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Abstract

Recent studies on transfer learning have shown that se-
lectively fine-tuning a subset of layers or customizing dif-
ferent learning rates for each layer can greatly improve ro-
bustness to out-of-distribution (OOD) data and retain gen-
eralization capability in the pre-trained models. However,
most of these methods employ manually crafted heuristics
or expensive hyper-parameter searches, which prevent them
from scaling up to large datasets and neural networks. To
solve this problem, we propose Trainable Projected Gradi-
ent Method (TPGM) to automatically learn the constraint
imposed for each layer for a fine-grained fine-tuning reg-
ularization. This is motivated by formulating fine-tuning
as a bi-level constrained optimization problem. Specifi-
cally, TPGM maintains a set of projection radii, i.e., dis-
tance constraints between the fine-tuned model and the pre-
trained model, for each layer, and enforces them through
weight projections. To learn the constraints, we propose
a bi-level optimization to automatically learn the best set
of projection radii in an end-to-end manner. Theoreti-
cally, we show that the bi-level optimization formulation
could explain the regularization capability of TPGM. Em-
pirically, with little hyper-parameter search cost, TPGM
outperforms existing fine-tuning methods in OOD perfor-
mance while matching the best in-distribution (ID) per-
formance. For example, when fine-tuned on DomainNet-
Real and ImageNet, compared to vanilla fine-tuning, TPGM
shows 22% and 10% relative OOD improvement respec-
tively on their sketch counterparts. Code is available at
https://github.com/PotatoTian/TPGM .

1. Introduction

Improving out-of-distribution (OOD) robustness such
that a vision model can be trusted reliably across a variety of
conditions beyond the in-distribution (ID) training data has
been a central research topic in deep learning. For example,
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Figure 1. Illustration of TPGM. TPGM learns different weight
projection radii, γ, for each layer between a fine-tuned model θt
and a pre-trained model θ0 and enforces the constraints through
projection to obtain a projected model θ̃.

domain adaptation [39, 46], domain generalization [25, 50],
and out-of-distribution calibration [33] are examples of re-
lated fields. More recently, large pre-trained models, such
as CLIP [28] (pre-trained on 400M image-text pairs), have
demonstrated large gains in OOD robustness, thanks to the
ever-increasing amount of pre-training data as well as ef-
fective architectures and optimization methods. However,
fine-tuning such models to other tasks generally results in
worse OOD generalization as the model over-fits to the new
data and forgets the pre-trained features [28]. A natural goal
is to preserve the generalization capability acquired by the
pre-trained model when fine-tuning it to a downstream task.

A recent empirical study shows that aggressive fine-
tuning strategies such as using a large learning rate can de-
crease OOD robustness [41]. We hypothesize that the for-
getting of the generalization capability of the pre-trained
model in the course of fine-tuning is due to unconstrained
optimization on the new training data [44]. This conjec-
ture is not surprising, because several prior works, even
though they did not focus on OOD robustness, have dis-
covered that encouraging a close distance to the pre-trained
model weights can improve ID generalization, i.e., avoid-
ing over-fitting to the training data [9,44]. Similarly, if suit-
able distance constraints are enforced, we expect the model
to behave more like the pre-trained model and thus retain
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more of its generalization capability. The question is where
to enforce distance constraints and how to optimize them?

Several works have demonstrated the importance of
treating each layer differently during fine-tuning. For ex-
ample, a new work [22] discovers that selectively fine-
tuning a subset of layers can lead to improved robustness
to distribution shift. Another work [31] shows that opti-
mizing a different learning rate for each layer is benefi-
cial for few-shot learning. Therefore, we propose to en-
force a different constraint for each layer. However, ex-
isting works either use manually crafted heuristics or ex-
pensive hyper-parameter search, which prevent them from
scaling up to large datasets and neural networks. For exam-
ple, the prior work [31] using evolutionary search for hyper-
parameters can only scale up to a custom 6-layer ConvNet
and a ResNet-12 for few-shot learning. The computation
and time for searching hyper-parameters become increas-
ingly infeasible for larger datasets, let alone scaling up the
combinatorial search space to all layers. For example, a
ViT-base [37] model has 154 trainable parameter groups in-
cluding both weights, biases, and embeddings1. This leads
to a search space with more than 1045 combinations even if
we allow only two choices per constraint parameter, which
makes the search prohibitively expensive.

To solve this problem, we propose a trainable projected
gradient method (TPGM) to support layer-wise regular-
ization optimization. Specifically, TPGM adopts trainable
weight projection constraints γ, which we refer to as
projection radii, and incorporates them in the forward pass
of the main model to optimize. Intuitively, as shown in
Fig. 1, TPGM maintains a set of weight projection radii
γ i.e., the distance between the pre-trained model (θ0)
and the current fine-tuned model (θt), for each layer of
a neural network and updates them. The projection radii
control how much ”freedom” each layer has to grow. For
example, if the model weights increase outside of the norm
ball defined by γ and ‖ · ‖, the projection operator will
project them back to be within the constraints. To learn
the weight projection radii in a principled manner, we
propose to use alternating optimization between the model
weights and the projection radii, motivated by formulating
fine-tuning as a bi-level constrained problem (Sec. 3.1).
We theoretically show that the bi-level formulation could
explain the behavior of TPGM (Sec. 3.4).

Empirically, we conduct thorough experiments on large-
scale datasets, DomainNet [27] and ImageNet [4], using dif-
ferent architectures. Under the premise of preserving ID
performance, i.e., OOD robustness should not come at the
expense of worse ID accuracy, TPGM outperforms exist-
ing approaches with little effort for hyper-parameter tun-
ing. Further analysis of the learned projection radii reveals

1For example, for a linear layer y = Wx+b, we need to use separate
distance constraints for W and b.

that lower layers (layers closer to the input) in a network
require stronger regularization while higher layers (layers
closer to the output) need more flexibility. This observation
is in line with the common belief that lower layers learn
more general features while higher layers specialize to each
dataset [26, 29, 41, 45]. Therefore, when conducting trans-
fer learning such as fine-tuning, we need to treat each layer
differently. Our contributions are summarized below.

• We propose a trainable projected gradient method
(TPGM) for fine-tuning to automatically learn the
distance constraints for each layer in a neural network
during fine-tuning.

• We conduct experiments on different datasets and
architectures to show significantly improved OOD
generalization while matching ID performance.

• We theoretically study TPGM using linear models
to show that bi-level optimization could explain the
regularization capability of TPGM.

2. Related Works
Fine-tuning to Boost ID Performance. SpotTune [11]

introduces an additional policy network, which outputs a
linear interpolation ratio between the pre-trained model (θ0)
and fine-tuned model (θt) based on the input. Instead of di-
rectly regularizing the weight space, DELTA [23] proposes
to regularize the output (feature maps) of θ0 and θt. How-
ever, SpotTune introduces an additional network and needs
to keep both the pre-trained model and fine-tuned model
for inference. DELTA specifically regularizes feature maps
generated by convolution layers. In this work, we focus
more on general methods, which do not increase inference
costs and are applicable to a broader range of models. L2-
SP [44] proposes an explicit inductive bias for fine-tuning.
Specifically, it uses an L2 regularization to minimize the
distance between θ0 and θt. Most recently, MARS-SP [8]
adopts the projected gradient method (PGM) to constrain θt
within a small sphere centered on the pre-trained model θ0.
MARS-SP has shown great performance against its prior
works. However, we find it very sensitive to hyperparameter
tuning. Nonetheless, our work is inspired by and improves
PGM by 1) incorporating trainable weight projection radii
for each layer and 2) developing a bi-level optimization al-
gorithm to learn them.

Fine-tuning to Improve OOD Generalization. As
the size of the target dataset increases and better archi-
tectures are developed, the benefit from pre-training on
the target ID performance diminishes [13]. However, the
power of pre-training goes beyond boosting ID perfor-
mance. A recent work [40] finds that using pre-trained mod-
els can greatly improve robustness on OOD datasets and
uncertainty-related tasks such as confidence calibration [10]



and OOD detection [5]. Moreover, the fine-tuning strategy
used also plays an important role in improving OOD gener-
alization. LP-FT [21] shows that simultaneously fine-tuning
the last linear layer and the feature backbone can distort pre-
trained features and thus decreases OOD generalization. A
simple strategy of linear probing, i.e., training only the clas-
sifier layer, followed by fine-tuning the entire network can
greatly mitigate this distortion and improve OOD general-
ization. WISE [41] demonstrates impressive OOD general-
ization gains by linearly interpolating θ0 and θt. However,
this strategy only applies to image-text pre-trained models
with zero-shot classifiers such as CLIP [28] because WISE
requires the model to have linear connectivity. In most
cases, linear interpolation between two models results in no
better performance than random initialization [7].

3. Method

In the introduction, we motivated the benefit of explic-
itly maintaining distance constraints between a pre-trained
model and a fine-tuned model [9, 44]. However, it is not
clear how to search the space of hyper-parameters (distance
constraints) especially if we want to do this per layer as the
search space grows combinatorially with the number of lay-
ers. To this end, we pose the search as a bi-level constrained
optimization problem in Sec. 3.1 and introduce closed-form
projection in Sec. 3.2. Then we present the proposed TPGM
algorithm in Sec. 3.3. Finally, we theoretically show that the
bi-level optimization design enables TPGM to learn differ-
ent constraints for each layer in Sec. 3.4.

3.1. Fine-tuning as a Bi-level Constrained Problem

Machine learning algorithms usually tune hyper-
parameters, e.g., learning rate, weight decay, etc., on a val-
idation split. Mathematically, this procedure is equivalent
to a bi-level minimization problem. Let (x, y) denote a pair
of input data and L(·) denote the task loss function. The
minimization problem can be written as

min
λ|(x,y)∈Dval

L(x, y; arg min
θt|(x,y)∈Dtr

L(x, y; θt, λ), λ), (1)

where θt denotes the trainable model weights and λ denotes
the hyper-parameters such as learning rate. Dtr is the set of
training data and Dval is the set of validation data.

Now, we extend this formulation to fine-tune a pre-
trained model. Specifically, it has been shown that main-
taining a close distance to the pre-trained model improves
a model’s generalization and robustness [16, 44]. A recent
paper [9] formalizes the concept of maintaining distance as
a constrained optimization problem, in which the distance
between the new model and the pre-trained model is mea-
sured by matrix norms ‖ · ‖∗. Mathematically, combined
with Eq. 1, we further extend the constrained optimization

to a bi-level constrained minimization problem as

min
λ,γ|(x,y)∈Dval

L(x, y; arg min
θt|(x,y)∈Dtr

L(x, y; θt, λ), λ), (2)

s.t. ‖θt − θ0‖∗ ≤ γ,

where ‖θt− θ0‖∗ denotes a norm induced distance between
the pre-trained model θ0 and the new model θt. Optimizing
Eq. 2 enforces the model to stay within a distance γ from
the pre-trained model.

3.2. Projected Gradient Method

One method to optimize a constrained problem is pro-
jected gradient method (PGM) [18]. PGM projects the
updated model weights to be within the constraint, i.e.,
‖θt − θ0‖∗ ≤ γ. However, in general, most projection op-
erations are optimization problems themselves with only a
few exceptions having closed from solutions. One example
is L2-norm projection Πl2. Projecting a matrix θt to γ dis-
tance away, measured by L2 norm, from another matrix θ0
is a closed form operation as shown in Eq. 3.

Πl2(θ0, θt, γ) : θ̃ = θ0+
1

max
(

1, ‖θt−θ0‖2γ

) (θt − θ0) (3)

The prior work [9] uses the maximum absolute row sum
(MARS) matrix norm because it has a closed form approx-
imation that enables fast projection without optimization as
well. The MARS approximate projection operator Πmars

is defined in Eq. 4.

Πmars(θ0, θt, γ) : θ̃ = θ0+
1

max
(

1, ‖θt−θ0‖∞γ

) (θt − θ0)

(4)

‖ · ‖∞ denotes the MARS matrix norm, ‖A‖∞ =
maxj

∑
i=1 |Aj,i|. Even though we use closed-form pro-

jection to avoid additional computation, the projection ra-
dius γ needs to be pre-determined. Searching for a single
weight projection parameter for all layers is already chal-
lenging because the scale of γ is unknown let alone tailoring
a weight projection radius to each layer. In this paper, we do
not investigate specific properties of projections, which are
orthogonal to our contributions. Therefore, we will bench-
mark both projections and report the one with better results
and leave the comparison to Appendix.

3.3. Trainable Projected Gradient Method (TPGM)

Inspired by the projected gradient method, we propose
a trainable approach to solve the bi-level constrained prob-
lem in Eq. 2 by integrating the projection operator in Eq. 3
or Eq. 4 into the forward pass of a model, through which
the weight projection radii γ can be learned through back-
propagation. Specifically, the algorithm consists of three



Algorithm 1: TPGM
Data: Dtr,Dval
Result: θ̃t+1

Initialize θ̃0 = θ0, γ0 = ε
for t = {0, ..., T − 1} do

θt+1 = θt − ηt∇θL(x, y; θ̃t) x, y ∈ Dtr
if t mod fproj == 0 then

γt+1 = ProjectionUpdate(Dval, θ0, θt+1, γt)
θ̃t+1 = Π(θ0, θt+1, γt+1)

end
end

Algorithm 2: ProjectionUpdate
Data: Dval
Result: γt+1

for τ = {0, ..., Tproj − 1} do
θ̃ = Π(θ0, θt+1, γτ )
γτ+1 = γτ − ζ∇γL(x, y; θ̃) x, y ∈ Dval

end

functions: model update, projection update, and projection.
A summary of TPGM is presented in Alg. 1 and details of
the projection update function are in Alg. 2.

Model Update. TPGM first takes an unconstrained gra-
dient descent step. Let θt+1 denote the updated model pa-
rameters at the gradient descent step t for t ≥ 0 where θ0
denotes the pre-trained initialization. This update is calcu-
lated on the loss function L(x, y; θt) where (x, y) are sam-
pled training data, i.e., (x, y) ∈ Dtr. This corresponds to
a regular gradient descent step in the conventional setting
and the inner minimization in Eq. 2. For example, if vanilla
SGD is used in this step, then,

θt+1 = θt − ηt∇θL(x, y; θt), (x, y) ∈ Dtr.

Any other optimizers, e.g., Adam [20], can be used instead.
Projection Update. The projection update function op-

timizes the weight projection parameters γt iteratively. As
shown in Alg. 2, the optimization loops for Tproj steps. In
Alg. 2, we use SGD as an example for clarity. Any other op-
timizer can be used. Specifically, using θt+1 and the closed
form projection operation in Eq. 3 (or Eq. 4), we construct
a projected model θ̃ with a trainable projection parameter
γt for t ≥ 0 for each layer, where γ0 is initialized to a small
value ε. Then, we optimize the projection parameters us-
ing the loss function L(x, y; γt) where (x, y) are sampled
validation data, i.e., (x, y) ∈ Dval. Crucially, in this step,
only the weight projection parameters γt are updated while
the updated model θt+1 remains frozen. In other words,
no gradients of the model are calculated on the validation
data. This is important to avoid contamination of the vali-

dation data. The projection update function corresponds to
the outer minimization of the constrained problem in Eq. 2.

Projection. Finally, after a new set of projection param-
eters γt is updated, we apply the learned projection radii
to the updated model θt+1 using Eq. 3 (or Eq. 4). This
amounts to enforcing the constraint ‖θ − θ0‖∗ ≤ γ in
Eq 2. The projection update and projection functions can
be called frequently controlled by a hyperparameter (fproj
in Alg. 1). We will show that for certain pre-trained mod-
els, it is sufficient to only call these two functions once at
the end of the training, i.e., when fproj = T − 1 (Sec. 4.2).
Moreover, we found that in a few cases, TPGM could lead
to under-fitting because of its iterative nature. However, the
problem can be easily mitigated with total variation smooth-
ing [1, 3]. Since we only observed this in one setting in our
experiments, we defer the discussion to Appendix 5.3.

We summarize TPGM in Alg. 1. Intuitively, TPGM
maintains a set of weight projection parameters for each
layer of a neural network and updates them. The projection
parameters control how much “freedom” each layer has to
grow. As we will observe later, when fine-tuning a model,
layers close to the input generally require smaller changes
than layers close to the output. This property helps pre-
serve generalization capabilities obtained by the pre-trained
model. TPGM inevitably adds some computation overhead.
We provide additional discussion on it in Appendix 5.9.

3.4. Bi-level Optimization

Following a common strategy in studying transfer learn-
ing [6,36,41–43], we theoretically study TPGM using linear
models and explain why optimizing the bi-level problem in
Eq. 2 could enable the regularization capability of TPGM.

Problem Setup. Let x ∈ Rd denote an ID data and the
corresponding label y is generated by a ground truth linear
model θ∗ ∈ Rd, i.e., y = θT∗ x. To construct the training
set, we sample n training data, where n < d, and stack the
sampled data into a data matrix Xtr ∈ Rd×n. Accordingly,
the labels form a vector Ytr = XT

trθ∗ ∈ Rn. The training
goal is to minimize the empirical loss.

L(Xtr,Ytr; θ) = ‖XT
trθ −Ytr‖2 (5)

Note that this forms an over-parameterized linear sys-
tem, i.e., there are more parameters than equations, because
n < d. This is similar to how modern neural networks are
over-parameterized with respect to the data.

Complementary Decomposition using SVD. For the
analysis, we make an independence assumption on the data
matrix Xtr. This assumption exists for notation simplicity
and can be relaxed easily.

Assumption 1. Let the n training data be linearly indepen-
dent. The following SVD exists for the data matrix Xtr.

Xtr = UΣVT , U ∈ Rd×n,Σ ∈ Rn×n,V ∈ Rn×n.



Consequently, we can decompose any vector x ∈ Rd
into two components, x = Uτ + U⊥τ⊥, where U is the
basis for the span of training samples, U⊥ ∈ Rd×(d−n) is
the basis for the complementary subspace, and τ ∈ Rn,
τ⊥ ∈ Rd−n are the corresponding coordinates. There are
infinitely many solutions to Eq. 5 because this is an over-
parameterized system.

Definition 1. We denote a projected model as θ̃ = θ0 +
α(θ − θ0) (obtained using Eq. 3 or Eq. 4), where θ is one
minimizer of Eq. 5, θ0 is the pre-trained model and 0 ≤ α ≤
1 is the projection ratio.

To quantify the effects of projection α, we can look at
the average performance of the projected model θ̃ on test
data. Consequently, we investigate the expected loss of the
projected model over the entire data space.

E[L(x, y; θ̃)] = E
[∥∥∥θ̃Tx− y∥∥∥

2

]
(6)

We provide the following theorem to shed light on how pro-
jection affects the expected loss and what it depends on.

Theorem 1. Let Assumption 1 hold, the expected loss of θ̃
in Eq. 6 is upper bounded as the following,

E
[∥∥∥θ̃Tx− y∥∥∥

2

]
≤ (1− α)ετ︸ ︷︷ ︸

in−span

+ (ε+ α ‖θ − θ0‖2) τ⊥︸ ︷︷ ︸
out−span

,

(7)

where ε = ‖θ0 − θ∗‖2 and τ .
= E[‖τ‖2], τ⊥

.
= E[‖τ⊥‖2].

A complete proof is provided in Appendix 5.2.

The upper bound in Thm. 1 has two components, risk
due to components in the training data span (in-span) and
risk due to components in the complementary subspace
(out-span). To minimize the expected loss, one will expect
α to be dependent on the value of ε. Recall that the quantity
ε is the distance between the pre-trained model and the
ground truth model and can be viewed as a measure of how
“good” the pre-trained model is. Therefore, we expect two
types of behaviors from α depending on ε:

• When ε is small, α needs to be smaller to minimize
the second component, meaning stronger projection.

• When ε is large, α needs to be larger to minimize the
first component, meaning weaker projection.

The theorem indicates that if we optimize the projected
model θ̃ on a separate batch of data, different from the
data the model gradients are calculated on, the projection
ratio α will seek to balance between fitting the training
data (in-span) and generalizing to new data (out-span).
For example, when ε is small, i.e., the pre-trained model

is close to the optimal model, the formulation encourages
stronger projection.

Furthermore, as prior works have found that lower layers
tend to learn more general features while higher layers spe-
cialize to a specific dataset, ε is likely to be smaller for the
lower layers and larger for higher layers because pre-trained
models likely have learned very good low-level general fea-
tures [26, 29, 41, 45]. This offers one explanation of why
TPGM automatically learns different constraints for each
layer. Therefore, we hypothesize that optimizing the pro-
jection radii on a dataset sampled separately from the train-
ing data, e.g., the validation dataset, is essential to learning
different constraints for each layer.

4. Experiments
Overview. To validate TPGM, we conduct experiments

on large-scale datasets using different architectures. The ex-
periments are split into two sections depending on the spe-
cific architecture used. In Sec. 4.1, we use ResNet [14] with
a CLIP pre-trained ResNet50 [28] and an ImageNet pre-
trained MOCO-V3 ResNet50 [2] as the pre-trained models.
In Sec. 4.2, we use Vision Transformers [37] with a CLIP
pre-trained ViT-B model [28].

Datasets. For the ResNet experiments, we use Domain-
Net [27] (0.6M images over 345 classes) as the benchmark.
DomainNet has five domains: real, sketch, painting, infor-
graph, and clipart. We use the real domain as the ID fine-
tuning domain (with held-out test data to test ID perfor-
mance) and the rest as the OOD domains. For the Trans-
former experiments, we use ImageNet-1K [4] as the fine-
tuning dataset. For the ID test dataset, we add ImageNet-
V2 [30] in addition to ImageNet-1K. For the OOD test
datasets, we use ImageNet-A [17], ImageNet-R [15], and
ImageNet-S [38]. No OOD data are used during training.

4.1. Fine-Tuning a Pre-trained ResNet

In this section, we compare TPGM to several existing
methods using a CLIP pre-trained ResNet50 [28] and Im-
ageNet pre-trained MOCO-V3 ResNet50 [2] as initializa-
tion. Specifically for TPGM, we use fproj = 1, Tproj = 1,
meaning that projection update and projection are activated
at every gradient descent step (Alg. 1). We also use the
MARS projection in Eq. 4 because we found that MARS
projection performs better than L2 projection in this setting
(Appendix 5.6). Moreover, we do not include WISE [41]
in this comparison because we found that CLIP pre-trained
ResNet50 has poor linear connectivity, i.e., linear interpo-
lation results in drastic degradation of performance (Ap-
pendix 5.7). Therefore, we do not use any zero-shot clas-
sifiers for initializing the last linear layer (See sec. 4.2 for
a detailed description of zero-shot classifiers). The recipe
for training ResNet is relatively simple. We use the Adam
optimizer [20] with default settings and a batch size of 256.



Table 1. DomainNet Results using CLIP pre-trained ResNet50 with 100% Real Data. TPGM improves OOD performance significantly
even when a zero-shot classifier is not available.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 80.93 (0.08) 31.81 (0.06) 41.02 (0.10) 20.29 (0.08) 43.59 (0.15) 34.18 0.00 0.00
LP 52.56 (0.09) 20.05 (0.21) 24.92 (2.49) 19.18 (0.46) 21.15 (0.18) 21.33 -35.05 -37.60

PF [19] 78.27 (0.11) 36.77 (0.32) 42.13 (0.35) 24.71 (0.18) 43.31 (0.53) 36.73 -3.29 7.46
L2-SP [44] 82.07 (0.09) 36.67 (0.11) 45.62 (0.35) 22.97 (0.42) 47.78 (0.30) 38.26 1.40 11.94

MARS-SP [9] 77.19 (0.63) 25.33 (1.07) 33.43 (2.06) 14.81 (0.43) 39.20 (0.74) 28.19 -4.62 -17.53
LP-FT [21] 80.82 (0.95) 34.85 (1.93) 44.03 (0.05) 22.23 (2.01) 46.13 (2.34) 36.81 -0.14 7.69

TPGM 83.64 (0.01) 38.78 (0.42) 43.11 (0.25) 28.70 (0.31) 48.01 (0.25) 39.65 3.34 16.01

Table 2. DomainNet Results using MOCO-V3 pre-trained ResNet50 Results with 100% Real Data. TPGM improves OOD general-
ization using a self-supervised pre-trained model while improving ID performance.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 81.99 (0.03) 31.52 (0.33) 42.89 (0.53) 18.51 (0.28) 44.98 (0.24) 34.47 0.00 0.00
LP 73.01 (0.03) 24.10 (0.23) 39.56 (0.15) 12.27 (0.02) 30.38 (0.08) 26.58 -10.96 -22.90

PF [19] 78.27 (0.03) 27.72 (0.07) 39.74 (0.12) 15.56 (0.08) 38.18 (0.12) 30.30 -4.55 -12.11
L2-SP [44] 81.51 (0.02) 34.91 (0.22) 45.76 (0.16) 18.97 (0.11) 45.29 (0.18) 36.23 -0.59 5.09

MARS-SP [9] 81.89 (0.01) 34.44 (2.54) 45.05 (1.91) 19.97 (1.48) 46.36 (1.29) 36.45 -0.13 5.74
LP-FT [21] 82.92 (0.01) 34.50 (0.22) 45.42 (0.31) 20.12 (0.43) 47.11 (0.27) 36.79 1.13 6.72

TPGM 82.66 (0.13) 35.35 (0.33) 46.20 (0.20) 20.13 (0.12) 45.75 (0.12) 36.86 0.82 6.91

Models are fine-tuned for 50 epochs with a cosine learning
rate schedule. The same training recipe is used for all exper-
iments unless otherwise specified. Implementation details
are provided in Appendix 5.4.

TPGM improves OOD robustness without sacrificing
ID performance. We first present the main results on Do-
mainNet using CLIP pre-trained ResNe50. As shown in
Tab. 1, we observe that both L2-SP and LP-FT bring sig-
nificant improvements to OOD generalization with respect
to vanilla FT while matching or surpassing its ID accuracy.
Nevertheless, TPGM brings the most OOD improvement
while also surpassing vanilla FT on ID accuracy. We also
report results using MOCO-V3 in Tab. 2. MOCO-V3 is pre-
trained on ImageNet-1K (1.2M) consisting of mainly real
images, a much smaller and less diverse pre-training data
set than CLIP’s. Therefore, we see worse OOD general-
ization results from all methods, compared to using CLIP
pre-trained models (Tab. 1). This indicates that the size and
diversity of the pre-training dataset have a huge impact on
generalization. Nevertheless, TPGM 2 yields the best OOD
performance while matching the best ID performance.

TPGM adjusts to the size of training data. As an au-
tomatic regularization method, TPGM also needs to adjust
to different regularization strengths according to the size of
the training set. TPGM can avoid over-fitting to a small
fine-tuning dataset through the outer minimization loop of

2TPGM on MocoV3 is the only situation where we found total varia-
tion smoothing (see Appendix 5.3) helps with ID performance. Without
smoothing, TPGM achieves 81.66 ID and 37.27 Ave. OOD performance.
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Figure 2. Average distance between the fine-tuned model and
a CLIP pre-trained ResNet50 for each Residual block using
TPGM. Under the distance constraints imposed by TPGM, most
of the model changes are in the last adaptive pooling layer.

the projection parameters on validation data (Eq. 2). In
this section, we additionally present results when we re-
duce the DomainNet-Real data to 10% of its original size.
We follow a similar strategy as in the 100% experiments
and sweep different learning rates (for competing methods
we sweep their hyperparameters). All models are trained
for 150 epochs. In Tab. 3, we observe significant degrada-
tion in ID performance across all methods except for PF and
TPGM. PF only trains the Batch-norm layers and therefore
is less prone to over-fitting. TPGM achieves an even higher
ID performance because it learns small projection radii,
which project the fine-tuned model closer to the pre-trained
model. To see it, we visualize the average distance between
the fined-tuned model and the pre-trained model for each
residual block using TPGM for both 100% and 10% data
in Fig. 2. We observe that 1) lower layers have smaller



Table 3. DomainNet Results using CLIP pre-trained ResNet50 with 10% Real Data. TPGM adjusts to the size of the fine-tuning
dataset by imposing stronger per-layer constraints.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 57.35 (1.43) 17.48 (0.68) 25.60 (0.70) 10.30 (1.57) 23.01 (0.65) 19.10 0.00 0.00
LP 47.19 (0.93) 17.81 (0.25) 22.71 (2.08) 17.13 (0.75) 17.59 (0.69) 18.81 -17.71 -1.52

PF [19] 71.04 (0.91) 27.87 (1.04) 38.31 (1.05) 19.85 (0.70) 33.92 (1.53) 29.99 23.86 57.01
L2-SP [44] 61.41 (0.92) 22.61 (0.52) 30.48 (0.42) 12.28 (0.50) 26.59 (0.57) 22.99 7.08 20.37

MARS-SP [9] 52.53 (0.84) 15.34 (0.54) 21.57 (0.45) 8.49 (0.60) 19.96 (0.01) 16.34 -8.41 -14.44
LP-FT [21] 64.11 (0.78) 20.54 (0.27) 30.89 (0.41) 13.58 (0.63) 29.55 (0.82) 23.64 11.78 23.77

TPGM 73.16 (1.27) 29.88 (0.81) 36.80 (1.42) 19.72 (0.12) 35.28 (0.74) 30.42 27.56 59.27

constraints and higher layers have larger constraints, mean-
ing more freedom to grow, and 2) with only 10% training
data, the learned constraints are much smaller than those
trained with 100%. This behavior explains why TPGM
maintains high ID performance and avoids over-fitting with
fewer training data because it chooses to rely more on the
pre-trained model by enforcing stronger projection.

4.2. Fine-tuning a Pre-Trained Transformer

In this section, we compare to existing fine-tuning meth-
ods using a CLIP pre-trained ViT-B model. We initialize
all models with the pre-trained weights and also the last
linear classifier layer with a zero-shot classifier extracted
from the CLIP text-encoder. Specifically, for TPGM, we
use fproj = T − 1 and Tproj = 200, meaning that pro-
jection only happens once at the end of fine-tuning. This is
possible because CLIP pre-trained ViT-B has been shown to
have good linear connectivity [41] in contrast to the CLIP
pre-trained ResNet (Appendix 5.7). Furthermore, we use
L2 projection in Eq. 3 because we found L2 projection is
better than MARS projection in this setting (Appendix 5.6).
Training Transformers [37] requires careful tuning of the
training recipe to achieve the best results3. We follow some
common practices in prior works [34, 35] to boost perfor-
mance. We leave implementation details in Appendix 5.4.

Extracting a Zero-Shot Classifier. CLIP has an image-
encoder g(·) and a text-encoder h(·), and is capable of zero-
shot classification. For example, given an image x and its
label space y ∈ Y = {y1, ..., yc}, zero-shot classification
can be done by first inserting the class name yi, e.g., ”ap-
ple”, into a template ci, e.g., ”a photo of {apple}” and ex-
tracting its text embedding h(ci), and then computing an in-
ner product,〈h(ci), g(x)〉, between the text embedding and
the corresponding image embedding. The maximum value
of the inner product over all classes determines the mem-
bership of the input. Following the prior work [41], one can
stack h(ci), ∀i ∈ {1, ..., c} into a weight matrix Wzero-shot
as a zero-shot classification layer. We use this weight matrix

3Our training recipe yields 84.20 vanilla FT accuracy on ImageNet
using a CLIP ViT-B, which is significantly better than prior works, e.g.,
WISE [41] reported 81.3, FT-LP [28] reported 81.7 on the same dataset.

as initialization as well as zero-shot classification.
TPGM Improves OOD robustness without sacrificing

ID performance. Now, we present the main benchmark
results, accuracy on each of the datasets, and percentage
of improvement with respect to the vanilla FT method, in
Tab. 4. Parameter-efficient methods such as LP and BitFit
all improve OOD generalization however at a loss of ID per-
formance. We hypothesize that they help preserve general-
ization by updating fewer parameters in the network, and
therefore maintaining a closer distance to the pre-trained
model. On the other hand, the restriction on the function
space can result in under-fitting, manifested in lower ID per-
formance. Surprisingly, L2-SP and LP-FT fail to improve
either ID or OOD performance. We think this is because
the added regularization in L2-SP and the two-stage train-
ing procedure in LP-FT are not very compatible with the
existing Transformer training recipe. The zero-shot classi-
fier brings significant OOD improvement even though the
ID performance is way worse than the FT model. This con-
firms that CLIP models acquire great generalization capa-
bility during pre-training, as also reported by the original
paper [28]. TPGM and WISE perform notably better than
other methods. We will elaborate on the comparison next.

TPGM outperforms WISE. The current state-of-the-art
method for fine-tuning a pre-trained model with linear con-
nectivity is WISE [41], which linearly interpolates between
a fine-tuned model and the pre-trained model with a single
ratio. For lack of a better heuristic, the paper suggests 0.5
as the interpolation ratio and leaves the research for a bet-
ter method to determine the mixing ratio as an open ques-
tion. The comparison between TPGM and WISE comes
down to the comparison between optimized per-layer con-
straints and a hand-tuned single constraint. Therefore, for
WISE, we sweep different ratios from 0.1 to 0.9, controlling
the distance to the pre-trained model from close to far. For
TPGM, to fairly compare to WISE, we put an L2 regular-
ization on the magnitude of the trainable projection param-
eters with a hyperparameter µ that controls the strength of
regularization. Intuitively, a larger regularization forces the
projection radii to be smaller, meaning projecting the fine-
tuned model closer to the pre-trained model. We sweep a



Table 4. ImageNet Results using CLIP pre-trained ViT-B. TPGM improves OOD performance significantly without losing ID perfor-
mance. TPGM-C achieves the best OOD performance while maintaining a more competitive ID performance compared to the current
state-of-the-art method WISE. TPGM-C is a controlled variant of TPGM, designed to lower its ID performance to the same level as WISE
for a fair comparison of OOD performance. Note that prior works [41] sub-sample classes for ImageNet-A/R (200 classes) for evaluation
while we do not.

ID OOD Statistics
ImageNet ImageNet-V2 ImageNet-A ImageNet-R ImageNet-S ID Avg. OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 84.20 (0.02) 75.08 (0.11) 26.52 (0.12) 46.45 (0.06) 48.90 (0.58) 79.64 40.63 0.00 0.00
LP 77.99 (0.02) 67.74 (0.04) 27.13 (0.06) 50.71 (0.07) 46.47 (0.04) 72.86 41.44 -8.51 2.00

BitFit [48] 78.02 (0.12) 67.69 (0.15) 27.19 (0.28) 50.66 (0.31) 46.50 (0.29) 72.85 41.45 -8.42 2.45
L2-SP [44] 84.10 (0.02) 75.05 (0.11) 26.19 (0.45) 46.58 (0.09) 48.51 (0.12) 79.58 40.43 -0.08 -0.49
LP-FT [21] 83.50 (0.15) 73.95 (0.12) 25.62 (0.23) 46.21 (0.22) 48.83 (0.19) 78.73 40.22 -1.15 -1.00

Zero-Shot [28] 67.68 (N/A) 61.41 (N/A) 30.60 (N/A) 56.77 (N/A) 45.53 (N/A) 64.54 44.30 -18.91 8.64
WISE [41] 82.11 (0.14) 73.61 (0.13) 36.11 (0.16) 61.77 (0.08) 54.16 (0.07) 77.86 50.68 -2.23 24.75

TPGM-C 82.41 (0.07) 73.91 (0.21) 36.79 (0.14) 62.48 (0.10) 54.91 (0.12) 78.16 51.39 -1.86 26.51
TPGM 84.19 (0.03) 75.41 (1.61) 34.29 (2.11) 57.19 (0.54) 54.38 (0.19) 79.80 48.62 0.20 19.69
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Figure 3. ID and OOD performance of TPGM and WISE
with different hyperparameters using CLIP pre-trained ViT-
B, fine-tuned on ImageNet. Sweeping different hyperparame-
ters for both WISE and TPGM shows that learning per-layer con-
straints is superior to learning a single constraint.

range of different µ from 4e−3 to 0.0. We refer to this vari-
ant as TPGM-C (C for controlled). Note that this L2 regu-
larization is not a hyper-parameter in the algorithm itself. In
Fig. 3, we observe a trade-off between the ID performance
and the OOD performance for both methods. However,
TPGM clearly outperforms WISE because for the same ID
performance, TPGM has better OOD performance and for
the same OOD performance, TPGM has better ID perfor-
mance. This demonstrates the benefits of maintaining per-
layer constraints over a single interpolation ratio. We also
provide the same experiment and visualization using a CLIP
pre-trained ViT-L in Appendix 5.5.

Different layers require different regularization. Now
we take a closer look at the learned TPGM projection radii
especially in terms of “closeness” to the pre-trained model.
In Fig. 4, we visualize the average distance from the pre-
trained model for each transformer block with three differ-
ent L2 regularization strengths. We observe that 1) lower
layers have smaller projection radii, i.e., they are more
tightly constrained whereas higher layers have larger pro-
jection radii and therefore more freedom to grow; 2) as the
regularization strength on projection radii increases, on av-
erage, they become closer to the pre-trained model while
still following the previous observation. Combined with the
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Figure 4. Average distance between the fine-tuned model and
a CLIP pre-trained ViT-B for each block using TPGM. Com-
pared to the original distance learned by Vanilla FT, TPGM more
aggressively constrains the distance of lower layers.

common belief that lower layers learn more general features
and higher layers learn more specialized layers, we hypoth-
esize that lower layers of the pre-trained model are “closer”
to the ideal model than higher layers. This observation cor-
roborates with our theoretical analysis (Sec. 3.4) that when
the distance between the pre-trained model and the ideal
model is small, TPGM favors close projection.

5. Conclusion
Proposing a bi-level constrained minimization formu-

lation of fine-tuning, we develop the trainable projected
gradient method (TPGM) to learn a distance constraint
for each layer of a neural network for robust fine-tuning,
which has not been possible with manual hyper-parameter
tuning. Our thorough experiments across several pre-
trained models and ID/OOD datasets show that TPGM can
better preserve the OOD generalization capability of the
pre-trained model with minimal effects on ID performance.
The optimized constraints exhibit highly interpretable
patterns which corroborate existing findings and strengthen
the motivation for per-layer constraints.
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5.1. Appendix

5.2. Proof of Theorem 1

We provide complete proof of the main theorem. We will
first reiterate the notations used in the main paper.

Problem Setup. Let x ∈ Rd denote an ID data and the
corresponding label y is generated by a ground truth linear
model θ∗ ∈ Rd, i.e., y = θT∗ x. To construct the training
set, we sample n training data, where n < d, and stack the
sampled data into a data matrix Xtr ∈ Rd×n. Accordingly,
the labels form a vector Ytr = XT

trθ∗ ∈ Rn. The training
goal is to minimize the empirical loss.

L(Xtr,Ytr; θ) = ‖XT
trθ −Ytr‖2 (8)

Note that this forms an over-parameterized linear sys-
tem, i.e., there are more parameters than equations, because
n < d. This is similar to how modern neural networks are
over-parameterized with respect to the data.

Complementary Decomposition using SVD. For the
analysis, we make an independence assumption on the data
matrix Xtr. This assumption exists for notation simplicity
and can be relaxed easily.

Assumption 2. Let the n training data be linearly indepen-
dent. The following SVD exists for the data matrix Xtr.

Xtr = UΣVT , U ∈ Rd×n,Σ ∈ Rn×n,V ∈ Rn×n.

Consequently, we can decompose any vector x ∈ Rd
into two components, x = Uτ + U⊥τ⊥, where U is the
basis for the span of training samples, U⊥ ∈ Rd×(d−n) is
the basis for the complementary subspace, and τ ∈ Rn,
τ⊥ ∈ Rd−n are the corresponding coordinates. There are
infinitely many solutions to Eq. 8 because this is an over-
parameterized system. The classic result states that,

θ = UΣ−1VTYtr + U⊥β⊥, (9)

where β⊥ ∈ Rd−n can be any vector. We denote a projected
model as θ̃ = θ0+α(θ−θ0) (obtained using Eq. 3 or Eq. 4),
where θ is one minimizer of Eq. 8, θ0 is the pre-trained
model and 0 ≤ α ≤ 1 is the projection ratio.

To quantify the effects of projection α, we can look at
the average performance of the projected model θ̃ on test
data. Consequently, we investigate the expected loss of the
projected model over the entire data space.

E[L(x, y; θ̃)] = E
[∥∥∥θ̃Tx− y∥∥∥

2

]
(10)

We now provide a detailed proof of Theorem 1 in the main
paper. We first prove two lemmas.

Lemma 1. ‖(θ − θ∗)TUτ‖2 = 0.

Proof. To show it, we use the decomposition in Eq. 9.

‖(θ − θ∗)TUτ‖2 = ‖UΣ−1VTYtr + U⊥β⊥ − θ∗)TUτ‖2
= ‖(UΣ−1VTYtr − θ∗)TUτ‖2
= ‖(UΣ−1VTXT

trθ∗ − θ∗)TUτ‖2
= ‖(UΣ−1VT (UΣVT )T θ∗ − θ∗)TUτ‖2
= 0

Lemma 2. ‖Uτ‖2 ≤ ‖τ‖2 and ‖U⊥τ⊥‖2 ≤ ‖τ⊥‖2.

Proof. We first invoke the definition of matrix norm,

‖U‖2 = sup
τ 6=0

‖Uτ‖2
‖τ‖2

From the definition, it is easy to see that

‖Uτ‖2 ≤ ‖U‖2‖τ‖2.

Now recall that both U ∈ Rd×n and U⊥ ∈ Rd×(d−n)
are orthonormal matrices. Therefore, using the property of
L2 matrix norm,

‖U‖2 =
√
λmax(UTU) = σmax(U) = 1

where λmax(·) and σmax(·) denote the largest eigenvalue
and singular value respectively. Therefore,

‖Uτ‖2 ≤ ‖τ‖2.

The same analysis extends to U⊥, τ⊥.

Next, we proceed with the proof of the main theorem.

Proof.

L(x, y; θ̃) =
∥∥∥θ̃Tx− y∥∥∥

2

=
∥∥(θ0 + α(θ − θ0))Tx− θT∗ x

∥∥
2

= ‖(θ0 + α(θ − θ0)− θ∗)TUτ+

(θ0 + α(θ − θ0)− θ∗)TU⊥τ⊥‖2
≤ ‖((1− α)(θ0 − θ∗) + α(θ − θ∗))TUτ‖2︸ ︷︷ ︸

A

+

‖(θ0 − θ∗)TU⊥τ⊥‖2︸ ︷︷ ︸
B

+ ‖α(θ − θ0)TU⊥τ⊥‖2︸ ︷︷ ︸
C



We use triangle inequality for the last inequality. We can
now bound A using Lemma 1, Cauchy-Schwarz inequality
and Lemma 2 as

‖((1− α)(θ0 − θ∗) + α(θ − θ∗))TUτ‖2
= (1− α)‖(θ0 − θ∗)TUτ‖2
≤ (1− α)‖(θ0 − θ∗)‖2‖Uτ‖2
≤ (1− α)‖(θ0 − θ∗)‖2‖τ‖2.

Similarly, we can bound B using Cauchy-Schwarz in-
equality and Lemma 2 as

‖(θ0 − θ∗)TU⊥τ⊥‖2 ≤ ‖θ0 − θ∗‖2‖U⊥τ⊥‖2
≤ ‖θ0 − θ∗‖2‖τ⊥‖2,

and bound C as,

‖α(θ − θ0)TU⊥τ⊥‖2 ≤ ‖α(θ − θ0)‖2U⊥τ⊥‖2
≤ ‖α(θ − θ0)‖2‖τ⊥‖2.

Now, plug everything back. We arrive at the final result,

L(x, y; θ̃) ≤ (1− α)ε‖τ‖2 + (ε+ α‖θ − θ0‖2)‖τ⊥‖2

where ε = ‖(θ0 − θ∗)‖2.

5.3. Group Based Total Variation Smoothing

Because of the iterative and incremental nature, the
vanilla TPGM algorithm is a greedy algorithm, meaning
that it judges the immediate benefit of the current updates to
the model weights. If the current updates are not consistent
with the validation data, they will be removed by projection,
i.e., the projection radii will not increase to accommodate
the new changes. Consequently, projection radii learned by
TPGM could be overly conservative and lead to underfitting
because gradient updates are stochastic, whose benefits may
only show up in the long run. Empirically, we found TPGM
results in under-fitting in some cases, i.e., slightly lower ID
performance. To mitigate this side-effect of iterative op-
timization, we propose a group-based total variation (TV)
smoothing for the projection parameters. TV is a common
technique to improve smoothness in image denoising [1]
and general signal processing [3]. We propose to utilize
TV regularization to enforce a heuristic on the optimization
of γ: projection ratios of layers in the same group should be
similar to each other. Specifically, modern neural network
architectures such as ResNet [14] and Transformer [37] are
modular and stacked with groups (blocks). It is easy to iden-
tify unique groups in each architecture and assign layers to
each one of them. Therefore, let G = {gi|i = 0, ...,M}
be the set of unique groups in a neural network. The loss

function that we optimize for the projection parameters is
updated as the following,

Lγ = L(x, y; γt) + µ
∑
gi∈G

∑
i∈gi

|αi − αi−1| (11)

where µ is a hyperparameter requiring tuning.

5.4. Implementation

In Alg. 2, the projection update function has its own op-
timizer. In our implementation, we use the Adam [20] op-
timizer because of its capability of adapting learning rate.
Even though this introduces other hyperparameters, we find
the same set of hyperparameters worked well for all exper-
iments. Specifically, we use the default settings and a con-
stant base learning rate of ζ = 1e− 2.

ResNet experiments (Sec. 4.1). We list all the compared
methods and their method-specific tuning to reproduce our
results.

• Vanilla Fine-Tuning (FT): We fine-tune all layers and
sweep five learning rates (CLIP best η0 = 1e − 3,
MOCO best η0 = 5e− 2).

• Linear Probing (LP): We only fine-tune the head
classifier and sweep five learning rates (CLIP best
η0 = 1e− 1, MOCO best η0 = 1e− 1).

• Partial Fusion (PF) [19]: We fine-tune all the batch-
norm layers and the head classifier, and sweep five
learning rates (CLIP best η0 = 1e − 2, MOCO best
η0 = 5e− 2).

• L2-SP [44]: We add L2-SP regularization, use the
best-validated learning rate from FT, and sweep five
three regularization hyperparameters (CLIP best µ :
1e− 2, MOCO best µ : 1e− 3).

• MARS-SP [9]: We add MARS projection (Eq 4), use
the best-validated learning rate from FT, and sweep
five three projection hyperparameters (CLIP best µ =
64, MOCO best µ = 16).

• LP-FT [21]: We first LP for 25 epochs, using the best
LP learning rate, and FT for another 25 epochs, sweep-
ing five learning rates (CLIP best η0 = 1e− 3, MOCO
best η0 = 5e− 2).

• TPGM: We learn per-layer L2 projection radii incre-
mentally, sweeping five learning rates (Eq. 3) (CLIP
best η0 = 1e − 2, MOCO best w/o smoothing η0 =
1e − 2, MOCO w/ smoothing best :η0 = 4e − 2 and
µ = 0.1).

Transformer Experiments (Sec. 4.2). We follow some
common practices used in prior works [34, 35] to boost



fine-tuning performance. Note that we use the same train-
ing recipe for all methods unless otherwise specified. For
example, linear probing performs worse when augmenta-
tions are used [28]. Now we will list the techniques used
as well as their corresponding hyperparameters in parenthe-
sis. Specifically, we use label-smoothing (0.1) [32], weight-
decay (0.1), Mixup (0.8) [49] and Cutmix (1.0) [47]. We
fine-tune models using the AdamW optimizer [24] for 30
epochs with a warm-up period of 5 epochs [34], per-step
cosine decay schedule [12] and a batch size of 512. We list
all the compared methods and their method-specific tuning
to reproduce our results.

• Vanilla Fine-Tuning (FT): We fine-tune all layers and
sweep three learning rate η0 ∈ {1e−5, 2e−5, 3e−5}.

• Linear Probing (LP): We only fine-tune the head
classifier and sweep three learning rates η0 ∈ {5e −
2, 1e − 2, 5e − 3}. We don’t use any data augmen-
tations (e.g., label-smoothing, Mixup and Cutmix) as
they decrease LP performance.

• BitFit [48]: We fine-tune all the bias terms and the
head classifier and sweep three learning rate η0 ∈
{5e− 2, 1e− 2, 5e− 3}.

• L2-SP [44]: We add L2-SP regularization, use the
best-validated learning rate from FT, and sweep three
three regularization hyperparameters µ ∈ {1e−5, 1e−
4, 1e− 3}.

• LP-FT [21]: We first LP for 15 epochs, sweeping three
learning rates η0 ∈ {5e−2, 1e−2, 5e−3}, and FT the
best-validated model for another 15 epochs, sweeping
three learning rate η0 ∈ {1e− 5, 2e− 5, 3e− 5}.

• Zero-Shot [28]: We run an inference with the pre-
trained CLIP model with the extracted zero-shot clas-
sifier.

• WISE [41]: We linearly interpolate the best validated
FT model and the pre-trained model with a ratio of 0.5.

• TPGM: We learn per-layer projection radii between
the best validated FT model and the pre-trained model
using the MARS projection (Eq. 4).

5.5. CLIP Pre-trained ViT-L on ImageNet

In Sec. 4.2, we presented fine-tuning results on ImageNet
using CLIP pre-trained ViT-b. In this section, we conduct
the same experiments with CLIP pre-trained ViT-L. As we
noticed in the ViT-b experiments, WISE and TPGM per-
form much better than other competitors, so we focus on
the comparison between the two here. We first present tab-
ulated results in Tab. 5. We observe that TPGM improves
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Figure 5. ID and OOD performance of TPGM and WISE
with different hyperparameters using CLIP pre-trained ViT-
L, fine-tuned on ImageNet. Sweeping different hyperparame-
ters for both WISE and TPGM shows that learning per-layer con-
straints is superior to learning a single constraint.

both ID and OOD performance over vanilla FT. To com-
pare fairly with WISE, we introduced TPGM-C (Sec. 4.2),
which uses an L2 regularization on the learned projection
radii to control the distance to the pre-trained model. With
proper regularization, TPGM-C outperforms WISE on both
ID and OOD performance. We also provide a figure of
ID vs. OOD performance with different WISE interpola-
tion ratios and different TPGM-C regularization strengths
in Fig. 5. We observe the same trend as in the ViT-b exper-
iments (Sec. 4.2): at the same ID performance, TPGM has
better OOD performance.

5.6. Comparisons between TPGM-L2 and TPGM-
MARS

In the main paper, we presented two possible projections:
L2 projection (Eq. 3) and MARS projection (Eq. 4). Both
projections provide closed-form solutions. We can use ei-
ther of them in TPGM. In this section, we present compar-
isons between the two.

ResNet Experiments on DomainNet. For ResNet ex-
periment in Sec. 4.1, we use a CLIP pre-trained ResNet50
and an ImageNet pre-trained ResNet50. For TPGM, we use
fproj = 1 and Tproj = 1. In Tab. 6, we compare the per-
formance of TPGM using MARS and L2 projections on
DomainNet-Real with 100% of its data. We observe that
in this setting MARS performs better than L2 projection.

Transformer Experiments on ImageNet. For Trans-
former experiments in Sec. 4.2, we use a CLIP pre-trained
ViT-B. For TPGM, we use fproj = T − 1 and Tproj = 200.
Following the main paper, we add L2 regularization to the
projection radii and sweep a range of values from 4e− 3 to
1e − 4. In Fig. 6, we compare the performance of TPGM



Table 5. ImageNet Results using CLIP pre-trained ViT-L. TPGM improves OOD performance significantly without losing ID perfor-
mance. TPGM-C achieves the best OOD performance while maintaining a more competitive ID performance compared to the current
state-of-the-art method WISE. TPGM-C is a controlled variant of TPGM, designed to lower its ID performance to the same level as WISE
for a fair comparison of OOD performance.

ID OOD Statistics
ImageNet ImageNet-V2 ImageNet-A ImageNet-R ImageNet-S ID Avg. OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 87.24 79.25 49.67 63.29 61.62 83.25 58.19 0.00 0.00
Zero-Shot [28] 75.00 69.95 52.21 71.69 58.24 72.48 60.71 -12.94 4.33

WISE [41] 85.33 78.50 58.26 75.37 64.84 81.92 66.16 -1.60 13.68

TPGM-C 86.02 78.83 59.29 76.32 65.00 82.43 66.87 -0.99 14.91
TPGM 87.00 79.81 58.31 74.41 65.13 83.41 65.95 0.19 13.33

Table 6. Comparison between MARS and L2 projections on
DomainNet using ResNet50.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg.

CLIP MARS 83.64 38.78 43.11 28.70 48.01 39.65
L2 82.72 37.18 43.33 25.99 45.71 38.05

MOCO MARS 81.66 35.97 46.68 20.34 46.11 37.27
L2 81.66 33.96 45.82 18.71 44.45 35.74
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Figure 6. Comparison between MARS and L2 projections on
ImageNet using ViT-B.
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Figure 7. WISE interpolation ratio sweeping using CLIP pre-
trained ResNet50 on DomainNet.

using MARS and L2 projections on ImageNet ID and OOD
datasets. We observe that L2 projection always outperforms
MARS projection in this setting.

5.7. WISE for CLIP Pre-trained ResNet

The prior work [41] and our experiments in Sec. 4.2 veri-
fied that CLIP pre-trained Transformers have very good lin-

Table 7. DomainNet Results using MOCO-V3 pre-trained
ResNet50 Results with 100% Real Data. TPGM without TV
smoothing achieves the best OOD performance but with slightly
worse ID performance compared to vanilla FT. TV smoothing can
effectively mitigate this negative effect.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg

Vanilla FT 81.99 31.52 42.89 18.51 44.98 34.47

TPGM w/o TV 81.66 35.97 46.68 20.34 46.11 37.27
TPGM w/ TV 82.66 35.35 46.20 20.13 45.75 36.86

ear connectivity. This means that when linearly interpolat-
ing between the pre-trained model and a fine-tuned model,
the output does not degrade much. In this case, we observe
significantly improved OOD generalization with minimal
ID performance loss. However, the same trend is not ob-
served when switching the architrave to ResNet50. Simi-
lar to the prior work [41], we extract a zero-shot classifier
for DomainNet classes using a CLIP pre-trained ResNet50
and conduct the same linear interpolation ratio sweeping
as in the main paper. In Fig. 7, we plot ID performance
against the OOD performance of WISE with different ra-
tios, the pre-trained (zero-shot) model, and the vanilla fine-
tuned model. Notably, we observe a significant drop in per-
formance when interpolating between the pre-trained model
and a fine-tuned model. This shows that CLIP pre-trained
ResNet does not enjoy the same linear connectivity as its
Transformer counterpart.

5.8. Smoothing Comparison using MOCO-V3

In the main paper, we found that training with MOCO-
V3 pre-trained ResNet50 on DomainNet can benefit from
total variation (TV) smoothing (Appendix 5.3). Here we
show a detailed comparison between TPGM with and with-
out smoothing for this particular setting in Tab. 7. We
observe that TPGM without smoothing achieves the best
OOD performance however with a slight decrease in ID
performance compared to vanilla FT. This might be caused
by the conservative nature of TPGM as discussed in Ap-
pendix 5.3. When TV smoothing is added, we observe that
TPGM brings improvement to both ID and OOD perfor-



mance over vanilla FT.

5.9. Computation Overhead

TPGM inevitably adds some computation overhead to
a vanilla fine-tuning pipeline (though not inference). The
majority of computation cost comes in Alg. 2, where the
algorithm needs to conduct gradient updates on the projec-
tion parameters. While this overhead is negligible when we
set ffreq = T − 1, i.e., projection update is only called
once at the end of training as in the Transformer experi-
ments (Sec. 4.2), the overhead increases when ffreq = 1.
In our ResNet experiments (Sec. 4.1), to decrease compu-
tation cost, we only the update projection parameters once
during each call, i.e, Tproj = 1. Qualitatively, we see an
increase of training time from ∼ 29 hours to ∼ 34 hours
when TPGM is added, a ∼ 17% increase. However, this
increase can be justified by the fact that manually searching
for per-layer constraints can be intractable.
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