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Abstract

Recent work leverages the expressive power of genera-
tive adversarial networks (GANs) to generate labeled syn-
thetic datasets. These dataset generation methods often
require new annotations of synthetic images, which forces
practitioners to seek out annotators, curate a set of synthetic
images, and ensure the quality of generated labels. We in-
troduce the HandsOff framework, a technique capable of
producing an unlimited number of synthetic images and cor-
responding labels after being trained on less than 50 pre-
existing labeled images. Our framework avoids the practi-
cal drawbacks of prior work by unifying the field of GAN in-
version with dataset generation. We generate datasets with
rich pixel-wise labels in multiple challenging domains such
as faces, cars, full-body human poses, and urban driving
scenes. Our method achieves state-of-the-art performance
in semantic segmentation, keypoint detection, and depth es-
timation compared to prior dataset generation approaches
and transfer learning baselines. We additionally showcase
its ability to address broad challenges in model develop-
ment which stem from fixed, hand-annotated datasets, such
as the long-tail problem in semantic segmentation. Project
page: austinxu87.github.io/handsoff.

1. Introduction

The strong empirical performance of machine learning
(ML) models has been enabled, in large part, by vast quan-
tities of labeled data. The traditional machine learning
paradigm, where models are trained with large amounts of
human labeled data, is typically bottlenecked by the signif-
icant monetary, time, and infrastructure investments needed
to obtain said labels. This problem is further exacerbated
when the data itself is difficult to collect. For example, col-
lecting images of urban driving scenes requires physical car
infrastructure, human drivers, and compliance with relevant
government regulations.

*Work done as an intern at Amazon. axu@gatech.edu
†Work done while at Amazon

Figure 1. The HandsOff framework uses a small number of exist-
ing labeled images and a generative model to produce infinitely
many labeled images.

Finally, collecting real labeled data can often lead to im-
balanced datasets that are unrepresentative of the overall
data distribution. For example, in long-tail settings, the data
used to train a model often does not contain rare, yet crucial
edge cases [46].

These limitations make collecting ever increasing
amounts of hand labeled data unsustainable. We advocate
for a shift away from the standard paradigm towards a world
where training data comes from an infinite collection of au-
tomatically generated labeled images. Such a dataset gen-
eration approach can allow ML practitioners to synthesize
datasets in a controlled manner, unlocking new model de-
velopment paradigms such as controlling the quality of gen-
erated labels and mitigating the long-tail problem.

In this work, we propose HandsOff, a generative adver-
sarial network (GAN) based dataset generation framework.
HandsOff is trained on a small number of existing labeled
images and capable of producing an infinite set of synthetic
images with corresponding labels (Fig. 1).

To do so, we unify concepts from two disparate fields:
dataset generation and GAN inversion. While the former
channels the expressive power of GANs to dream new ideas
in the form of images, the latter connects those dreams to
the knowledge captured in annotations. In this way, our
work brings together what it means to dream and what it
means to know. Concretely, our paper makes the following
contributions:
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1. We propose a novel dataset generating framework,
called HandsOff, which unifies the fields of dataset
generation and GAN inversion. While prior meth-
ods for dataset generation [47] require new human
annotations on synthetically generated images, Hand-
sOff uses GAN inversion to train on existing labeled
datasets, eliminating the need for human annotations.
With≤ 50 real labeled images, HandsOff is capable of
producing high quality image-label pairs (Sec. 3).

2. We demonstrate the HandsOff framework’s ability
to generate semantic segmentation masks, keypoint
heatmaps, and depth maps across several challeng-
ing domains (faces, cars, full body fashion poses,
and urban driving scenes) by evaluating performance
of a downstream task trained on our synthetic data
(Sec. 4.2, 4.3, and 4.4).

3. We show that HandsOff is capable of mitigating the
effects of the long-tail in semantic segmentation tasks.
By modifying the distribution of the training data,
HandsOff is capable of producing datasets that, when
used to train a downstream task, dramatically improve
performance in detecting long-tail parts (Sec. 4.5).

2. Related work
Our work is built on GANs [16], which consist of a gen-

erator that synthesizes new images, and a discriminator that
discerns between real and generated images. Recent ad-
vances in GANs [8, 21–25] have demonstrated an ability
to generate highly realistic images in numerous domains.
We utilize the popular StyleGAN2 architecture [25], which
synthesizes images by passing randomly sampled inputs
through a series of style blocks. Remarkably, StyleGAN2’s
W and W+ latent spaces form rich representations of im-
ages in a disentangled manner [1, 2, 39, 43], which can be
utilized to edit complex semantic attributes in generated im-
ages [4,5,18,32,35,39]. The ability to identify semantically
meaningful parts of generated images in the latent represen-
tation suggests that it could be used to generate pixel-level
labels. This capability, coupled with GANs’ ability to gen-
erate troves of high quality images, serves as the basis for
generating synthetic image datasets [3, 30, 31, 47].

We build upon DatasetGAN [47], which trains a label
generator using representations of an image formed from
the GAN latent code. DatasetGAN requires human annota-
tion of GAN generated images, which burdens a practitioner
to seek out annotations for every new domain of interest.
In addition to labeling, users also must actively curate im-
ages to label to ensure diverse semantic feature coverage
and avoid GAN created artifacts. Furthermore, should the
labeling scheme change and render the original labels obso-
lete, then additional annotations are again required. Acquir-
ing additional labels is especially contrived when a large

of number of quality human annotated images already ex-
ist. A framework that leverages these real preexisting la-
beled images would circumvent all of these drawbacks. Ed-
itGAN [32], a follow-on contribution to DatasetGAN, uti-
lizes encoder-based reconstructions to perform image edit-
ing. BigDatasetGAN [30] exploits the pre-trained encoder
of VQGAN [13] to utilize existing labeled synthetic images.
In contrast, our approach links latents of labeled real images
to their labels by employing GAN inversion, the process of
mapping a real image to the latent space of a GAN.

The myriad of inversion techniques range from encoder-
based approaches [4, 37, 40, 41], which utilize trained en-
coders to map images directly to the latent space, to
optimization-based approaches [1,2,11], which directly op-
timize a similarity loss (e.g., LPIPS [45]) to obtain latents.
Some methods modify generator weights to increase image
reconstruction quality [2, 5, 38]. Our work exclusively uses
inversion methods that do not modify the generator, since
the generator must remain unperturbed to generate new im-
ages from the original data distribution. We invert images to
theW+ space, which is more expressive than theW space
and leads to higher quality reconstructions [43].

3. The HandsOff framework
The HandsOff framework, shown in Fig. 2, consists

of three main components: (1) a generator (realized as a
GAN), which maps a latent code w ∈ W to an image X ,
(2) an inverter, which maps an image X to a latent code w,
and (3) a label generator, which maps a latent code w to a
pixel-wise label Y , such as a semantic segmentation mask.
HandsOff exploits the fact that the generator’s latent space
forms a rich, disentangled representation of images. Since
these latent spaces already encode semantically meaning-
ful concepts from images [1, 2, 39], we aim to train a ‘label
generator’ that maps latents in this space to labels.

Unfortunately, training this label generator requires
paired data of latents w with labels Y . One approach, es-
poused by prior work [47], could be to map the latent w to
an image X , and ask annotators to manually label the im-
age. However, in many applications, paired data of (X,Y )
is readily available, thanks to the careful efforts of dataset
collectors. Our key insight is that existing labeled image
datasets can be used to train a label generator on GAN la-
tent spaces, using techniques from the GAN inversion liter-
ature. Below, we describe our specific approach for GAN
inversion (Sec. 3.1), our representation of the GAN’s latent
space (Sec. 3.2), and finally, our label generator (Sec. 3.3).

3.1. GAN inversion

The key step in the HandsOff framework is to connect
advances in GAN inversion to dataset generation. GAN in-
version allows us to use a small number of pre-existing la-
beled images to create a dataset of labeled latents. Our use



Figure 2. The HandsOff framework. (Top) GAN inversion is used to obtain training image latent codes, which are then used to form
hypercolumn representations. The label generator is then trained with the hypercolumn representations and original labels. (Bottom) To
generate datasets, the trained label generator is used in conjunction with a StyleGAN2 generator to produce image-label pairs.

of pre-existing labels allows practitioners to re-purpose ex-
isting labeled datasets, avoiding the cost of acquiring labels,
including the prerequisite of maintaining annotation work-
streams in their machine learning pipelines.

Our GAN inversion is inspired by popular approaches in
the image-editing community [32, 48]. Given a pre-trained
generator G, we first train an encoder to predict a latent
w(e) from an input image X . In practice, this feed-forward
encoder results in a good initial inversion of an image to a
latent input. To refine this initial estimate further, we solve
the following regularized optimization problem:

min
w:‖w−w(e)‖22≤creg

LLPIPS(X,G(w))+λ`2‖X −G(w)‖22

where LLPIPS is the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) loss [45]. Although this problem is highly
non-convex, in practice we find that using a fixed number
of gradient descent iterations significantly refines the la-
tent code. This refinement step requires additional infer-
ence time, but this additional cost is incurred only once on
a small number of training images. In our experiments, we
utilize ReStyle [4] as the encoder, but we emphasize that
our framework is amenable to any GAN inversion proce-
dure that does not modify the generator weights. Note that
common approaches for GAN inversion fine-tune the gen-
erator in order to achieve a better inversion for a specific
image [2, 5, 38]. To ensure our generator can produce new
images from the task domain, we keep the generator param-
eters frozen throughout the inversion process.

3.2. Hypercolumn representation

GAN inversion allows us to map images X to latent
codes w. We could use these latent codes directly to train a
label generator that maps latent codes w to labels Y . How-
ever, this discards the rich representations encoded by the
intermediate layers within the generator. Rather than train-
ing on w directly, we construct a hypercolumn representa-
tion S↑ from the generator’s intermediate layers. Specifi-
cally, we use a StyleGAN2 generator, where the latent code
w is used to modulate convolution weights in intermediate
style blocks, which progressively grow an input to the final
output image. For a 1024 × 1024 resolution image, there
areL = 18 style blocks. We utilize the approach of [47] and
take the intermediate output of these style blocks, upsample
them channel-wise to the resolution of the full image, then
concatentate each upsampled intermediate output channel-
wise to obtain pixel-wise hypercolumns. Our final hyper-
column representation is denoted by S↑, with each pixel j
now having a hypercolumn S↑[j] of dimension C. Due to
the high dimensionality of the hypercolumns (C = 6080
for 1024× 1024 images), we cap the generated image reso-
lution to 512 × 512, and downsample intermediate outputs
from higher resolutions.

3.3. Label generator

The label generator exploits the semantically rich latent
space of the generator to efficiently produce high quality
labels for generated images. Because the latent codes al-
ready map to semantically meaningful parts of generated
images, simple, efficient models suffice for generating la-
bels. Specifically, like in [47], we utilize an ensemble of



Figure 3. Examples of HandsOff generated labels (segmentation masks, keypoints, and depth) across four different domains. Generated
labels capture fine details across various object orientations (CelebAMask-HQ, Car-Parts), object poses (DeepFashion-MM), and lighting
conditions (Cityscapes). Note that HandsOff correctly assigns the label “skin” to the visible parts of the leg in the ripped areas of jeans
(DeepFashion-MM, first row, first human) and correctly assigns the labels “jacket” and “shirt”, despite the fact that the jacket and shirt are
almost indistinguishable color-wise (DeepFashion-MM, first row, second human). Furthermore, generated keypoints are accurate despite
partial occlusion, such as eyes behind glasses (CelebAMask-HQ, third and fourth image) or feet covered by long pants (DeepFashion-MM,
second row, last human). HandsOff is also capable of identifying spatially small objects, such as street signs (Cityscapes, first, third, and
fourth image).



M multilayer perceptrons (MLPs). The MLPs operate on
a pixel-level, mapping a pixel’s hypercolumn to a label. To
generate a label for a synthetic image, we pass the hyper-
column formed by latent code w through the M MLPs, and
aggregate the outputs (via majority vote or averaging) to
produce a label. The M MLPs are trained using a small
number (∼50) of pre-existing labeled images with a cross-
entropy loss for generating discrete labels (e.g., segmenta-
tion masks) and mean-squared error loss for generating con-
tinuous labels (e.g., keypoint heatmaps).

Our use of an ensemble of MLPs naturally provides
a way to filter out potentially poor labels by using the
prediction uncertainty as a proxy for label quality. For
discrete labels, we can utilize Jensen-Shannon divergence
[7,28,34,47] across the M MLPs to produce pixel-wise un-
certainty maps. For predicting continuous labels, we com-
pute the pixel-wise variance across the MLP outputs. In
both cases, the overall image uncertainty is computed by
summing across all pixels.

4. Experimental results
We extensively evaluate HandsOff in generating both

discrete (segmentation masks) and continuous (keypoint
heatmaps and depth) labels across four challenging do-
mains: Faces, Cars, Full-Body Human Poses, and Ur-
ban Driving Scenes. We utilize various pre-trained Style-
GAN2 generators [14, 15, 25] and ReStyle inverters [4].
To train the label generator, we utilize existing labels
from CelebAMask-HQ [29], Car-Parts [36], DeepFashion-
MultiModal [20,33], and Cityscapes [12]. The key assump-
tion of HandsOff is that GAN inverted image reconstruc-
tions align well with the original labels. We present visual-
izations of reconstructed image alignment in Appendix D.1.
Our label generator architecture across all domains and
tasks is anM = 10 ensemble of 2-hidden layer MLPs. This
simple architecture is a distinct strength of the HandsOff
framework: intensive parameter and architecture finetuning
are not necessary to achieve state-of-the-art empirical per-
formance. For the label generator, we provide training de-
tails in Appendix B.3, architecture details in Appendix B.5,
and ablations in Appendix C.

4.1. Experimental set-up

Downstream network In all domains and tasks, we uti-
lize DeepLabV3 with a ResNet151 backbone as our down-
stream network. We generate 10,000 synthetic images and
labels, filter out the top 10% most uncertain images (see
Sec. 3.3), and train our downstream network for 20 epochs
with the 9,000 remaining images. For segmentation, we
have DeepLabV3 output a probability distribution over all
of the parts for each pixel, whereas for keypoints or depth,
we have DeepLabV3 output continuous values. Due to the
dynamic nature of elements in the Cityscapes dataset, slight

imperfections in the reconstructions uniquely affect seg-
mentation mask alignment. To mitigate this, we perform
an extra fine tuning step with the original 16 or 50 labeled
examples used to train the label generator while training for
semantic segmentation. Training details for the downstream
network can be found in Appendix B.3 and ablations can be
found in Appendix C.

Baselines We compare HandsOff against three baselines:
DatasetGAN, EditGAN, and Transfer Learning. We are
only able to evaluate DatasetGAN in the face domain, as
DatasetGAN is unable to accommodate the change in la-
beling scheme from their custom labeled car dataset to the
larger Car-Parts-Segmentation dataset, thus highlighting an-
other drawback of requiring GAN labeled images. For Edit-
GAN, we adopt the image editing framework to synthesize
labels for images. However, we are unable to test in the
full-body human poses and urban driving scene domains,
as EditGAN has only released checkpoints for the face and
car domains. For the Transfer Learning baseline, we initial-
ize DeepLabV3 with pretrained weights on ImageNet, then
finetune the classification head of the model on the 16 or 50
labeled images used to train HandsOff until convergence.
This baseline is used to benchmark our method, which is
trained on up to 50 labeled images, against a model that is
trained on 100,000+ labeled out-of-domain images in addi-
tion to the 16 or 50 labeled in-domain images.

Datasets For faces, we split CelebAMask-HQ into a set
of 50 training, 450 validation, and 29,500 testing images.
We collapse the 19 original segmentation classes into 8 and
scale the keypoint locations in the low resolution version of
images found in CelebA to the full resolution images. For
cars, we retain the original 400 image train set, split the test
set into a set of 20 images for validation and 80 images for
testing, and collapse the 19 original classes into 10. For
full-body human poses, we split DeepFashion-MultiModal
into a set of 200 training, 500 validation, and 12,000 testing
images. We collapse the 24 original segmentation classes
into 8 and 10 classes and retain the original 21 labeled key-
point locations. For Cityscapes, because the ground truth
test labels are not released, we split 300 and 1275 images
from the original train set for validation and test, respec-
tively. We utilize the eight groups (e.g., human, vehicle,
etc) as our class labels. Note that while our train sets may
contain more than 50 images, we use at most 50 labeled im-
ages from the train sets to train HandsOff in each domain.
Details on class collapse can be found in Appendix B.2.

4.2. HandsOff generated datasets

We visualize the generated image-label pairs from Hand-
sOff in Fig. 3. HandsOff is capable of generating very
high quality labels across all domains. In the face domain,



# labeled
images

CelebAMask-HQ
8 classes

Car-Parts
10 train

DeepFashion-MM
8 classes

DeepFashion-MM
10 classes

Cityscapes
8 classes

DatasetGAN 16 0.7013 × × × ×
EditGAN 16 0.7244 0.6023 × × ×
Transfer Learning 16 0.4575 0.3232 0.5192 0.4564 0.4954
HandsOff (Ours) 16 0.7814 0.6222 0.6094 0.4989 0.5510

Transfer Learning 50 0.6197 0.4802 0.6213 0.5559 0.5745
HandsOff (Ours) 50 0.7859 0.6679 0.6840 0.5565 0.6047

Table 1. Downstream task performance for semantic segmentation tasks across various domains, reported in mIOU (↑). HandsOff out-
performs all baselines across all domains with both 16 and 50 labeled training images. × indicates a method that could not be run for a
particular domain due to methodological shortcomings, such as requiring additional hand-labeled data.

# labeled CelebAMask-HQ DeepFashion-MM Cityscapes-Depth
images PCK-0.1 ↑ PCK-0.05 ↑ PCK-0.02 ↑ PCK-0.1 ↑ PCK-0.05 ↑ PCK-0.02 ↑ mNMSE ↓ RMSE ↓ RMSE-log ↓

Transfer Learning 16 78.96 42.06 7.32 91.24 83.52 48.21 0.4022 18.12 2.75
HandsOff (Ours) 16 97.19 76.36 17.44 94.19 88.48 70.22 0.2553 14.52 1.64

Transfer Learning 50 90.88 61.75 12.30 91.24 83.52 48.20 0.2525 15.07 3.01
HandsOff (Ours) 50 97.71 79.99 19.10 95.41 90.89 74.02 0.1967 13.01 1.58

Table 2. Downstream task performance for keypoint detection and depth estimation. HandsOff outperforms all other methods when trained
on 16 or 50 labeled images, demonstrating an impressive ability in generating continuous-valued keypoint heatmaps and depth maps.

HandsOff is capable of producing segmentation masks that
can correctly distinguish left/right features like eyes or ears
and identify rare occurring classes such as glasses. Fur-
thermore, it produces extremely accurate keypoint loca-
tions even when such locations may be partially occluded.
Within the full-body human pose domain, HandsOff pro-
duces finely detailed segmentation masks, best illustrated
by the segmentation mask for the first human in the top row
of Fig. 3, who is wearing a pair of ripped jeans and the sec-
ond human in the top row who is wearing the same colored
jacket and shirt (see caption for more details). Generated
labels are consistently high quality across a diverse array
of object orientations, as seen in the various face rotations,
human poses, or car orientations of Fig. 3. Finally, in ex-
tremely complex scenes, such as Cityscapes, HandsOff pro-
duces labels for visually minuscule classes, such as street
lamps or traffic signs. Additional examples of generated la-
bels can be found in Appendix D.3.

4.3. Segmentation results

As seen in Tab. 1, we achieve state-of-the-art perfor-
mance on synthetic data trained semantic segmentation
in all four domains, as measured in mean Intersection-
over-Union (mIOU). Specifically, HandsOff outperforms
DatasetGAN by 11.4% and EditGAN by 7.9% in the face
domain when trained with the same number of labeled im-
ages. Increasing the number of labeled training images for
HandsOff results in further performance gains, with 12.1%
and 8.5% improvements over DatasetGAN and EditGAN,

respectively. Unlike DatasetGAN, we are able to increase
the number of labeled training images without incurring the
associated costs of collecting new human annotated images.
We emphasize again that with new domains, such as full-
body human poses or urban driving scenes, it is not possi-
ble to train DatasetGAN-based frameworks as they rely on
manual labels for GAN generated images. Therefore, we
benchmark against the transfer learning baseline in these
domains. Notably, HandsOff outperforms the transfer learn-
ing baseline by 17.4% (full-body human poses) and 11.2%
(urban driving scenes) when both methods are trained on
16 labeled images; and 10.1% (full-body human poses) and
5.3% (urban driving scenes) when trained on 50 images.

4.4. Keypoint and depth results

We utilize HandsOff to generate continuous valued la-
bels for keypoints and depth tasks. As seen in Tab. 2,
we demonstrate strong empirical performance in generat-
ing both keypoints and depth maps. To synthesize key-
points, we utilize the keypoint heatmap regression frrame-
work, where our label generator is asked to output a
continuous-valued spatial heatmap for each keypoint. See
Appendix B.6 for a detailed explanation of keypoint regres-
sion. For downstream task performance, we report the Per-
centage of Correct Keypoints (PCK) for different threshold
values α, denoted PCK-α. For a keypoint to be predicted
correctly, the estimate must be no further from the true key-
point than α · max{h,w}, where h and w are the height
and width of the minimum size bounding box that contains



(a) (b) (c)

Figure 4. Substitution experiments for various long-tail parts; (a) in cars - trunk (T), back bumper (B), back window (W); (b) in faces -
glasses (G), hats (H). As the proportion of images containing the long-tail part increases in the training set, the performance of the long-tail
class improves until it enters the overfitting regime. Non-long-tail mIOU tracks closely with overall IOU, implying dramatic gains in
long-tail IOU do not come at the expense of other parts. (c) Addition experiments for face long-tail parts. (+H/G) indicates that images
containing hats and images containing glasses are added to a base set, while (-H/G) indicates images containing neither hats nor glasses
are added. The long-tail IOU of both parts simultaneously increase as images containing hats and images containing glasses are added to
the base training set, with no negative impact on the performance of other classes.

all of the keypoints. We note that even for small α (i.e.,
α = 0.02), HandsOff is able to correctly predict 2.4× and
1.5× more keypoints than the transfer learning baseline in
the face and full-body human pose domains, respectively.
This implies that HandsOff is able to predict keypoints up
to an extremely tight radius of the original keypoint location
compared to other methods.

For depth, we report masked normalized mean-squared
error (mNMSE), root mean-squared error (RMSE), and root
mean-squared error of the log-depth values (RMSE-log).
Because Cityscapes depth maps contain corrupted depth
values, we train HandsOff only non-corrupted pixels. Fur-
thermore, to compute mNMSE, we compute the normalized
mean-squared error only on the non-corrupted pixels. That
is, let ŷ and y are the predicted and true depth maps, re-
spectively, and M be a mask indicating the non-corrupted
elements of y. mNMSE is computed as ‖ŷM−yM‖22

‖yM‖22
, where

aM denotes the depth map a at non-corrupted locations.
When reporting RMSE and RMSE-log, we adopt the stan-
dard practice [10, 42] in depth estimation of cropping the
middle 50% of the image and clamping predicted depth
values to be within 0.001 and 80 before computing RMSE
and RMSE-log values. As shown in Tab. 2, HandsOff is
able to achieve a sizable advantage in all three metrics, out-
performing transfer learning, resulting in 36.5%, 19.9%,
and 40.27% decreases in mNMSE, RMSE, and RMSE-log
when trained on 16 labeled images and 22.1%, 13.6%, and
47.6% decreases when trained on 50 labeled images.

4.5. Long-tail semantic segmentation

The HandsOff framework’s ability to generate high qual-
ity synthetic datasets unlocks new degrees of freedom for
model development previously unachievable with fixed,

hand-annotated datasets. We now explore one example:
mitigating the effects of the long-tail common in seman-
tic segmentation datasets. For CelebAMask-HQ, images
with hats and glasses make up less than 5% of the 30,000
labeled images, and a similar situation exists with trunks,
back bumpers, and back windows in the Car-Parts dataset.
These examples form the long-tail classes of their respective
datasets, and their rare occurrence during training results in
poor model performance at evaluation time.

The HandsOff framework altogether sidesteps this lim-
itation of traditional datasets: by generating labeled syn-
thetic images, we can control the occurrence of rare classes
in our training data and significantly mitigate the effects of
the long-tail. Because training the label generator requires
less than 50 annotated images, we only require 5-10 occur-
rences of long-tail classes in order to generate an unlimited
number of those occurrences in our synthetic dataset. Our
experiments precisely quantify the small number of anno-
tated examples of rare classes required to significantly im-
prove downstream task performance on those classes. They
fall into two categories: Substitution experiments, that fix
a total number of training images and vary the proportion
of rare class occurrences, and Addition experiments, that
grow the size of the training set by adding images with rare
classes. The substitution experiments ensure that any gains
in the performance of identifying the long-tail class are not a
by-product of increasing training set size. We perform sub-
stitution experiments considering only one long-tail part at
a time. On the other hand, the addition setting is indicative
of how a practitioner would deploy HandsOff: starting with
a base set of labeled training images and further augment-
ing it with images containing rare classes deemed crucial
to identify. To mirror what often happens in practice, we



Figure 5. Visualization of generated segmentation mask (top row) and pixel-wise label generator uncertainty (bottom row) as the proportion
of the training set containing the glasses increases. Not only do we see qualitative improvement in the generated label for glasses, we also
see that the classifier is less uncertain when generating the correct label.

perform addition experiments by adding images containing
multiple long-tail classes at a time.

Substitution. We begin with an initial set of 16 (cars) or
50 (faces) labeled images containing one image of the rare
part, and then vary the proportion of the rare part. As seen in
Fig. 4a and 4b, a small proportion of rare classes results in
poor class identification performance, but as the proportion
of images with long-tail classes increases, the long-tail part
IOU increases by as much as 0.55 for car trunks and 0.40 for
face glasses before eventually plateauing. We note that hats
are a particularly challenging part to generate labels for due
to the diversity of their size, shape, color, and orientation.
Nevertheless, we still see a sizable increase of 0.2 IOU.
We additionally plot the overall mIOU and the mIOU of
non-long-tail parts to demonstrate that modifying the com-
position of the training set does not hurt performance on
non-long-tail parts. In other words, shifting the training set
part distribution to an extent has negligible impacts on the
performance of non-long-tail parts, while resulting in large
gains in long-tail class detection. Beyond proportions of
∼0.7, further increasing the proportion of the training set
eventually causes drops in both long-tail part IOU and the
mIOU of non-long-tail parts, owing to the label generator
hallucinating long-tail classes where they do not belong.
The impacts of substituting images with long-tail classes are
best illustrated in Fig. 5. As the proportion of images with
glasses grows, the generated mask captures glasses with in-
creasing accuracy, eventually even distinguishing eyes that
are visible through the glasses. Underneath the segmen-
tation masks, we showcase the pixel-wise label generator
uncertainty measured by Jensen-Shannon divergence (See
Sec. 3.3). Not only does the generated label improve qual-
itatively, the label generator is less uncertain about the re-
gion of the image corresponding to the glasses. Additional
visual examples of both segmentation mask and label gen-
erator uncertainty can be found in Appendix D.4.

Addition. We augment a small training set of 15 images
with additional images containing hats or glasses. Fig. 4c
demonstrates significant IOU increases (+0.71) in long-tail
classes. The figure further highlights that these increases are
not simply due to additional examples: targeted additions
outperform the scenario where we add the same number of
images, but the added images do not contain hats or glasses.
These improvements in long-tail classes do not come at the
expense of performance in other classes, as demonstrated
by the overall mIOU and mIOU of non-long-tail classes.
Unlike the substitution experiments, these performance im-
provements do not eventually drop, since the number of
training examples continues to increase.

Our experiments showcase the power of the HandsOff
framework to mitigate the long-tail problem. By explic-
itly including images with the long-tail class in our label
generator training data, we are able to bridge the gap be-
tween performance in rare and common classes. The num-
ber of images with long-tail classes necessary to generate
high quality labels of the long-tail is even smaller than the
already small number of images needed to train HandsOff,
meaning that the gains in long-tail class performance essen-
tially come for free. If the long-tail class has been deemed
crucial to identify, then it is likely that a practitioner has ac-
cess to ∼20 labeled images containing the long-tail class.
The performance gains in long-tail performance achieved
by HandsOff are not practically replicable in DatasetGAN,
where human supervision is needed to both identify gener-
ated images containing the long-tail class and provide pre-
cise pixel-level annotations.

5. Discussion

We present the HandsOff framework, which produces
high quality labeled synthetic datasets without requiring
further annotation of images for a multitude of tasks across



various challenging domains. HandsOff achieves state-
of-the-art performance over several recent baselines when
training a downstream network with our synthetically gen-
erated data. Furthermore, HandsOff enables user control
of the training data composition, leading to dramatic per-
formance gains in long-tail semantic segmentation. This
suggests that HandsOff can play a vital role in curtailing
the effects of the long-tail. While synthetic datasets have
the potential to supplant human annotations, they can also
complement them. We leave as future work to investigate
the collaborative power of having a human-in-the-loop re-
fine synthetically generated annotations, and bring about the
best of both worlds.
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B. Experimental setup
B.1. Dataset details

In our experiments, we utilize the following datasets. We
report the licenses for all datasets that publicly list them.

• CelebAMask-HQ [29]. License: non-commercial re-
search and educational purposes.

• Car-Parts [36].

• DeepFashion-MultiModal [20, 33]. License: non-
commercial research purposes.

• SHHQ [14]. License: CC0 and free for research use.

• Cityscapes [12]. License: on-commercial research and
educational purposes.

We also utilize pre-trained StyleGAN2 and ReStyle models.
In the face and car domain, these models were trained on the
following datasets:

• FHHQ [24]. License: Creative Commons BY-NC-SA
4.0 license by NVIDIA Corporation.

• LSUN [44].

• Stanford Cars [27]. License: non-commercial research
and educational purposes.

To make the DeepFashion-MultiModal segmentation masks
compatible with StyleGAN-Human, we first used the seg-
mentation mask to determine the background for each im-
age and set the background to white. We then re-sized each
image to the same size SHHQ images.

B.2. Segmentation mask class collapse

Consistent with prior works [47], we collapse the origi-
nal labels in each dataset into a smaller number of labeled
parts. For CelebAMask-HQ dataset, we remove any distinc-
tion between left/right in a number of parts (e.g., ears, eyes,
eyebrows). Furthermore, we form one mouth part consist-
ing of upper/lower lips and mouth. Finally, we collapse all
accessories and clothing into background. See Tab. 3a for
exact class collapse mapping. In long-tail experiments, we
un-collapse the relevant long-tail classes (glasses and hats)
and consider them separate classes.

For the Car-Parts dataset, we remove any distinction
between left/right and front/back for parts such as doors,

lights, bumpers, and mirrors. We also merge trunks and
tailgates to be the same class. See Tab. 3b for exact class
collapse mapping.

For DeepFashion-MultiModal, we consider two degrees
of class collapse. In the first, we consider the follow-
ing ten classes, with original classes included in paren-
theses: tops (tops and ties), outerwear, dresses (dresses,
skirts, rompers), bottoms (pants, leggings, belts), face (face,
glasses, earrings), skin (skin, neckwear, rings, wrist acces-
sories, gloves, necklaces), footwear (shoes and socks), bags,
and hair (hair and headwear). In the second, we further col-
lapse the classes by including outerwear in tops and bags as
background. See Tab. 3c and 3d for exact class collapse
mappings.

For Cityscapes, we utilize the eight groups listed on the
Cityscapes official website as our classes, with slight modi-
fications. We consider parts labeled sidewalk, parking, and
rail track as a part of the void class. See Tab. 3e for exact
class collapse mapping.

B.3. Training setup

All experiments were run on V100 GPUs using Ama-
zon Web Services (AWS) P3dn.24xlarge instances. Each
MLP in the label generator ensemble was trained with the
same parameters for all domains and tasks. Each MLP was
trained for ∼ 4 epochs via the Adam optimizer [26] with
learning rate 0.001 and batch size 64. For all results pre-
sented in Tab. 1 and 2, the labeled images used to train the
label generator were chosen at random. For long-tail ex-
periments (Sec. 4.5), images with the long-tail part were
identified. Then, the labeled training images were selected
at random from the identified images.

Prior to training the downstream network, we filter out
the top 10% most uncertain synthetically generated images,
except for the long-tail experiments. No filtering is per-
formed for long-tail experiments to ensure that images with
long-tail parts, which are more likely to be “uncertain”, are
included in the training set for the downstream network. To
train the downstream network, we again utilize the Adam
optimizer [26] with learning rate 0.001 and batch size 64.
We train ReStyle [4] on the set of labeled training images
randomly selected from SHHQ [17,33] and Cityscapes [12]
for the full-body human poses and urban driving scene do-
mains, respectively. We use default settings found in the
ReStyle repository.

B.4. GAN inversion setup

For the full-body human poses and urban driving scenes
domains, we train ReStyle with the candidate training ex-
amples. Our framework only uses GAN inversion to obtain
latent codes for training the label generator. Training on the
candidate training examples thus ensures that ReStyle op-
timally reconstructs these latent codes. For faces and cars,



Collapsed
label (8) CelebAMask-HQ original labels

Background
Background (0), hat (14), earring (15),
necklace (16), neck (17), clothes (18)

Skin Skin (1)
Nose Nose (2)
Eyes Left eye (3), right eye (4), glasses (5)
Eyebrows Left eyebrow (6), right eyebrow (7)
Ears Left ear (8), right ear (9)
Mouth Mouth (10), upper lip (11), lower lip (12)
Hair Hair (13)

(a)

Collapsed
label (10) Car-Parts original labels

Background Background(0)
Bumper Back bumper (1), front bumper (7)
Back window Back glass (3)

Doors
Back left door (3), back right door (5),
front left door (9), front right door (11)

Lights
Back left light (4), back right light (6),
front left light (10), front right light (12)

Windshield Front glass (8)
Hood Hood (13)
Mirror Left mirror (14), right mirror (15)
Trunk Tailgate (16), trunk (17)
Wheel Wheel (18)

(b)

Collapsed
label (10) DeepFashion-MM original labels

Background Background(0)
Top Top (1), tie (23)
Outerwear Outerwear (2)
Dress Skirt (3), dress (4), romper (21)
Bottoms Pants (5), leggings (6), belt (10)
Face Glasses (8), face (14), earring (22)

Skin
Neckwear (9), skin (15), ring (16),
Wrist accessories (17), gloves (19),
necklace (20)

Footwear Footwear (11), socks (18)
Bags Bags (12)
Hair Headwear (7), hair (13)

(c)

Collapsed
label (8) DeepFashion-MM original labels

Background Background(0), bags(12)
Top Top (1), tie (23), outerwear (2)
Dress Skirt (3), dress (4), romper (21)
Bottoms Pants (5), leggings (6), belt (10)
Face Glasses (8), face (14), earring (22)

Skin
Neckwear (9), skin (15), ring (16),
Wrist accessories (17), gloves (19),
necklace (20)

Footwear Footwear (11), socks (18)
Hair Headwear (7), hair (13)

(d)

Collapsed label (8) Cityscapes (Fine annotations) original labels

Void
Unlabeled (0), ego vehicle (1), rectification border (2), out of ROI (3), static (4), dynamic (5),
ground (6), sidewalk (8), parking (9), rail track (10)

Road Road (7)
Construction Building (11), wall (12), fence (13), guard rail (14), bridge (15), tunnel (16)
Object pole (17), polegroup (18), traffic light (19), traffic sign (20)
Nature Vegetation (21), terrain (22)
Sky Sky (23)
Human Person (24), rider (25)

Vehicle
UCar (26), truck (27), bus (28), caravan (29), trailer (30), train (31), motorcycle (32),
bicycle (33), license plate (-1)

(e)

Table 3. Mapping from collapsed class label to original class label in faces (a), cars (b), full-body human poses (c), (d), and urban driving
scenes (e) domains. Original class numbers provided for each original class label name in parentheses.



this procedure is not necessary because ReStyle optimally
reconstructs the latent codes of training examples without
training. For the optimization-based finetuning, we utilize
creg = 0.5 and λ`2 = 0.1 for all domains. We run 300
optimization steps for the car domain, 500 iterations for the
face and urban driving scenes domains, and 2,000 iterations
for the human full-body poses domain. See Appendix C for
ablations on GAN inversion optimization steps.

B.5. Label generator architecture

For all experiments, we utilize an ensemble of two layer
MLPs with ReLU activations and batch normalizations for
our label generator. We sweep the combination of layer
widths and report the performance associated with the best
performing combination for each domain and number of la-
beled training images. See Appendix C for ablations on
layer widths. Below, we report the combination of label
generator sizes that produced the best performance. (x, y)
indicates that a network with first hidden layer of width x
and second hidden layer of width y was used.

Faces For segmentation, we utilize layer sizes of (256, 32)
for 50 training images and (512, 64) for 16 training images.
For keypoints, we utilize (512, 32) for PCK-0.1, PCK-0.05,
and PCK-0.02 with 50 training images. For 16 training im-
ages, we utilize (512, 64) for PCK-0.1 and (512, 32) for
PCK-0.05 and PCK-0.02.

Cars For segmentation, we utilize (512, 256) for both 50
training images and 16 training images.

Full-body human poses For segmentation, we utilize
(1024, 32) and (2048, 64) for 50 training images in the 8
class and 10 class settings and (2048, 64) and (2048, 128)
for 16 training images in the 8 class and 10 class settings.
For keypoints, we utilize (512, 128), (256, 128), and (128,
64) for PCK-0.1, PCK-0.05, and PCK-0.02 with 50 training
images. For 16 training images, we utilize (512, 256) for all
three PCK thresholds.

Urban driving scenes For segmentation, we utilize (512,
64) for both 50 and 16 training images. For depth maps, we
utilize (512, 256) for both 50 and 16 training images.

B.6. Keypoint heatmap regression

For keypoint detection experiments, we utilize a heatmap
regression setup. Given an image (of size H ×W ) and a
corresponding list ofK keypoints, we form a corresponding
pixel-wise label for the image as follows. For each of theK
keypoints, we create a H ×W sized heatmap. The values
of the heatmap are the values of the density of a standard
two-dimensional Gaussian centered at the location of the

keypoint with variance σ. We further scale the values of the
heatmap by 10, so that the maximum value of the heatmap
is 10. We find through hyperamater tuning that σ = 25
works well for full body while σ = 5 works well for faces.
With faces, we use σ = 5 for the original sized CelebA
images and then resize the mask to be of CelebAMask-HQ
resolution.

The label generator and downstream task are tasked with
predicting a vector of K values for each pixel. At test
time, after predicting K heatmaps corresponding to the K
keypoints, we take the location of the maximum element
of each heatmap as the location of the keypoint. When
computing the PCK metric, we only compute if a keypoint
was correctly detected for visible keypoints. Information
on if a particular keypoint is visible or not is provided in
DeepFashion-MM, but not for CelebA.

C. Ablation studies

In this section, we present ablation studies that shed in-
sights on various hyperparameters.

Hypercolumn dimension We experiment with keeping
only a subset of the channels from the style block interme-
diate outputs from the lower resolution layers. In the Style-
GAN2 generator, the first 10 style block outputs (which
range from 4×4 to 128×128 resolutions) each contain 512
channels, comprising 5120 of the 6080 total channels. We
quantify the effect of keeping zero or the first 64, 128, and
256 channels on the downstream task performance in the
face domain. As shown in Tab. 6a, in the face domain,
while utilizing only higher resolution layers degrades per-
formance considerably, we can remove 256 of the 512 chan-
nels for the first 10 style blocks with very minimal loss
in performance. This results in a hypercolumn dimension
3520, which is a 42% reduction compared to the original
dimension of 6080. In our experiments, we utilize the full
hypercolumn dimension, but note that due to memory con-
siderations, utilizing a subset of the dimensions is feasible
from a performance trade-off perspective.

Number of MLPs in label generator ensemble We ex-
periment with the number of MLPs in the ensemble. We
train 1, 3, 5, 7, and 10 MLPs to generate labels. As seen in
Fig. 6b, in the face domain, using only 1 network results in
a performance drop, but using anywhere from 3 to 7 MLPs
results in performance meeting or even exceeding the per-
formance of using all 10 MLPs. In our experiments, we
utilize 10 networks to provide for more robustness in more
difficult domains, such as full-body humans and urban driv-
ing scenes.



Size of MLPs in label generator ensemble We investi-
gate whether network layer widths impact downstream per-
formance. The original DatasetGAN framework utilizes 3-
layer MLPs with intermediate dimensions of 128 and 32.
We explore 7 additional combinations of layer widths: (256,
32), (256, 64), (256, 128), (512, 32), (512, 64), (512, 128),
and (512, 256). As seen in Fig. 5, in the face domain, for
the face domain, downstream performance does not neces-
sarily increase with increasing network widths, but remains
relatively stable.

Number of labeled training images We characterize the
effects of the number of labeled training images has on
downstream task performance in the car domain. As em-
phasized throughout the paper, a notable benefit HandsOff
has over comparable frameworks is the ability for practi-
tioners to increase the number of labeled training images
without incurring costs of manual annotations. As observed
in Fig. 6c, in the car domain, the downstream performance
generally increases as the number of training images is in-
creased, but this increase is not non-decreasing. One expla-
nation for why is that the composition of the training data
may have a larger impact on downstream performance than
simply the number of images. This fact is explored in the
long-tail experiments of the main paper. In our experiments,
we report the performance with 16 labeled training images,
which is the same number of training images in compara-
ble baselines. We also report the performance of 50 labeled
training images to highlight our framework’s ability to ac-
commodate more than a 3× increase in training data.

Reconstruction quality We examine the effects of GAN
inversion reconstruction quality on downstream perfor-
mance. Specifically, we vary the number of optimiza-
tion refinement steps on the ReStyle-produced latent code.
To quantitatively assess reconstruction quality, we use the
value of the loss in the refinement step. As seen in Tab. 6, in
the car domain, as the number of optimization iterations in-
creases, the downstream performance generally increases.
However, this increase does not scale directly with recon-
struction loss.

Size of generated dataset We characterize the effects of
the size of the generated dataset on downstream perfor-
mance. For each generated dataset size, we filter out the
top 10% uncertain images. As seen in Fig. 6d, in the car do-
main, as the size of the dataset grows, the downstream per-
formance generally increases. However, the performance
improvement has diminishing returns, as performance im-
provement is most notable moving from 5,000 to 10,000
generated image-label pairs. As a result, in our experiments,
we utilize dataset sizes of 10,000 to strike a balance between

performance and time and computation needed to generate
larger datasets.

Percent of generated dataset filtered We experiment
with the percent of the dataset that is filtered out. To do so,
we generate a dataset of size 10, 000 and then filter out vary-
ing percentages. As seen in Fig. 6e, in the car domain, em-
ploying filtering results in relatively similar performances.
Therefore, in our experiments, we utilize a filtering percent-
age of 10% to strike a balance between removing highly un-
certain labels and the number of image-label pairs that are
used to train the downstream model.

Cityscapes downstream network finetuning. We report
the effects of finetuning the trained downstream model with
the original 16 or 50 labeled images used to train the label
generator. As seen in Tab. 7, finetuning results in increases
in performance, indicating that finetuning overcomes the
difficulty in producing high quality in-distribution images
with a GAN.

Transfer learning pretrain dataset choice. We report
the performance of the transfer learning baseline in the face
and car domain when pretrained on ImageNet versus pre-
trained on ImageNet and COCO. As seen in Tab. 8, pre-
training on COCO in addition to ImageNet results in mild
performance gains.

D. Additional results
D.1. Reconstructed image alignment

An underlying assumption of the HandsOff framework
is that the reconstructed images resulting from GAN inver-
sion align well semantically with the original labels. In this
section, we present visual examples of reconstructed image
alignment with original labels.

In the face domain, we utilize ReStyle for the en-
coder initialization and use 500 steps of optimization to
refine the images. As seen in Fig. 7a, the reconstructions
align very well with the semantic segmentation masks from
CelebAMask-HQ.

In the car domain, we utilize ReStyle for the encoder ini-
tialization and use 300 steps of optimization to refine the
images. As seen in Fig. 7b, the output of the ReStyle cap-
tures the overall scene very well, but struggles in preserving
fine details, as shown in red circles. By utilizing the opti-
mization based refinement step, we are able to correct for
these small details. These refined images align much better
with the original segmentation masks, as shown in Fig 7b.

D.2. Face domain few-shot segmentation results

In this section, we compare the downstream few-
shot segmentation performance of HandsOff against self-



supervised approaches and diffusion-model based ap-
proaches. Namely, we compare against DDPM-Segment
[6], DatasetDDPM [6], MAE [19], and SwAV [9].

DatasetDDPM and DDPM-Segment both utilize denois-
ing diffusion probabilistic models (DDPMs). DDPM-
Segment extracts intermediate network outputs from vari-
ous time steps of the denoising process to form pixel-level
image representations, akin to the hypercolumn represen-
tations formed from StyleGAN2 in HandsOff. Then, an
ensemble of linear classifiers is trained to output a pixel-
level label. DDPM-Segment is different from HandsOff in
that it does not generate synthetic datasets. Instead, at in-
ference time, the ensemble of linear classifiers is applied to
the pixel-level representation of an image. DatasetDDPM
simply replaces the GAN in DatasetGAN with a DDPM,
forming pixel-level representations in the same manner as
DDPM-Segment. For MAE and SwAV, we utilize the ap-
proach of [6] and extract intermediate layer outputs to form
image representations of real images. We then train a seg-
menter to map from these representations to label outputs.

# labeled
images

CelebAMask-HQ
8 classes

DDPM-Segment 16 0.772
DatasetDDPM 20 0.739
MAE 16 0.772
SwAV 16 0.725
HandsOff 16 0.781

# labeled
images

CelebAMask-HQ
19 classes

DDPM-Segment 20 0.599
MAE 20 0.578
SwAV 20 0.524
HandsOff 20 0.583

Table 4. Segmentation task performance in face domain, reported
in mIOU (↑). Top half: experiments performed on our splits with 8
classes. Bottom half: experiments performed on [6] splits with 19
classes. Results for DDPM-Segment, MAE, and SwAV are those
as reported in Table 2 in [6].

In Tab. 4, we report the performance on our train/test
splits with 8 classes and the train/test splits found in [6]
with 19 classes. With our splits and 8 segmentation classes,
HandsOff outperforms all baselines, including diffusion
model-based approaches DDPM-Segment and DatasetD-
DPM. This is likely due to two reasons: 1. DDPM-Segment
does not leverage the inherent ability of generative mod-
els to produce more samples whereas HandsOff produces a
large dataset on which the downstream segmenter is trained.
The volume of downstream training data compensates for
the advantage that diffusion models have over GANs. 2.

Unlike DatasetDDPM, HandsOff trains on annotations of
real images and avoids hand annotating synthetic images,
which as found by [6], when used in training, generally re-
sult in poorer performance. With the train/test splits found
in [6] and 19 classes, DDPM-Segment performs slightly
worse than DDPM-Segment, but outperforms the strongest
self-supervised baselines (MAE [19] and SwAV [9]), as re-
ported in [6]. We utilize the implementation of [6] to train
DDPM-Segment end-to-end on our train/test splits. Fur-
thermore, we utilize the publicly released synthetically gen-
erated datasets from DatasetDDPM to train a downstream
network and evaluate on our train/test splits, as the labeled
DDPM-generated images used to train DatasetDDPM were
not publicly available.

D.3. Additional examples of generated labels

In this section, we present additional visual examples of
generated images and their labels as well as examples of
segmentation mask improvements in the long-tail segmen-
tation setting.

1. In Fig. 8, we present examples in the face domain. We
include examples of the predicted aggregated keypoint
heatmaps used to generate the predicted keypoints. To
produce the aggregated heatmap, we sum across all of
the individual keypoint heatmaps.

2. In Fig. 9, we present examples in the car domain.

3. In Fig. 10, we present examples in the full-body hu-
man pose domain. We again include examples of ag-
gregated predicted heatmaps used to generate the pre-
dicted keypoints. To produce the aggregated heatmap,
we sum across all of the individual keypoint heatmaps.

4. In Fig. 11, we present examples in the urban driving
scene domain.

D.4. Additional examples of long-tail visualizations

In Fig. 12a and 12b, we present examples of long-tail
segmentation mask progressions and pixel-wise uncertainty
measurements with glasses and hats, respectively. Un-
certainty is measured by Jensen-Shannon divergence (See
Sec. 3.3).



(a) Ablation for hypercolumn dimension in
the face domain.

(b) Ablation for ensemble size in the face
domain.

(c) Ablation for number of labeled training
images in the car domain.

(d) Ablation for the size of generated
dataset in the car domain.

(e) Ablation for the percent of generated
dataset that is filtered in the car domain.

MLP layer widths (128, 32) (256, 32) (256, 64) (256, 128) (512, 32) (512, 64) (512, 128) (512, 256)
mIOU 0.7740 0.7859 0.7813 0.7807 0.7828 0.7818 0.7817 0.7850

Table 5. Ablation for MLP hidden layer widths in the face domain

Optimization loss 3.333 2.292 2.185 2.140 2.108 2.089
Optimization iterations 0 100 200 300 400 500
mIOU 0.5735 0.6278 0.6301 0.6679 0.6426 0.6591

Table 6. Ablation for GAN inversion quality in the car domain.

# labeled images No finetuning Finetuning
16 0.5206 0.5510
50 0.5492 0.6047

Table 7. Ablation for Cityscapes downstream network finetuning.

Domain # labeled images ImageNet pretrain COCO + ImageNet pretrain
Faces 16 0.4575 0.4896
Faces 50 0.6197 0.6295
Cars 16 0.3232 0.3313
Cars 50 0.4802 0.5026

Table 8. Ablation for choice of pretraining dataset for transfer learning baseline.



(a)

(b)

Figure 7. (a) Alignment of reconstructed images with original segmentation masks in the face domain. Semantic features align almost
perfectly with segmentation masks. (b) Visualization of fine detail improvement after optimization refinement in car domain. Areas of vast
improvement circled in red.



Figure 8. Examples of HandsOff generated labels (segmentation masks, keypoint heatmaps, and keypoints) in the face domain. Last row
of examples represent typical failure cases. Hats, a rare class, are occasionally mis-classified as hair or clothing. Additionally, when the
image includes GAN generated artifacts, segmentation mask quality is typically lower, while keypoint locations remain accurate.



Figure 9. Examples of HandsOff generated segmentation masks in the car domain. Last row of examples represent typical failure cases.
Similar classes, such as back trunk and front hood or front glass and back glass are confounded. Additionally, segmentation performance
is typically lower when GAN generated images are out of domain or incoherent.



Figure 10. Examples of HandsOff generated labels (segmentation masks, keypoint heatmaps, and keypoints) in the full-body human poses
domain. Last row of examples represent typical failure cases. Similar classes, tops, outerwear, and dresses are confounded. Further-
more, patterned pieces of clothing seem to result in mixed segmentation performance. Keypoint locations remain accurate even when
segmentation masks are of lower quality.



Figure 11. Examples of HandsOff generated labels (segmentation masks and depth maps) in the urban driving scenes domain. Last row
of examples represent typical failure cases. Visually small objects such as light poles and street signs are often confounded as background
classes or not labeled. In cases of background buildings with many vertical lines, such lines can be mistaken as street sign poles (last image
in last row). Depth maps remain relatively accurate even when segmentation masks are of lower quality.



(a)

(b)

Figure 12. Visualization of generated segmentation mask and pixel-wise label generator uncertainty. (a) Not only do we see qualitative
improvement in the generated label for glasses, we also see that the classifier is less uncertain when generating the correct label. (b) Hats
are a particularly challenging class to characterize, so while the quality of the masks improves drastically, the classifier uncertainty remains
relatively high. The last row of examples shows typical failure cases, where the hat is classified as semantically similar classes, such as
hair or clothing.
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