of our Downstream Task Analysis, we present
results for Keypoint Correspondence as an additional local-
focused task. Given an input image with a set of human
annotated keypoints, a model must predict the position of
corresponding keypoints in a second paired image with the
same type of object. Challenges in this task include changes
in scale, size, and large intraclass variations. Correspon-
dence is a prerequisite step in applications such as pose
estimation [54], 3D reconstruction [54], and edit propaga-
tion in images and videos [71]. We use the SPair-71k [39]
dataset consisting of 1800 images from 18 categories. Fol-
lowing the evaluation protocol used by Amir et al. [1], we
randomly sample 20 image pairs from each category of the
test set and compute PCK [72] (percentage of correct key-
points) for each of the 18 categories. Given the dense ViT
spatial token features of a source image, a target image, and
source keypoint, we (1) get the corresponding feature vec-
tor of the keypoint in the source image, (2) find the near-
est neighbor of this feature vector in the target image, and
(3) get the 2D location of the nearest neighbor in the tar-
get image. The keypoint prediction is considered correct if
it is within, a threshold α ·max(H,W ) of the groundtruth
correspondence, where α is a constant and (H,W ) are the
height and width of the target image. We report the average
PCK@0.1, PCK@0.05, and PCK@0.01.

E.2. Results for ViT Variants

ImageNet Classification As seen in Figure 28, the general
trends as reported in the main paper for this task hold for
each training method. The FS B/8 has the highest Top-1
and Top-5 performance. For FS, CLIP, DINO and MoCo
the trends show that performance improves as we go to later
layers. It is also interesting to see that under normalized
depth, the larger MAE models peak earlier than the smaller
ones and show a higher peak performance. For BEiT, the
peak performance occurs at a similar relative depth but is
higher for the L/16 model.

Image Retrieval As shown in Figure 29, the Base and
Large models for FS and CLIP perform well for this image-
level task. This aligns with our observations in the main
paper. The FS B/16 performs the best on ROxford5k while
the FS B/8 and L/16 are the best performers on RParis6k.
For the FS, CLIP, MoCo and DINO models, performance
improves as we go to later layers in most cases. MAE and
BEiT again peak early in the mid-to-late layers. The gen-
eral observations and trends for this task are similar to the
k-NN task as they are both image-level global tasks. The
only difference being that, for this task, the later layers of
FS and CLIP show a sudden improvement while the earlier
layers are flatter when compared to the trends for k-NN.

DAVIS Segmentation Propagation As shown in Figure 30
many models peak at an earlier layer. The best performance
comes from DINO B/8 and S/8, followed closely by FS B/8.
Meanwhile, the models with patch size 32 see a significant
drop in performance. Given the dense-prediction-based na-
ture of this task, these methods which are trained with a
smaller patch size have finer features which give them a
boost in performance. The reconstruction-based models,
BEiT and MAE, are also very competitive in this task, per-
forming on par with FS, CLIP, DINO, and MoCo among the
models with patch size 16.

Keypoint Correspondence We show comparisons on this
task in Figure 31. It should be highlighted that BEiT L/16
performs the best for PCK@0.1, again showing a massive
improvement over BEiT B/16. This large boost correlates
with the its improved part-level feature purity observed in
Appendix D.5. In general the smaller patch size models like
DINO B/8, DINO S/8, CLIP L/14 and FS B/8 are also good
performers. Due to their finer feature grids, these methods
perform much better at the stricter thresholds (PCK@0.05
and PCK@0.01). All models on this task peak around mid-
to-late layers.
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Figure 24. Expanded CLS feature clustering for image-level labels with ImageNet-50.
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Figure 25. Averaged spatial feature clustering for image-level labels with ImageNet-50.
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Figure 26. Expanded spatial feature clustering for object-level labels with COCO.
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Figure 27. Expanded spatial feature clustering for part-level labels with PartImageNet.
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Table 5. Best performance for each ViT on each downstream task with the corresponding best layer in parenthesis.

Model Task Performance (Best Performing Layer)

Dataset
Layers

ImageNet ROxford5k RParis6k DAVIS SPair-71k

Metric Top-1↑ Top-5↑ mAP↑ (M) mAP↑ (H) mAP↑ (M) mAP↑ (H) J Mean↑ F Mean↑ J and F Mean↑ PCK@0.1↑ PCK@0.05↑ PCK@0.01↑

FS S/32 12 74.48 (12) 90.33 (12) 0.33 (12) 0.12 (12) 0.63 (12) 0.38 (12) 0.43 (8) 0.35 (9) 0.39 (9) 15.28 (8) 4.34 (8) 0.13 (8)
FS S/16 12 80.64 (12) 93.71 (12) 0.34 (12) 0.1 (11) 0.66 (12) 0.40 (12) 0.57 (8) 0.60 (9) 0.58 (8) 26.37 (8) 11.62 (8) 0.68 (9)
FS B/32 12 79.08 (12) 92.8 (12) 0.33 (12) 0.12 (12) 0.67 (12) 0.43 (12) 0.42 (9) 0.34 (9) 0.38 (9) 15.49 (9) 4.19 (8) 0.15 (7)
FS B/16 12 83.79 (12) 95.01 (12) 0.45 (12) 0.19 (12) 0.72 (12) 0.51 (12) 0.58 (8) 0.60 (8) 0.59 (8) 28.56 (9) 12.33 (8) 0.63 (7)
FS B/8 12 85.58 (12) 95.71 (12) 0.45 (12) 0.16 (12) 0.73 (12) 0.51 (12) 0.66 (7) 0.70 (9) 0.68 (9) 36.09 (9) 21.97 (9) 1.61 (9)
FS L/16 24 85.03 (24) 95.39 (24) 0.42 (24) 0.15 (24) 0.73 (24) 0.51 (24) 0.56 (13) 0.57 (13) 0.56 (13) 30.99 (17) 13.49 (15) 0.79 (14)
CLIP B/32 12 70.90 (12) 89.54 (12) 0.38 (12) 0.10 (12) 0.66 (12) 0.41 (12) 0.44 (9) 0.37 (9) 0.41 (9) 18.55 (8) 5.37 (8) 0.26 (8)
CLIP B/16 12 75.75 (12) 92.27 (12) 0.40 (12) 0.11 (12) 0.71 (12) 0.48 (12) 0.58 (9) 0.62 (9) 0.60 (9) 30.70 (8) 13.61 (8) 0.98 (6)
CLIP L/14 24 80.24 (24) 94.15 (24) 0.45 (24) 0.17 (24) 0.70 (24) 0.49 (24) 0.57 (14) 0.62 (17) 0.60 (17) 36.04 (15) 16.72 (15) 1.15 (13)
DINO S/16 12 74.61 (12) 90.08 (12) 0.38 (12) 0.14 (12) 0.61 (12) 0.33 (12) 0.60 (11) 0.63 (11) 0.61 (11) 26.72 (9) 11.68 (9) 0.55 (9)
DINO S/8 12 74.34 (12) 90.15 (12) 0.36 (12) 0.12 (12) 0.59 (12) 0.30 (12) 0.70 (12) 0.77 (12) 0.73 (12) 31.14 (8) 18.15 (8) 1.48 (8)
DINO B/16 12 76.06 (12) 91.40 (12) 0.37 (12) 0.11 (12) 0.62 (12) 0.35 (12) 0.59 (12) 0.61 (12) 0.60 (12) 28.28 (9) 12.00 (7) 0.65 (6)
DINO B/8 12 77.70 (12) 92.24 (12) 0.40 (12) 0.13 (11) 0.65 (12) 0.37 (12) 0.69 (10) 0.77 (10) 0.73 (10) 33.17 (8) 19.04 (8) 1.66 (5)
MoCo S/16 12 68.71 (12) 86.36 (12) 0.27 (12) 0.07 (12) 0.50 (12) 0.22 (12) 0.58 (10) 0.62 (10) 0.6 (10) 24.88 (9) 10.92 (9) 0.39 (11)
MoCo B/16 12 71.59 (12) 88.37 (12) 0.31 (12) 0.08 (12) 0.51 (12) 0.22 (12) 0.59 (11) 0.62 (11) 0.61 (11) 25.85 (9) 10.64 (8) 0.43 (10)
MAE B/16 12 45.19 (12) 65.32 (12) 0.15 (10) 0.02 (10) 0.28 (10) 0.08 (10) 0.54 (11) 0.54 (12) 0.54 (12) 22.65 (11) 10.59 (11) 0.44 (11)
MAE L/16 24 60.80 (20) 78.9 (20) 0.19 (21) 0.03 (21) 0.35 (21) 0.11 (21) 0.55 (23) 0.56 (23) 0.55 (23) 27.65 (19) 13.02 (22) 0.60 (21)
MAE H/14 32 63.16 (23) 79.87 (23) 0.20 (23) 0.03 (30) 0.39 (23) 0.13 (23) 0.58 (31) 0.61 (30) 0.59 (30) 27.50 (26) 13.65 (26) 1.35 (26)
BEiT B/16 12 26.84 (8) 45.12 (8) 0.14 (8) 0.02 (8) 0.20 (8) 0.05 (10) 0.57 (10) 0.59 (9) 0.58 (9) 24.11 (8) 11.02 (8) 0.54 (7)
BEiT L/16 24 41.24 (18) 62.79 (18) 0.16 (18) 0.02 (18) 0.25 (17) 0.06 (17) 0.58 (17) 0.64 (15) 0.61 (15) 37.52 (15) 18.22 (16) 1.04 (16)
Random - 0.10 0.49 0.02 0.01 0.04 0.03 0.03 0.08 0.06 1.32 0.34 0.02

E.3. Summary of Downstream Tasks

We report the best result for each model along with the
layer at which it occurs in Table 5. This table captures all
downstream tasks and summarizes all metrics for each task.
We would like to highlight that [1] different models peak at
different layers, based on type of task, local vs. global, and
[2] no one model is the best model for all tasks.

E.4. ImageNet-1k Classification with Linear Probes

We present additional results for ImageNet classification
with Linear Probes in Table 6. For each model, we trained
a linear layer on the last layer features for 20 epochs on
the ImageNet-1k training set, and report results on the val-
idation set. For BEiT we instead use layer 8, which gave
the best k-NN classification results. This analysis includes
variations based on protocols from the compared works. We
present results for CLS token features in row 2 and average-
pooled spatial token features (proposed by BEiT) in row 3.
We also test the addition of a batch normalization layer be-
fore the linear layer (proposed by MAE) in rows 4 & 5. As
FS is trained with ImageNet labels, it performs best in all
settings. For approaches with explicit CLS supervision (FS,
CLIP, DINO, MoCo), the CLS token features give higher
accuracy. For MAE and BEiT, due to the local nature of
their supervision, their spatial features give better perfor-
mance. Batchnorm is generally beneficial for all models
and features.

Table 6. Accuracy@1 of ViT-B/16 models for Linear Probing on
ImageNet-1k val. *required reduced LR for stable training.

Feature FS CLIP DINO MoCo MAE BEiT

CLS 83.86 65.63 73.03 74.26 49.52 9.87*
Spat. 82.31 52.53 37.37 62.47 52.01 29.81
CLS+BN 84.40 78.63 76.39 74.51 59.31 41.68
Spat.+BN 82.83 74.59 68.09 68.58 59.86 44.27
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Figure 28. k-NN ImageNet classification results for all ViT variants.
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Figure 29. ROxford5k and RParis6k retrieval results for all ViT variants.
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Figure 30. DAVIS Video Segmentation Propagation comparison for all ViTs
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Figure 31. SPair-71k Keypoint Correspondence comparison for all ViTs
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