
Learning to Retain while Acquiring: Combating Distribution-Shift in
Adversarial Data-Free Knowledge Distillation

Gaurav Patel† Konda Reddy Mopuri‡ Qiang Qiu†

†Purdue University ‡Indian Institute of Technology Hyderabad
{gpatel10, qqiu}@purdue.edu, krmopuri@ai.iith.ac.in

Abstract

Data-free Knowledge Distillation (DFKD) has gained
popularity recently, with the fundamental idea of carrying
out knowledge transfer from a Teacher neural network to
a Student neural network in the absence of training data.
However, in the Adversarial DFKD framework, the student
network’s accuracy, suffers due to the non-stationary distri-
bution of the pseudo-samples under multiple generator up-
dates. To this end, at every generator update, we aim to main-
tain the student’s performance on previously encountered
examples while acquiring knowledge from samples of the cur-
rent distribution. Thus, we propose a meta-learning inspired
framework by treating the task of Knowledge-Acquisition
(learning from newly generated samples) and Knowledge-
Retention (retaining knowledge on previously met samples)
as meta-train and meta-test, respectively. Hence, we dub our
method as Learning to Retain while Acquiring. Moreover, we
identify an implicit aligning factor between the Knowledge-
Retention and Knowledge-Acquisition tasks indicating that
the proposed student update strategy enforces a common
gradient direction for both tasks, alleviating interference be-
tween the two objectives. Finally, we support our hypothesis
by exhibiting extensive evaluation and comparison of our
method with prior arts on multiple datasets.

1. Introduction

The primary goal of Data-Free Knowledge Distillation
(DFKD) is to acquire a trustworthy alternative dataset for
knowledge distillation. The quality of knowledge transfer de-
pends on the caliber of these alternative samples. Noise opti-
mization [11,22,31] and generative reconstruction [4,10,20]
are the two primary ways to replace the original training data
used in the distillation process with synthetic or pseudo sam-
ples. Adversarial DFKD methods [10, 19, 20] investigate an
adversarial exploration framework to seek pseudo-samples.
In such a paradigm, the Generator (G) is used to create
pseudo-samples as surrogates to perform knowledge distilla-
tion/transfer, and the Teacher-Student (T -S) setup acts as a
joint discriminator to penalize and update generator parame-

Student M
odel
 Pseudo-D

ata 

G

enerator
Pre-Trained 


Teacher M
odel

Ac
cu

ra
cy

Epoch

Student Update Generator Update

11

Figure 1. The top-section represents the learning evolution of a
generic Adversarial Data-Free Knowledge Distillation framework;
the color-intensity variation signifies the change in the distribu-
tion of the pseudo-samples, the student network, and the generator
network over the learning epochs. Under the variation in the distri-
bution of the pseudo-samples, the bottom-section shows the learn-
ing curves for cases when the student accuracy degrades (shown
in Red), which is undesirable, and when the student accuracy is
maintained, if not improved, as proposed (shown in Green).

ters (θG) (Figure 1). In the adversarial framework, the gener-
ator explores the input space to find suitable pseudo-samples
as the distillation progresses. Consequently, the distribution
of the generated samples consistently keeps changing dur-
ing the process due to the generator updates [26]. From the
student network’s perspective, at each iteration, the pseudo
samples seem to be generated from different generator pa-
rameters (θG). Hence, the convergence of the student network
gets hampered due to successive distributional alterations
over time [29], as depicted by the red curve in Figure 1.
This observation hints that updating the student network,
solely using the samples generated from the current gener-
ator parameters is not adequate to generalize the student.
Moreover, the student forgets the knowledge acquired previ-
ously and decelerates the knowledge distillation. Therefore,
the generator, apart from exploring the input space, seeks

1

ar
X

iv
:2

30
2.

14
29

0v
1 

 [
cs

.L
G

] 
 2

8 
Fe

b 
20

23



Student

Teacher

LossGenerator

(a)

Student

Teacher

LossGenerator

Memory Buffer


+

(b)

Student

Teacher

Generator

Memory Buffer


Loss

Loss

Student

(c)
Figure 2. Student update strategies: (a) Typical student update by optimizing the Knowledge-Acquisition loss (LAcq) with the batch pseudo
samples (x̂), produced by the generator (G) [5, 10, 20]. (b) Student update with simultaneous optimization of the Knowledge-Acquisition loss
(LAcq) and Knowledge-Retention loss (LRet) on the batch of pseduo samples (x̂) and memory samples (x̂m) obtained from the generator (G)
and the memory (M), respectively [2, 3]. (c) The proposed student update strategy, which treats LAcq as meta-train and LRet as meta-test,
and implicitly imposes the alignment between them.

to compensate for the loss of knowledge in future iterations.
Additionally, in a practical setting, during the distillation
process, high variation in the student network’s classification
accuracy is undesirable, especially when the validation data
is not available, since that prevents the user from tracking
the student’s accuracy over time, and selecting the distilled
model parameters with the highest accuracy.

To circumvent the above-discussed problem, existing
methods maintain a memory buffer to rehearse the examples
from previously encountered distributions while learning
with current examples. Binci et al. [3] introduce Replay
based methods to explicitly retrain/replay on a limited subset
of previously encountered samples while training on the cur-
rent examples. Then, carrying forward, they use Generative-
Replay [28] to transfer the learned examples to an auxiliary
generative model (VAE), and sample from the VAE’s decoder
in subsequent iterations [2]. Nonetheless, the performance
of these methods is upper bounded by joint training on previ-
ous and current examples [7]. Although, recent works have
focused on modeling the memory, we seek to work towards
effectively utilizing the samples from memory.

In this paper, we aim to update the student network pa-
rameters (θS) such that its performance does not degrade
on the samples previously produced by the generator net-
work (G), aspiring towards Learning to Retain while Ac-
quiring. Thus, we propose a meta-learning inspired strat-
egy to achieve this goal. We treat the task of Knowledge-
Acquisition (learning from newly generated samples) and
Knowledge-Retention (learning from previously encountered
samples from memory) as meta-train and meta-test, respec-
tively. Hence, in the proposed approach, the student network
acquires new information while maintaining performance on
previously encountered samples. By doing so, the proposed
strategy (Figure 2c) implicitly aligns Knowledge-Acquisition
and Knowledge-Retention, as opposed to simply combining
them [2, 3] without any coordination or alignment (Figure
2b), which leaves them to potentially interfere with one an-
other.

Additionally, analyzing the proposed meta-objective, we
discover that (in Section 3.4) the latent alignment factor as

the dot product between the gradients of the Knowledge-
Acquisition and Knowledge-Retention objectives, suggesting
that the meta-objective enforces a common gradient direc-
tion for both tasks, encouraging the alignment between the
task-specific gradients. Thus, the proposed method simulta-
neously minimizes the loss and matches the gradients cor-
responding to the individual tasks (Knowledge-Acquisition
and Knowledge-Retention), enforcing the optimization paths
to be same for both tasks.

Moreover, the proposed student update strategy is scal-
able to different deep architectures as the gradient align-
ment is implicit, and memory-agnostic, making no assump-
tions about the replay scheme employed. Nonetheless, recent
works on gradient alignment, have shown great empirical ad-
vantages in Zero-Shot Learning [25], Distributed/Federated
Learning [6] and Domain Generalization [27]. Our method
extends the advantages of gradient alignment to memory-
based Adversarial DFKD, thus strengthening the empirical
findings in these works.

Finally, to demonstrate the advantages of the proposed
student update strategy, we evaluate and compare against cur-
rent non-memory [4, 5, 10] and memory-based [2, 3] Adver-
sarial DFKD methods, and observe substantial improvement
in the student learning evolution.

In summary, our contributions are as follows:

• We propose a novel meta-learning inspired student up-
date strategy in the Adversarial DFKD setting, that aims
to maintain the student’s performance on previously
encountered examples (Knowledge-Retention) while
acquiring knowledge from samples of the current distri-
bution (Knowledge-Acquisition).

• We theoretically identify (in Section 3.4) that the pro-
posed student update strategy enforces an implicit gra-
dient alignment between the Knowledge-Acquisition
and Knowledge-Retention tasks.

• Finally, we evaluate our method and compare against
various Adversarial DFKD methods, on multiple stu-
dent architectures and replay schemes (Memory Buffer
and Generative Replay).

2



Memory 

Bank

Memory 

Generator

Student 

Network

Generator 

Network

Teacher  

Network

OR

Generated 

Pseudo Samples

Examples 

Sampled from 


Memory

Forward
Propagation

Meta-Update

Student 

Update

Generator 

Update

Figure 3. An illustration of the proposed DFKD framework. The framework consists of the Generator (G), Teacher (T ), Student (S) and the
Memory (M). G and S are updated alternatively, similar to the GAN [13] framework with the generator loss (LG) optimizing G, and the
Knowledge-Acquisition loss (LAcq) and the Knowledge-Retention loss (LRet) optimizing the student (S). We use M in a generalized way to
denote any type of replay schemes (Memory Buffer or Generative Replay in our case).

2. Related Work

Adversarial Data-Free Knowledge Distillation: In the Ad-
versarial Data-Free Knowledge Distillation paradigm, A
generative model is trained to synthesize pseudo-samples
that serve as queries for the Teacher (T ) and the Student
(S) [5, 10, 20]. ZSKT [20] attempts data-free knowledge
transfer by first training a generator in an adversarial fash-
ion to look for samples on which the student and teacher
do not match well. To improve the model discrepancy mea-
sure, it adopts the Kullback–Leibler (KL) divergence, and
introduces attention transfer [34] to aid knowledge transfer.
Moreover, DFAD [10] recommends Mean Absolute Error
(MAE) as a model discrepancy function to prevent decayed
gradients on converged samples. Furthermore, the adversar-
ial framework was extended by Choi et al. [5] in the context
of model quantization, by proposing adversarial data-free
quantization (DFQ), and introducing additional regulariza-
tion terms that match the mean and standard deviation of the
generated pseudo-samples with the teacher model’s batch-
norm statistics, and imposes batch categorical entropy maxi-
mization, such that sample from each class appear equally in
the generated batch. Fang et al. recently introduced FastD-
FKD [9], an effective method with a meta generator to speed
up the DFKD process, delivering a 100-fold increase in the
knowledge transfer rate.
Handling Distribution Shift in Adversarial DFKD: To
counter the distribution mismatch and the catastrophic forget-
ting phenomenon in the adversarial framework [26], Binici
et al. [3] suggested maintaining a dynamic collection of
synthetic samples throughout training iterations to prevent
catastrophic forgetting in DFKD. Moreover, in their latest
work [2], they introduce generative pseudo-replay [28] in
which an auxiliary generative model simultaneously learns
the distribution of the samples produced by the generator
(G). Throughout the training process, examples are gener-
ated from the auxiliary generator to replay during training.

Nonetheless, these works have focused on modeling the
memory buffer. A related line of research maintains an ex-
ponentially moving average (EMA) of the generator model
G [8] to replace the typical Memory-Buffer and Generative
Replay. Nonetheless, our work focuses on the effective uti-
lization of the samples obtained from the memory.

3. Methodology
In Section 3.1, we first provide a brief overview of Adver-

sarial DFKD. Then, in Section 3.2, we discuss the data-free
knowledge distillation objective. In Sections 3.3 and 3.4, we
elaborate on the proposed student update strategy. Lastly, in
Section 3.5, we discuss the adopted generator update strategy
used for the baselines and the proposed framework.

3.1. Adversarial Data-Free Knowledge Distillation

In the Adversarial DFKD framework, a generator (G)
is used to create pseudo-samples as surrogates to perform
knowledge distillation/transfer, and the teacher-student (T -
S) setup acts as a joint discriminator to penalize and update
generator parameters (θG) in an adversarial manner. After
updating θG , random samples are generated and used to
minimize the T -S discrepancy by updating the student pa-
rameters (θS). The generator and the student are optimized
alternatively up until a fixed number of pre-defined iterations.
In essence, the goal of DFKD is to craft a lightweight stu-
dent model (S) by harnessing valuable knowledge from the
well-trained Teacher model (T ) in the absence of training
data. A general overview of Adversarial DFKD framework
is illustrated in Figure 1.

3.2. Goal of Data Free Knowledge Distillation

A student model (S) is trained to match the teacher’s (T )
predictions on its unavailable target domain (DT ) as part of
the distillation process. Let, pS(x) = Softmax(SθS (x)) and
pT (x) = Softmax(TθT (x)), ∀x ∈ DT , denote the predicted

3



0 50 100 150 200

Epochs Epochs Epochs Epochs Epochs Epochs

SVHN [22] CIFAR10 [16] CIFAR100 [16] Tiny-ImageNet [17]

0 50 100 150 20075

80

85

90

95

PRE-DFKD

Ours (w/ Generative Replay)

0 50 100 150 20070

75

80

85

90

PRE-DFKD

Ours (w/ Generative Replay)

0 50 100 150 20060

65

70

75

80

85

90

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20075

80

85

90

95

MB-DFKD

Ours (w/ Memory Bank)

0 100 200 300 40040

50

60

70

MB-DFKD

Ours (w/ Memory Bank)

0 100 200 300 40050

55

60

65

70

75

PRE-DFKD

Ours (w/ Generative Replay)

0 100 200 300 40060

65

70

75

80

PRE-DFKD

Ours (w/ Generative Replay)

0 100 200 300 40050

55

60

65

70

75

80

MB-DFKD

Ours (w/ Memory Bank)

0 100 200 300 400 500

20

30

40

50

PRE-DFKD

Ours (w/ Generative Replay)

0 100 200 300 400 50010

15

20

25

30

35

40

MB-DFKD

Ours (w/ Memory Bank)

Epochs
0 100 200 300 400 50015

20

25

30

35

40

PRE-DFKD

Ours (w/ Generative Replay)

0 100 200 300 400 50010

20

30

40

50

MB-DFKD

Ours (w/ Memory Bank)

75

80

85

90

95

C
u
m

u
la

ti
v
e
 M

e
a
n
 

A
cc

u
ra

cy
 (

%
)

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20090

92

94

96

PRE-DFKD

Ours (w/ Generative Replay)

0 50 100 150 200
86

88

90

92

94

96

A
cc

u
ra

cy
 (

%
)

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 200

Epochs
88

90

92

94

PRE-DFKD

Ours (w/ Generative Replay)

Figure 4. Learning evolution of the proposed method compared to the prior arts (MB-DFKD [3] and PRE-DFKD [2]) that employ replay. The
plots visualize the Accuracy (%) evolution (top-row) and the Cumulative Mean Accuracy (%) evolution (bottom-row) of the ResNet-18 [14]
student network on SVHN [23], CIFAR10 [16], CIFAR100 [16], and Tiny-ImageNet [17] datasets. The proposed method is in Blue.

Student and Teacher probability mass across the classes,
respectively. We seek to find the parameters θS of the student
model that will reduce the probability of errors (P ) between
the predictions pS(x) and pT (x):

min
θS

Px∼DT

(
arg max

i
piS(x) 6= arg max

i
piT (x)

)
,

where the superscript i denotes the ith probability score of
the predicted masses, pS(x) and pT (x).

However, DFKD suggests minimizing the student’s error
on a pseudo dataset DP , since the teacher’s original train-
ing data distribution DT is not available. Typically, a loss
function, say LKD, that gauges disagreement between the
teacher and the student is minimized ∀x̂ ∈ DP by optimizing
the student parameters (θS ):

min
θS

Ex̂∼DP [LKD(TθT (x̂),SθS (x̂))]. (1)

We use the Mean Absolute Error (MAE) to define loss mea-
sure (LKD) as suggested in [10]. Suppose, given the pre-
dicted logits (pre-softmax predictions) t(x̂) = TθT (x̂) from
the teacher model and the predicted logits s(x̂) = SθS (x̂)
from the student model, we define LKD as:

LKD(t(x̂), s(x̂)) = ‖t(x̂)− s(x̂)‖1. (2)

3.3. Learning to Retain while Acquiring

Our novelty resides in the student update strategy, as
described earlier. Knowledge-Retention and Knowledge-
Acquisition relate to two independent goals and can therefore
be considered as two discrete tasks. In fact, by aligning these
two goals, we empirically observe that, they can cooperate
to retain the knowledge on previously encountered examples
while acquiring knowledge from newly generated samples.
The proposed method utilizes a meta-learning-inspired op-
timization strategy to effectively replay the samples from
memory, sayM.

In the typical Adversarial DFKD setup, the student up-
date objective with the generated pseudo samples (x̂), i.e.,
the Knowledge-Acquisition task (LAcq) (Figure 2a), is for-
mulated as:

min
θS
LAcq(θS) = min

θS
Ex̂[L(TθT (x̂),SθS (x̂))], (3)

where L is the MAE (2) between the teacher and the student
logits, and x̂ = G(z), z ∼ N (0, I), denotes the batch of
randomly generated samples.

Moreover, to alleviate the distribution drift during knowl-
edge distillation in the adversarial setting, previous works
have maintained a memory buffer, to store x̂ and replay at
later iterations to help the student recall the knowledge [3].
At a fixed frequency, batches of samples from current itera-
tions are updated in the memory [3]. Also, recent works [2]
have explored using the Generative Replay [28] strategy to
simultaneously store the samples, as they are encountered, in
a generative model (VAE [15]), and later replay by generat-
ing samples from the VAE decoder. Hence, the optimization
objective for the Knowledge-Retention (LRet) can be defined
as follows:

min
θS
LRet(θS) = min

θS
Ex̂m

[L(TθT (x̂m),SθS (x̂m))],

x̂m ∼M, (4)

where, with a slight abuse of notation,M denotes a Memory
Buffer or Generative Replay or any other replay scheme.
Thus, the overall optimization objective to update θS , while
considering both the new samples (generated from the latest
θG) and the old samples (sampled fromM) (Figure 2b) is
defined as:

min
θS
LAcq(θS) + LRet(θS). (5)

However, the objective in (5) attempts to simultaneously
optimizes LRet and LAcq but does not seek to align the
objectives, which leaves them to potentially interfere with
one another. Say, we denote the gradients of Knowledge Ac-
quisition and Knowledge Retention tasks with ∇LAcq(θ)
and ∇LRet(θ), respectively. If ∇LAcq(θ) and ∇LRet(θ)
point in a similar direction or are said to be aligned, i.e.,
∇LAcq(θ).∇LRet(θ) > 0, then taking a gradient step
along ∇LAcq(θ) or ∇LRet(θ) improves the model’s per-
formance on both tasks. This is however not the case when
∇LAcq(θ) and ∇LRet(θ) point in different directions, i.e.,
∇LAcq(θ).∇LRet(θ) ≤ 0, and the weight parameters ob-
tained, may not be optimal for both the tasks simultaneously.
Hence, the intended effect of having the gradient directions
aligned is to obtain student parameters (θS ) that have optimal
performance on both LAcq and LRet.

4



The proposed meta-learning inspired approach, seeks to
align the two tasks, LAcq and LRet. We take cues from
Model-Agnostic Meta-learning (MAML) [12], and adapt it
to Adversarial DFKD. At each iteration of the parameter
update, we pose Knowledge-Acquisition and Knowledge-
Acquisition as meta-train and meta-test, respectively. Which
means, we perform a single gradient descent step using
the current samples (x̂) produced from the generator net-
work (G), on the parameters θS and obtain θS

′ as θ′S =
θS − α∇LAcq(θS), where∇LAcq(θS) denotes gradient of
LAcq at θS . Then we optimize on the batch of samples (x̂m)
obtained from the memory (M), with the parameters θ′S , and
then make a final update on θS . Thus, formally, the overall
meta-optimization objective, with the task of Knowledge
Acquisition serving as meta-train and the task of Knowledge
Retention as meta-test (Figure 2c), can be defined as follows:

min
θS
LAcq(θS) + LRet(θ′S) = min

θS
LAcq(θS)+

LRet(θS − α∇LAcq(θS)).
(6)

3.4. How does the Proposed Student Update Strat-
egy Promote Alignment?

In this subsection, we analyze the proposed objective (6)
to understand how it results in the desired alignment between
the Knowledge-Acquisiton and Knowledge-Retention tasks.
We assume that meta-train and meta-test tasks provide us
with losses LAcq and LRet; in our case, LAcq and LRet
are the same function computed on the batches x̂ and x̂m,
respectively. We utilize Taylor’s expansion to elaborate the
gradient of LRet at a point θ displaced by φθ, as described
in Lemma 1,
Lemma 1. If LRet has Lipschitz Hessian, i.e.,
‖∇2LRet(θ1) − ∇2LRet(θ2)‖ ≤ ρ‖θ1 − θ2‖ for some
ρ > 0, then:

∇LRet(θ + φθ) = ∇LRet(θ) +∇2LRet(θ)φθ
+O(‖φθ‖2).

For instance, when φθ = −α∇LAcq(θ), we have,

∇LRet(θ − α∇LAcq(θ)) =∇LRet(θ)
− α∇2LRet(θ)∇LAcq(θ)
+O(α2).

Theorem 1. If θ′ = θ−α∇LAcq(θ), denotes a single gradi-
ent descent step on θ with the objective LAcq(θ), where α is
a scalar, and∇LAcq(θ) denotes the gradient of the objective
at θ, then:

∂LRet(θ′)
∂θ

= ∇LRet(θ)− α∇2LRet(θ).∇LAcq(θ)

−α∇2LAcq(θ).∇LRet(θ) +O(α2).

Proof. Please refer to the Supplemental Material (Theorem
1.

While optimizing the objective defined in (6) using stochastic
gradient descent, we would need to compute the gradient of
the LRet(θ′S) w.r.t θS . Therefore, utilizing Theorem 1 we
express ∂LRet(θ

′
S)

∂θS
as:

∂LRet(θ′S)

∂θS
= ∇LRet(θS)

− α∇2LRet(θS).∇LAcq(θS)

− α∇2LAcq(θS).∇LRet(θS) +O(α2), (7)

using the product rule∇a.b+∇b.a = ∇(a.b), we get:

∂LRet(θ′S)

∂θS
= ∇LRet(θS)

− α∇ (∇LRet(θS).∇LAcq(θS))︸ ︷︷ ︸
Gradient Alignment

+O(α2).

(8)

From the analysis above, we observe that the gradi-
ent of LRet(θ′S) at θS (in (8)) produces the gradient
of the gradient-product. This indicates, when optimizing
LRet(θ′S) (in (6)), the gradient of LRet(θ′S) at θS , has
a negatively scaled gradient of the gradient-product term
∇(∇LRet(θS).∇LAcq(θS)) (derived in (8)), suggesting that
the overall-gradients minimize LRet(θS) and maximize
∇LRet(θS).∇LAcq(θS). Hence, optimizing (6) enforces the
updates on LRet(θS) and LAcq(θS) to seek a common di-
rection, by maximizing the gradient-product.

3.5. Generator Update in Adversarial Exploration-
based DFKD

In the absence of the training dataset (DT ), the generator
(G) is utilized to obtain pseudo-samples (x̂) and perform
knowledge-distillation, i.e., x̂ = G(z), z ∼ N (0, I). The
generator is learned to maximize the disagreement between
Teacher network (TθT ) and the Student network (SθS ). Addi-
tionally, for the generated data x̂ to mimic similar responses
from the teacher as the real data, we include a prior loss
LP [4] to be minimized alongside maximizing the discrep-
ancy (D). Hence, we update the generator parameters (θG)
by maximizing the following objective:

max
θG

Ez∼N (0,I)[D(TθT (GθG (z)),SθS (GθG (z)))

− LP(GθG (z))]. (9)

Typically the disagreement function (D) for the generator is
identical to the teacher-student disagreement term [5,10]. In-
stead, for teacher-student discrepancy maximization we use
the Jensen-Shannon (JS) (LJS) divergence. Our motivation

5



Table 1. Distillation results of the Adversarial DFKD methods on four image classification benchmark datasets, SVHN [23], CIFAR10 [16],
CIFAR100 [16], Tiny-ImageNet [17]. Primarily we compare against the replay-based methods, present at the bottom panel of each dataset.
The best numbers from our method on the Bank-based replay are highlighted in Navy, and for the one with Generative replay are highlighted
in Maroon. The first five columns represent the µ[SAcc] and the σ2[SAcc] at different epoch percentiles (described in Section 4.1). The last
column represents the maximum test accuracy (Accmax (%)) attained by the student network in the entire training period. Note: For SVHN
and Tiny-ImageNet we were unable to reproduce the results of DFQ [5] in our setting. DFKD* denotes the baseline method without any
replay.

> 0th Percentile > 20th Percentile > 40th Percentile > 60th Percentile > 80th Percentile
Method

µ ↑ σ2 ↓ µ ↑ σ2 ↓ µ ↑ σ2 ↓ µ ↑ σ2 ↓ µ ↑ σ2 ↓ Accmax (%)

SVHN [23]
TAcc = 97.45%, SAcc = 97.26%, (Emax) = 200

DAFL [4] 85.15 241.70 90.49 8.71 91.75 3.73 92.88 0.84 93.59 0.20 94.23
DFAD [10] 92.52 93.42 94.10 0.07 94.13 0.07 94.14 0.08 94.11 0.07 94.68
DFKD* [3] 91.84 8.59 92.53 6.76 93.43 4.39 94.61 1.72 95.72 0.04 95.97

MB-DFKD [3] 89.51 21.13 89.28 24.31 88.65 30.63 87.14 38.67 81.67 15.24 94.11
PRE-DFKD [2] 94.08 2.11 94.53 1.11 94.97 0.66 95.42 0.26 95.85 0.04 96.10
Ours-1 (Memory Bank) 92.78 7.44 93.69 2.21 94.25 1.54 94.94 0.62 95.59 0.05 95.88
Ours-2 (Generative Replay) 94.48 1.64 94.79 0.71 95.09 0.51 95.47 0.27 95.91 0.03 96.15

CIFAR10 [16]
TAcc = 95.72%, SAcc = 95.23%, (Emax) = 200

DAFL [4] 62.78 629.13 72.51 296.44 80.57 110.18 87.05 22.40 90.76 2.04 92.23
DFAD [10] 85.88 152.39 89.91 11.95 91.46 5.66 92.66 0.07 92.85 0.04 93.21
DFQ [5] 81.25 98.86 84.41 37.40 87.08 19.59 89.72 6.15 91.87 0.67 92.90
DFKD* [3] 83.57 107.77 86.94 18.42 88.67 11.83 90.67 4.09 92.32 0.38 93.02

MB-DFKD [3] 84.29 95.74 87.25 16.47 88.81 11.00 90.71 3.79 92.31 0.35 93.03
PRE-DFKD [2] 87.10 45.69 88.88 10.86 90.24 6.26 91.75 1.84 92.92 0.14 93.41
Ours-1 (Memory Bank) 85.53 91.33 88.58 12.66 89.96 8.26 91.66 2.86 93.09 0.32 93.73
Ours-2 (Generative Replay) 88.07 60.86 90.52 5.20 91.44 3.18 92.45 1.45 93.48 0.18 94.02

CIFAR100 [16]
TAcc = 77.94%, SAcc = 77.10%, (Emax) = 400

DAFL [4] 52.48 437.88 61.65 82.96 65.88 32.23 69.23 11.93 72.23 1.29 73.78
DFAD [10] 59.62 192.64 65.32 28.84 67.71 2.72 68.69 0.33 69.07 0.24 69.73
DFQ [5] 68.20 55.91 70.45 9.78 71.77 5.88 73.19 2.22 74.48 0.47 75.39
DFKD* [3] 69.36 74.67 72.35 8.34 73.59 4.54 74.86 1.63 75.94 0.18 76.51

MB-DFKD [3] 66.05 207.29 71.16 14.67 72.97 5.61 74.40 1.56 75.48 0.18 76.14
PRE-DFKD [2] 70.23 86.63 73.39 6.77 74.59 2.88 75.60 1.03 76.46 0.12 76.93
Ours-1 (Memory Bank) 69.87 75.67 72.96 8.72 74.30 4.03 75.49 1.38 76.50 0.20 77.11
Ours-2 (Generative Replay) 71.49 60.17 74.16 4.61 75.12 2.26 76.01 0.74 76.75 0.09 77.21

Tiny-ImageNet [17]
TAcc = 60.83%, SAcc = 57.88%, (Emax) = 500

DAFL [4] 21.04 106.04 24.95 52.56 28.10 28.22 31.19 11.44 34.11 1.33 35.46
DFAD [10] 14.60 22.32 16.48 7.48 17.76 1.43 18.44 0.26 18.84 0.10 19.60
DFKD* [3] 34.55 86.20 38.17 23.88 40.28 13.28 42.40 5.32 44.38 0.79 45.61

MB-DFKD [3] 34.16 122.92 38.77 32.42 41.18 18.40 43.63 8.48 46.17 1.73 47.96
PRE-DFKD [2] 38.89 80.12 42.27 21.66 44.25 12.61 46.31 5.47 48.33 1.39 49.94
Ours-1 (Memory Bank) 36.34 94.62 40.03 26.20 42.28 13.76 44.43 5.82 46.52 0.95 47.96
Ours-2 (Generative Replay) 39.09 74.95 42.30 21.23 44.19 13.55 46.30 6.21 48.48 1.12 49.88

to use JS divergence is based on empirical study by Binici et
al. [3]. Hence, D is defined as:

D(a, b) = LJS(p(a), p(b)),

LJS(p(a), p(b)) =
1

2
(LKL(p(a),m) + LKL(p(b),m)), and

m =
1

2
(p(a) + p(b)). (10)

Here LKL stands for the Kullback–Leibler divergence and
p(a) and p(b) denote the probability vectors obtained after
the Softmax applied to the arguments a and b, respectively.

Moreover, the prior loss LP [3] is defined as the com-
bination of three loss functions (LOH , LA, and LEM ) that

capture different characteristics from the teacher model and
impose them on the pseudo samples x̂, and is defined as:

LP = LOH + γLA + δLEM , (11)

where, γ and δ denote the weighing scalar coefficients.
• LOH is the one-hot loss that forces the generated
samples to have strong (one-hot vector like) predictions
when input to the teacher. It is defined as the cross-
entropy between the teacher’s softmax output pT (x̂n) =
Softmax(TθT (x̂n)), x̂n ∈ x̂, and its one-hot vector ver-
sion ec ∈ {0, 1}C , where C denotes the total number of
classes and ec denotes the c-th canonical one-hot-vector,
and c = arg maxi(p

i
T (x̂n)), the superscript i denotes the

6



0 50 100 150 20040

50

60

70

80

Memory Size: 5 Memory Size: 10 Memory Size: 20 Memory Size: 40 Generative Replay

MB-DFKD

Ours (w/ Memory Bank)A
cc

u
ra

cy
 (

%
)

A
cc

u
ra

cy
 (

%
)

W
R

N
-1

6
-1

 [
3
3

]
W

R
N

-1
6
-2

 [
3
3

]

0 50 100 150 20030

40

50

60

70

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20040

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20030

40

50

60

70

80

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 200

40

50

60

70

80

90

MB-DFKD

Ours (w/ Memory Bank)

Epochs Epochs Epochs Epochs Epochs
0 50 100 150 20040

50

60

70

80

90

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20040

50

60

70

80

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20040

50

60

70

80

90

0 50 100 150 20040

50

60

70

80

0 50 100 150 20040

50

60

70

80

90

PRE-DFKD

Ours (w/ Generative Replay)

PRE-DFKD

Ours (w/ Generative Replay)

MB-DFKD

Ours (w/ Memory Bank)

Figure 5. Student learning curves depicting the learning evolution of Wide-ResNet (WRN) [33]. The WRN-16-1 (top-row), and WRN-16-2
(bottom-row) networks are distilled by a WRN-40-2 teacher network pre-trained on CIFAR10 (TAcc = 94.87%). Each column represent the
learning curves with the Buffer-based (with different memory buffer sizes) and Generative replay schemes. The proposed method is in Blue.

ith probability score of the predicted mass vector pT (x̂n).
Hence, LOH is defined as:

LOH = − 1

N

N∑
n=1

e>c log(pT (x̂n)). (12)

• LA is the activation loss motivated by the notion that mean-
ingful inputs result in higher-valued activation maps in a
well-trained network [4] and is defined as:

LA = − 1

NL

N∑
n=1

L∑
l=1

‖AlT (x̂n)‖1, (13)

where AlT (x̂n) denotes the activation of the l-th layer in the
Teacher network (TθT ) for the input nth input x̂n ∈ x̂.
•LEM loss is the entropy-maximization term imposed on the
generator to output an equal number of pseudo-samples from
each category [5]. In other words, the intra-batch entropy
is maximized, resulting in a similar number of samples for
each category i.e. if p̄T = 1

N

∑N
n=1 pT (x̂n), then the loss

LEM is defined as:

LEM = p̄>T log(p̄T ). (14)

In sum, the Generator loss objective (LG) is defined as:

LG(θG) = −D(TθT (GθG (z)),SθS (GθG (z)))+LP(GθG (z)).
(15)

4. Experiments
4.1. Experimental Settings
Datasets: We evaluate the proposed method on SVHN [23],
CIFAR10 [16], CIFAR100 [16] and Tiny-ImageNet [17]
datasets.
Teacher model: For CIFAR10 and CIFAR100 datasets, we
used the pre-trained teacher models made available by the
authors of [11] and [3], respectively. For SVHN and Tiny-
ImageNet we trained the teacher network from scratch. We
provide the training details of the teacher models in the Sup-
plemental Material.

Definition of an Epoch in DFKD: In Adversarial DFKD,
the notion of an epoch is obscure. In a typical deep neural
network-based classification training, an epoch is defined as
one complete pass over the available training data. However,
DFKD has no access to the training data; instead, the pseudo
samples generated on-the-fly are used to distill knowledge to
the student network. Therefore, prior works [3,5,10] defined
an epoch in terms of a fixed number of training iterations (I),
where each iteration consists of a set number of generator
update steps (g) and student update steps (s). Hence, to be
consistent across the baselines and prior arts, we use the
same number of training iterations, generator update steps,
and student updates steps to define an epoch. For all the
methods, we set I = 72, g = 1, and s = 10 and use a batch
size of 512 of the sampled noise (z) to generate the pseudo
samples and optimize the parameters θG and θS .
Training Details: Due to the page-limit constraint, the train-
ing details are provided in the Supplemental Material.
Evaluation: We evaluate the methods by comparing the
mean and variance of the student network’s test accuracy
(SAcc), denoting them as µ[SAcc], and σ2[SAcc], respec-
tively, across the epochs, motivated by Binci et al. [2].
Specifically, we compare the different sections of the stu-
dent’s learning evolution by partitioning them into different
epoch percentiles. For example, computing the µ[SAcc] and
σ2[SAcc] for epochs greater than the nth percentile conveys
the mean and variance across all the epochs greater than the
n

100
th of the total number of training epochs.

4.2. Results and Observations

Baseline and State-of-the-art Comparisons In Table 1, we
analyze our method on classification task and compare it with
prior Adversarial DFKD methods [4, 5, 10] and closely re-
lated memory-based Adversarial DFKD methods [2, 3]. For
a fair comparison across the methods, we re-implemented
all the methods and used the same generator architecture to
generate the pseudo samples. For each of the methods we re-
port the µ[SAcc] and σ2[SAcc] at different epoch percentiles
and the maximum accuracy (Accmax (%)) attained by the
student. We observe that, compared to MB-DFKD (Memory

7



ZSKDa [22] ADIb [31] CMIb [11] DeGANc [1] EATSKDc [21] KEGNETa [32] ZSKTb [20] DDADa [35] DAFLd [4] DFADd [10] DFQd [5] MB-DFKDd [3] PRE-DFKDd [2] Ours-1 Ours-2

TAcc (%) 77.50 78.05 78.05 77.94 77.94 77.50 78.05 77.50 77.94 77.94 77.94 77.94 77.94 77.94 77.94
SAcc (%) 70.21 61.32 77.04 65.25 67.18 73.91 67.74 75.04 73.79 69.73 75.39 76.14 76.93 77.11 77.21
∆TAcc−SAcc

7.29 16.73 1.01 12.69 10.76 3.59 10.31 2.46 4.15 8.21 2.55 1.80 1.01 0.83 0.73

Table 2. Classification accuracy (in %) of the student trained using various DFKD methods on CIFAR100 with ResNet-34 [14] as the teacher
and ResNet-18 [14] as the student. TAcc and SAcc denote the Teacher network’s and the Student network’s accuracy, respectively, and
∆TAcc−SAcc denotes the difference between the Teacher and Student accuracies. Also, a, b, c and d denote results produced by [35], [11], [3],
and our implementation, respectively.

Bank) [3], Ours-1 (Memory Bank) demonstrates consistent
improvement across all the datasets. Similarly, compared to
PRE-DFKD (Generative Replay) [2], utilizing the same VAE
decoder architecture as the generative replay, we observe a
similar trend for Ours-2 (Generative Replay).

Moreover, in Figure 4, we visualize the learning curves of
the student networks trained on multiple datasets. We plot the
test accuracy of the student at the end of each training epoch.
The proposed method exhibits significant improvement in
the learning evolution and the peak accuracies achieved, sug-
gesting that the proposed approach can retain the knowledge
from previously encountered samples as the learning pro-
gresses. However, on Tiny-ImageNet, with Generative replay,
we did not observe substantial improvements; we conjecture
that this may be due to the complexity of the dataset, and the
inability to capture crucial samples as replay for the complex
dataset, for a large number of epochs. Also, with Generative
Replay we sometimes faced difficulty in training a VAE on a
stream of synthetic samples (especially for complex dataset
like Tiny-ImageNet) as it suffers due to the distribution drift
of its own.

Additionally, we emphasize that we do not strive toward
achieving state-of-the-art student classification accuracy (re-
quiring extensive hyper-parameter tuning) in the DFKD set-
ting, but verify the viability of our hypothesis of retaining
the previously acquired knowledge while learning on new
samples. Nonetheless, we observe that our method improves
upon the student classification accuracy on CIFAR100 [16]
compared to the contemporary works and the current state-of-
the-art [2] with the ResNet-34 [14] (T ) and ResNet-18 [14]
(S) setup, as shown in Table 2. Additionally, since previ-
ous works use the same teacher network with different test
accuracies, we also report the teacher accuracies of the re-
spective methods used to distill the knowledge to the student.
Nonetheless, we also compute the Teacher-Student accuracy
difference (∆TAcc−SAcc

) to assess the distance of the student
from its teacher in terms of classification accuracy.
Interpreting the Result: Because of the proposed student
update strategy, we observe a global monotonicity in the stu-
dent’s learning evolution which the existing approaches with
naive replay [2, 3] claim, but do not warrant (described in
Section 3.3). The global monotonicity in the learning evolu-
tion encompasses crucial advantages. For example, when the
validation data is unavailable, the developer cannot assess the
student’s accuracy and identify the best parameters for the
student. In such a scenario, the final accuracy is dependent
on the random termination epoch set by the developer. In

other words, the ideal DFKD approach should sustain high
accuracy via monotonically enhancing it during the course of
distillation. Therefore, µ[SAcc] and σ2[SAcc] contribute as
crucial metrics to asses the distillation method as opposed to
the maximum accuracy (Accmax), since the Accmax value can
be attained at any point of time prior to the termination, and
can be misleading. The improvements in the monotonicity
and the µ[SAcc] and σ2[SAcc] values of proposed method
are evident from Table 1, Figure 4 and Figure 5.
Architecture Scalability: The proposed student update
strategy is generic and is scalable across different neural
network architecture families since the method is not con-
strained to a particular choice of architecture. From the
ResNet-18 [14], WRN-16-1 [33] and WRN-16-2 [33] stu-
dent learning curves (in Figure 4 and Figure 5), we observe
our method’s advantage on both the network architectures.
Moreover, for large student network architectures (Deeper
or Wider) that include complex layers, the proposed method
efficiently handles the intricacies with regard to computing
the Hessian and the Hessian-product, which becomes highly
essential for cumbersome models.
Improvement across Replay Schemes: Furthermore, the
proposed method is agnostic to the memory scheme em-
ployed for replay, as demonstrated by the experiments (in
Table 1, Figure 4 and Figure 5) using a Memory Buffer and
Generative-Replay, thus, rendering our method generalized
to the choice of replay. In Table 1 and Figure 5, we can
observe that the proposed method enhances the student’s
performance on both the replay schemes (Memory Bank
and Generative Replay) used in the prior arts. Moreover, we
experiment with different memory buffer sizes on WRN-
16-1 [33] and WRN-16-2 [33] distillation (in Figure 5) and
observe consistent and substantial improvements across dif-
ferent memory sizes. Here, the memory size is defined as the
maximum number of pseudo-example batches that the bank
can contain and each batch consists of randomly sampled 64
examples from x̂.
GPU Memory Utilization: Moreover, our student update
strategy brings in no practical memory overhead, compared
to memory-based Adversarial DFKD methods. We observe
only a minimal increase in the GPU memory usage of few
MBs (≈ 40 MB) due to the higher order gradients computed
as a part of the update on θS through θ′S . Moreover, we use
a single gradient descent step to obtain θ′S , which does not
incur a large memory overhead. Thus, we do not opt for a
first order approximation [24] of our method, which is much
prevalent in the meta-learning literature.

8



5. Conclusion

Societal Impact: Similar to other DFKD methods, our
method may be framed as an attack strategy to create clones
of proprietary pre-trained models that are accessible on-
line [30]. However, this work makes no such efforts and
does not support such practices.
Summary: In this paper, we proposed a meta-learning in-
spired student update strategy for the Adversarial DFKD
setting, that treats Knowledge-Acquisition and Knowledge-
Retention as meta-train and meta-test, respectively. The
proposed strategy substantially improves the learning evo-
lution of the student network by implicitly aligning the
Knowledge-Retention and the Knowledge-Acquisition tasks.
The intended effect of having the gradient directions aligned
is to obtain student parameters (θS) that have optimal per-
formance on both LAcq and LRet. The conducted experi-
ments on multiple datasets, network architectures, and re-
play schemes demonstrate the effectiveness, scalability and
generalizability of the proposed strategy.

References
[1] Sravanti Addepalli, Gaurav Kumar Nayak, Anirban

Chakraborty, and Venkatesh Babu Radhakrishnan. Degan:
Data-enriching gan for retrieving representative samples from
a trained classifier. In AAAI, 2020. 8

[2] Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham,
Karianto Leman, and Tulika Mitra. Robust and resource-
efficient data-free knowledge distillation by generative pseudo
replay. In AAAI, 2022. 2, 3, 4, 6, 7, 8, 11, 12, 13

[3] Kuluhan Binici, Nam Trung Pham, Tulika Mitra, and Karianto
Leman. Preventing catastrophic forgetting and distribution
mismatch in knowledge distillation via synthetic data. In
WACV, 2022. 2, 3, 4, 6, 7, 8, 11

[4] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang,
Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi
Tian. Dafl: Data-free learning of student networks. In ICCV,
2019. 1, 2, 5, 6, 7, 8, 13

[5] Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon
Lee. Data-free network quantization with adversarial knowl-
edge distillation. In CVPR Workshops, 2020. 2, 3, 5, 6, 7, 8,
13

[6] Yatin Dandi, Luis Barba, and Martin Jaggi. Implicit gradient
alignment in distributed and federated learning. In AAAI,
2022. 2

[7] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and Tinne
Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. IEEE TPAMI, 44(7):3366–3385, 2021.
2

[8] Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya
Harikumar, Truyen Tran, Santu Rana, and Svetha Venkatesh.
Momentum adversarial distillation: Handling large distribu-
tion shifts in data-free knowledge distillation. In NeurIPS,
2022. 3

[9] Gongfan Fang, Kanya Mo, Xinchao Wang, Jie Song, Shitao
Bei, Haofei Zhang, and Mingli Song. Up to 100x faster
data-free knowledge distillation. In AAAI, 2022. 3

[10] Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang,
Da Chen, and Mingli Song. Data-free adversarial distillation.
In CVPR, 2020. 1, 2, 3, 4, 5, 6, 7, 8, 13

[11] Gongfan Fang, Jie Song, Xinchao Wang, Chen Shen, Xingen
Wang, and Mingli Song. Contrastive model inversion for
data-free knowledge distillation. In IJCAI, 2021. 1, 7, 8, 13

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, 2017. 5

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 3

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
4, 8, 11, 13

[15] Diederik P Kingma, Max Welling, et al. An introduction
to variational autoencoders. Foundations and Trends® in
Machine Learning, 12(4):307–392, 2019. 4, 12, 13

[16] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. 2009. 4, 6, 7, 8, 12, 13

[17] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition
challenge. 2015. 4, 6, 7, 11, 12, 13

[18] Jingru Li, Sheng Zhou, Liangcheng Li, Xifeng Yan, Zhi
Yu, and Jiajun Bu. How to teach: Learning data-free
knowledge distillation from curriculum. arXiv preprint
arXiv:2208.13648, 2022. 13

[19] Yuang Liu, Wei Zhang, and Jun Wang. Zero-shot adversarial
quantization. In CVPR, 2021. 1

[20] Paul Micaelli and Amos J Storkey. Zero-shot knowledge
transfer via adversarial belief matching. In NeurIPS, 2019. 1,
2, 3, 8

[21] Gaurav Kumar Nayak, Konda Reddy Mopuri, and Anirban
Chakraborty. Effectiveness of arbitrary transfer sets for data-
free knowledge distillation. In WACV, 2021. 8

[22] Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj,
Venkatesh Babu Radhakrishnan, and Anirban Chakraborty.
Zero-shot knowledge distillation in deep networks. In ICML,
2019. 1, 8

[23] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y. Ng. Reading digits in natural images
with unsupervised feature learning. In NeurIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011. 4,
6, 7, 11, 12

[24] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 8

[25] Mert Bulent Sariyildiz and Ramazan Gokberk Cinbis. Gradi-
ent matching generative networks for zero-shot learning. In
CVPR, 2019. 2

[26] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Contin-
ual learning in generative adversarial nets. arXiv preprint
arXiv:1705.08395, 2017. 1, 3

9



[27] Yuge Shi, Jeffrey Seely, Philip Torr, Siddharth N, Awni Han-
nun, Nicolas Usunier, and Gabriel Synnaeve. Gradient match-
ing for domain generalization. In ICLR, 2022. 2

[28] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NeurIPS,
2017. 2, 3, 4

[29] Hoang Thanh-Tung and Truyen Tran. Catastrophic forgetting
and mode collapse in gans. In IJCNN, 2020. 1

[30] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and
Nicolas Papernot. Data-free model extraction. In CVPR, 2021.
9

[31] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via deepin-
version. In CVPR, 2020. 1, 8, 13

[32] Jaemin Yoo, Minyong Cho, Taebum Kim, and U Kang.
Knowledge extraction with no observable data. In NeurIPS,
2019. 8

[33] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In BMVC, 2016. 7, 8, 13

[34] Sergey Zagoruyko and Nikos Komodakis. Paying more atten-
tion to attention: Improving the performance of convolutional
neural networks via attention transfer. In ICLR, 2017. 3

[35] Haoran Zhao, Xin Sun, Junyu Dong, Milos Manic, Huiyu
Zhou, and Hui Yu. Dual discriminator adversarial distillation
for data-free model compression. International Journal of
Machine Learning and Cybernetics, 2022. 8

10



A. Training Details:

Algorithm 1: Proposed DFKD method, with Memory-Buffer replay.
Input: TθT , SθS , GθG ,M, Emax, I, g, αG , s, α, αS , f
Output: SθS
E = 1
while E ≤ Emax do

for I iterations do
for g iterations do

z ∼ N (0, I)
LG ← −D(T (GθG (z)),S(GθG (z))) + LP(GθG (z))
θG ← θG − αG∇θGLG

end
for s iterations do

z ∼ N (0, I)
x̂← GθG (z)
Compute LAcq(θS) using x̂
LS ← LAcq(θS)
ifM is not empty then

x̂m ∼M
θ′S ← θS − α∇LAcq(θS)
Compute LRet(θS) and LRet(θ′S) using x̂m
LS ← LS + LRet(θS) + LRet(θ′S)

end
θS ← θS − αS∇θSLS

end
end
if E mod f == 0 then

UpdateM with x∗m, where, x∗m ⊆ x̂
end
E ← E + 1

end

A.1. Teacher Model Training Details

We train the ResNet-34 [14] teacher model for SVHN [23] and Tiny-ImageNet [17]. For SVHN we use the ResNet-34
model definition made available by Binci et al.1 and for Tiny-ImageNet, we use the torchvision model definition from
PyTorch2. To train the teacher models we use SGD optimizer with an initial learning rate of 0.1, momentum of 0.9 and a
weight-decay of 5e-4, with a batch size of 128 for 400 epochs. Moreover, the learning rate is decayed at each iteration till 0,
using cosine annealing.

A.2. Student Model Training Details

For fair comparisons, we use the same Generator (G) network (shown in Table 3) for all the methods. Unless not explicitly
specified, for MB-DFKD [3] and our method (w/ Memory Buffer), we maintain a memory buffer of size 10 and update the
memory buffer at a frequency of f = 5, following previous work [3] (Algorithm 1). Also, for PRE-DFKD [2] and our method
(w/ Generative Replay), we use the same VAE architecture (as in Table 3 (Decoder) and 4 (Encoder)), from [2], to transfer
the pseudo samples as memory, and use the decoder part (same as the generator architecture in Table 3) to replay the learnt
distribution, with the VAE update parameters of f = 1 and sgpmax = 4 (Algorithm 2), following previous works [2]. For all the
methods and datasets, we use SGD optimizer with a momentum of 0.9 and a variable learning rate (αS ) with cosine annealing
starting from 1e-1 and annealing it at each epoch to 0 to optimize the student parameters (θS). For the one-step gradient
descent, we use a learning rate (α) of 0.9. Furthermore, we use Adam optimizer with a learning rate (αG) of 0.02 to optimize

1https://github.com/kuluhan/PRE-DFKD
2https://pytorch.org/

11

https://github.com/kuluhan/PRE-DFKD
https://pytorch.org/


Algorithm 2: Proposed DFKD method, with Generative replay.
Input: TθT , SθS , GθG ,M, Emax, I, g, αG , s, α, αS , f , sgpmax
Output: SθS
E = 1
while E ≤ Emax do

for I iterations do
for g iterations do

z ∼ N (0, I)
LG ← −D(T (GθG (z)),S(GθG (z))) + LP(GθG (z))
θG ← θG − αG∇θGLG

end
for s iterations do

z ∼ N (0, I)
x̂← GθG (z)
Compute LAcq(θS) using x̂
LS ← LAcq(θS)
x̂m ∼M
θ′S ← θS − α∇LAcq(θS)
Compute LRet(θS) and LRet(θ′S) using x̂m
LS ← LS + LRet(θS) + LRet(θ′S)
θS ← θS − αS∇θSLS
sgp = 0
if E mod f == 0 and sgp ≤ sgpmax then

TrainM with x̂m and x∗m, where, x∗m ⊆ x̂
sgp ← sgp + 1

end
end

end
E ← E + 1

end

the Generator (G). We test all our methods primarily on SVHN [23], CIFAR10 [16], CIFAR100 [16], and Tiny-ImageNet [17]
for 200, 200, 400, and 500 epochs (Emax), respectively. Our experiments were run on a mixture of Nvidia RTX2080Ti (11GB)
and RTX3090 (24GB) GPUs. However, all our experiments incured not more than 11.5 GB of VRAM.

Table 3. Generator Network (G) and Generative Replay (VAE [15]) Decoder Architecture.

Output Size Layers

1000 Noise (z ∼ N (0, I))
128× h/4× w/4 Linear, BatchNorm1D, Reshape
128× h/4× w/4 SpectralNorm (Conv (3× 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3× 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3× 3)), TanH, BatchNorm2D

B. Attribution of Existing Assets:

B.1. Code-Base:

The code-base used to experiment with proposed method is adapted from the GitHub1 repository of Binci et al. [2].

12



Table 4. Generative Replay (VAE [15]) Encoder Architecture.

Output Size Layers

3× h× w Input Example
64× h× w SpectralNorm(Conv (3× 3)), BatchNorm2D, LeakyReLU
128× h× w SpectralNorm(Conv (3× 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 DownSample (0.5×)
128× h/2× w/2 SpectralNorm(Conv (3× 3)), BatchNorm2D
128× h/4× w/4 DownSample (0.5×)
{1000, 1000} Reshape, Linear

B.2. Pre Trained Teacher Model
The CIFAR10 pretrained [16] Teacher models of ResNet-34 and WRN-40-2 [33] are used used from the GitHub3 repository

made available by Fang et al. [11]. For the ResNet-34 Teacher model, pretrained on CIFAR100 [16], we used the model made
available by Binci et al.1 [2].

C. Extended Results
In Figure 6, we visualize the Cumulative Mean Accuracies (%) across the training epochs with Buffer-based and Generative

Replay. The plots in Figure 6 complement the ones shown in Figure 5 of the main manuscript.

Based on the similarity of the Tiny-ImageNet teacher accuracy (TAcc) of the methods proposed and reported by Li et al. [18],
we compare our methods with the accuracies reported by them.

Method Teacher Accuracy (%) (TAcc) Student Accuracy (%) (SAcc)
ADIa [31] 61.47 6.00
CMIa [11] 61.47 1.85

DAFLb [4] 60.83 35.46
DFADb [10] 60.83 19.60
DFQa [5] 61.47 41.30
CuDFKDa [18] 61.47 43.42

Ours-1 (w/ Memory Bank) 60.83 47.96
Ours-2 (w/ Generative Replay) 60.83 49.88

Table 5. Classification accuracy (in %) of the student trained using various DFKD methods on Tiny-ImageNet [17] with ResNet-34 [14] as
the teacher and ResNet-18 [14] as the student. a and b denote results obtained from [18] and our implementation, respectively.

Memory Size: 5 Memory Size: 10 Memory Size: 20 Memory Size: 40 Generative Replay

C
u
m

u
la

ti
v
e
 M

e
a
n

A
cc

u
ra

cy
 (

%
)

C
u
m

u
la

ti
v
e
 M

e
a
n

A
cc

u
ra

cy
 (

%
)

W
R

N
-1

6
-1

 [
3
3

]
W

R
N

-1
6
-2

 [
3
3

]

0 50 100 150 20020

30

40

50

60

70

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20020

30

40

50

60

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20020

30

40

50

60

70

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20020

30

40

50

60

70

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20020

30

40

50

60

70

PRE-DFKD

Ours (w/ Generative Replay)

0 50 100 150 20020

30

40

50

60

70

80

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20040

50

60

70

80

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150

40

50

60

70

80

MB-DFKD

Ours (w/ Memory Bank)

200

EpochsEpochs Epochs Epochs Epochs
0 50 100 150 20030

40

50

60

70

80

MB-DFKD

Ours (w/ Memory Bank)

0 50 100 150 20020

40

60

80

PRE-DFKD

Ours (w/ Generative Replay)

Figure 6. Cumulative Mean Accuracy (%) evolution of Wide-ResNet (WRN) [33]. The WRN-16-1 (top-row), and WRN-16-2 (bottom-row)
networks are distilled by a WRN-40-2 teacher network pre-trained on CIFAR10 (TAcc = 94.87%). Each column represent the learning
curves with the Buffer-based (with different memory buffer sizes) and Generative replay schemes. The proposed method is in Blue.

3https://github.com/zju-vipa/CMI

13

https://github.com/zju-vipa/CMI


Lemma 1. If LRet has Lipschitz Hessian, i.e., ‖∇2LRet(θ1)−∇2LRet(θ2)‖ ≤ ρ‖θ1 − θ2‖ for some ρ > 0, then:

∇LRet(θ + φθ) = ∇LRet(θ) +∇2LRet(θ)φθ +O(‖φθ‖2).

For instance, when φθ = −α∇LAcq(θ), we have,

∇LRet(θ − α∇LAcq(θ)) =∇LRet(θ)− α∇2LRet(θ)∇LAcq(θ) +O(α2).

Proof. Applying the fundamental theorem of calculus to each component of LRet, we have:

∇LRet(θ + φθ) = ∇LRet(θ) +∇2LRet(θ)φθ +

∫ 1

k=0

(∇2LRet(θ + kφθ)−∇2LRet(θ))φθdk. (16)

Omitting the subscript Ret for brevity,

=⇒ ‖∇L(θ + φθ)− (∇L(θ) +∇2L(θ)φθ)‖ = ‖
∫ 1

k=0

(∇2L(θ + kφθ)−∇2L(θ))φθdk‖ (17)

=⇒ ‖∇L(θ + φθ)− (∇L(θ) +∇2L(θ)φθ)‖ ≤
∫ 1

k=0

‖(∇2L(θ + kφθ)−∇2L(θ))φθ‖dk (18)

=⇒ ‖∇L(θ + φθ)− (∇L(θ) +∇2L(θ)φθ)‖ ≤
∫ 1

k=0

ρ‖kφθ‖.‖φθ‖dk from ρ-Lipschitzness (19)

=⇒ ‖∇L(θ + φθ)− (∇L(θ) +∇2L(θ)φθ)‖ ≤
ρ

2
‖φθ‖2. (20)

Theorem 1. If θ′ = θ − α∇LAcq(θ), denotes the one step gradient descent on θ with the objective LAcq(θ), where α is a
scalar, and∇LAcq(θ) denotes the gradients of LAcq at θ, then:

∂LRet(θ′)
∂θ

= ∇LRet(θ)− α∇2LRet(θ).∇LAcq(θ)− α∇2LAcq(θ).∇LRet(θ) +O(α2).

Proof. We have

∂LRet(θ′)
∂θ

= ∇LRet(θ′).
∂θ′

∂θ
(21)

=⇒ ∂LRet(θ′)
∂θ

= ∇LRet(θ′).
∂(θ − α∇LAcq(θ))

∂θ
(22)

=⇒ ∂LRet(θ′)
∂θ

= ∇LRet(θ′).(I − α∇2LAcq(θ)) (23)

Using Lemma 1, we substitute the value of∇LRet(θ′), where θ′ = θ − α∇LAcq(θ) in (23), and obtain:

∂LRet(θ′)
∂θ

=

=∇LRet(θ
′)︷ ︸︸ ︷

(∇LRet(θ) +∇2LRet(θ). (θ′ − θ)︸ ︷︷ ︸
=−α∇LAcq(θ)

+O(‖θ′ − θ‖2)︸ ︷︷ ︸
=O(α2)

) .(I − α∇2LAcq(θ)) (24)

=⇒ ∂LRet(θ′)
∂θ

= ∇LRet(θ) +∇2LRet(θ). (θ′ − θ)︸ ︷︷ ︸
=−α∇LAcq(θ)

−α∇2LAcq(θ)∇LRet(θ) +O(α2) (25)

=⇒ ∂LRet(θ′)
∂θ

= ∇LRet(θ)− α∇2LRet(θ)∇LAcq(θ)− α∇2LAcq(θ)∇LRet(θ) +O(α2) (26)

=⇒ ∂LRet(θ′)
∂θ

= ∇LRet(θ)− α (

Hessian Product−1︷ ︸︸ ︷
∇2LRet(θ)∇LAcq −

Hessian Product−2︷ ︸︸ ︷
∇2LAcq∇LRet(θ))︸ ︷︷ ︸

Gradient Matching

+O.(α2) (27)

14



Note that, Lemma 1 provides an efficient way to obtain Hessian Product − 1 (highlighted in (27)) by computing the
gradient of LRet at θ′, thus, eradicating the time and memory overhead of explicitly computing Hessian Product− 1. Hence,
we have:

∂LRet(θ′)
∂θ

= ∇LRet(θ)− α∇2LRet(θ)∇LAcq(θ)− α∇2LAcq∇LRet(θ) +O(α2). (28)

15


	1 . Introduction
	2 . Related Work
	3 . Methodology
	3.1 . Adversarial Data-Free Knowledge Distillation
	3.2 . Goal of Data Free Knowledge Distillation
	3.3 . Learning to Retain while Acquiring
	3.4 . How does the Proposed Student Update Strategy Promote Alignment?
	3.5 . Generator Update in Adversarial Exploration-based DFKD

	4 . Experiments
	4.1 . Experimental Settings
	4.2 . Results and Observations

	5 . Conclusion
	A . Training Details:
	A.1 . Teacher Model Training Details
	A.2 . Student Model Training Details

	B . Attribution of Existing Assets:
	B.1 . Code-Base:
	B.2 . Pre Trained Teacher Model

	C . Extended Results

