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Abstract

Recent image generation models such as Stable Diffusion
have exhibited an impressive ability to generate fairly
realistic images starting from a simple text prompt. Could
such models render real images obsolete for training image
prediction models? In this paper, we answer part of this
provocative question by investigating the need for real
images when training models for ImageNet classification.
Provided only with the class names that have been used to
build the dataset, we explore the ability of Stable Diffusion
to generate synthetic clones of ImageNet and measure how
useful these are for training classification models from
scratch. We show that with minimal and class-agnostic
prompt engineering, ImageNet clones are able to close a
large part of the gap between models produced by synthetic
images and models trained with real images, for the several
standard classification benchmarks that we consider in this
study. More importantly, we show that models trained on
synthetic images exhibit strong generalization properties and
perform on par with models trained on real data for transfer.
Project page: https://europe.naverlabs.com/imagenet-sd/

1. Introduction
The rise of (shallow) machine learning [16, 88] and later

deep learning [28,48,83] has entirely changed the landscape
of computer vision research over the past few decades, shift-
ing some of the focus from methods to the training data
itself. Datasets, initially of hundreds of images and dozens
of classes [23, 24], have grown in size and complexity, and
started becoming contributions in their own right. They have
been fueling the progress of computer vision as much as, if
not more than, the methods themselves. ImageNet [18], and
mainly its ImageNet-1K [74] subset of about 1 million an-
notated images, has impacted the field in an unprecedented
way. Yet, curating and annotating such a dataset comes at a
very high money and labor cost.

The last couple of years have seen the rise of large and
generic models, trained on data which is less curated but
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Figure 1. ImageNet-1K vs ImageNet-1K-SD. The blue polygon
shows the performance of a model trained on ImageNet-1K. The red
polygon depicts the performance of one trained on ImageNet-1K-
SD, i.e., only on synthetic data generated with Stable Diffusion [73]
using the class names of ImageNet-1K. We report top-5 accuracy
for ImageNet test sets, and average top-1 for transfer tasks.

orders of magnitude larger. Those proved to be easily ap-
plicable, either directly, or combined with a tailored model,
to a wide range of computer vision transfer tasks [39,43,68].
They have also been used beyond prediction tasks, e.g., for
text-conditioned image generation. Models such as DALL-
E [69] or Stable Diffusion [73] have demonstrated impressive
image generation ability. They produce fairly realistic syn-
thetic images and exhibit a high degree of compositionality.

Such generative models are trained on billion-scale
datasets [79] composed of noisy image-text pairs scraped
from the internet. Although training such models is out of
reach for most institutions, a few of them have been made
available to the community. Given the remarkable ability of
these generative models, it is only natural to ask provocative
questions such as: Is there still a need for real images when
training image prediction models?

In this paper we explore this question through one of the
most iconic computer vision datasets, ImageNet [18]. We
study to which extent this dataset can be entirely replaced
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by synthetic images when learning deep models. For this,
we assume that we are provided with a set of classes, and
the Stable Diffusion [73] model a generator that can produce
realistic images from a textual prompt.

Our task is to learn an image classification model from
scratch using a dataset composed only of synthetic images.
We then evaluate the performance of this model on several
datasets. First and foremost, we measure how well models
and classifiers trained only on synthetic images recognize the
training classes in real images from the standard ImageNet
validation set. Then, we evaluate them on common datasets
that test their resilience to domain shifts or adversarial ex-
amples, still for the ImageNet training classes. Finally, we
consider several transfer learning scenarios where we mea-
sure the generalization performance of our models to novel
classes. Fig. 1 summarizes the main results by comparing
models trained on two equally sized set of images from the
same set of classes, one real and one synthetic, on a number
of these tasks. The gap is surprisingly narrow, especially for
some of these scenarios.

To summarize, our contributions are threefold. First,
we leverage Stable Diffusion [73] and generate synthetic
ImageNet clones, i.e., datasets with synthetic images for the
ImageNet classes, using class names as prompts. We analyse
the generated images, highlight important issues, and
propose class-agnostic alterations to the basic prompt that
reduce semantic issues and increase diversity. Second, we
train classification models using different ImageNet clones
and show that they can achieve 91.7% and 70.3% top-5
accuracy on ImageNet-100 and ImageNet-1K respectively.
Finally, we evaluate the generalization capacity of our
models. We show that their performance gap with models
trained on real images is reduced when testing for resilience
to domain shifts or adversarial examples. Moreover, we
show that our models perform on par with models trained
conventionally when testing on 15 transfer datasets.

2. Related work

2.1. Learning with synthetic data

Learning with synthetic data has become a standard way to
create large amounts of labeled data for annotation heavy
tasks, such as human understanding [67, 87], semantic seg-
mentation [15, 76], optical flow estimation [20, 94] or dense
visual alignment [66]. In most cases, this synthetic data
requires access to 3D models and renderers [55], or to a sim-
ulator [72] with a physically plausible engine. Recent works
propose pretraining on a database of synthetic fractal [44]
or sinusoidal wave [84] images before fine-tuning the model
using real images on a downstream task. In this study we use
synthetic data to learn encoders and classifiers that can be
used out-of-the-box, without the need for a subsequent fine-
tuning step. Closest to our work, Kumar et al. [81] generate

synthetic OCT images to train a glaucoma detection model to
be applied to real images. Here, we target synthetic clones of
complex natural image datasets, i.e., ImageNet-1K [74], and
we use a general-purpose text-to-image generation model.
Synthetic ImageNet clones. Synthetic images for Ima-
geNet classes have been used recently in a number of re-
lated works [3, 50, 70] based on class conditional Genera-
tive Adversarial Networks (GANs), such as BigGAN [7].
Besnier et al. [3] generate images for ten ImageNet classes
and propose techniques to reduce the gap between models
trained on generated images and real ones. Li et al. [50]
synthesize five images for each ImageNet-1K class, together
with their semantic segmentation annotations to automati-
cally generate pixel-level labels at scale. Our work focuses
on image-level classification, and uses a general-purpose
text-conditioned generative model instead of ImageNet-1K
class-conditioned GANs. It further offers a larger scale study
with promising results on the full ImageNet-1K benchmark
when training from 1.28 million synthetic images. Concur-
rent work [29] also synthesizes data for ImageNet-1K, but
focuses on improvements on top of the CLIP [68] model or
after fine-tuning.
Synthetic images as data++. Data sampled from generative
models [26, 34, 69, 73] can be seen as data with added func-
tionalities or “data++” [40]. Such data can be manipulated,
interpolated or composed [12,13,41,42] with dedicated oper-
ators in their latent space, and further used for counterfactual
reasoning [51, 57, 61]. In this paper, we do not exploit these
added functionalities. Our prompts consider a class at a time
and do not leverage any interpolation nor the composition
properties of synthetic data. Instead, we chose our complete
pipeline, including the set of data augmentations, to be iden-
tical to the one we use for real images, to allow for a fair
comparison.
Zero-shot learning and test-time view synthesis. Gen-
erative models have been used to extend models to new
classes, or to create novel views at test time. Chai et
al. [13] synthesize novel views for test-time ensembling
by perturbing the latent code of a test image. Aiming at
zero-shot recognition [96], Elhoseiny et al. [22] synthesize
a classifier for any novel class given its semantic description
(e.g., textual or attribute-based), whereas others synthesize
images [21, 27], or image features [49, 77] using such
descriptions. Here we aim to learn encoders from scratch,
and do not rely on models previously trained on real data.

2.2. Distillation of datasets and models

Knowledge distillation [8, 33] is a mechanism to transfer
knowledge from a pretrained “teacher” model into a
“student” one, and it usually requires images. Our approach
can be seen as performing image-free distillation from
a generic text-to-image generation model into a specific
classification model. We assume no access to images to



distill from and, instead of distilling the visual encoder
of the image generation model, inspired by recent works
in NLP [53], we prompt a generation model to produce
synthetic images and train a classifier with them.
Dataset distillation [11,101], on the other hand, is a way of
compressing a training set of real images into a smaller set
of synthetic images such that after training a model on those,
it performs as well as if it had been trained on the original
set. However, one needs to tailor the generation process to a
specific task, whereas in our case, we sample images from a
task-agnostic generator.
Reconstructing images from model activations can be
considered as another form of distillation. Earlier works
reconstruct images from gradient-based features [90, 93] or
CNN activations [54]. Since then many methods have tried
to uncover the training data distribution as it is stored in the
weights of a model [14, 99]. Instead of trying to recover the
training distribution of the teacher image generation model,
we use prompting to distill its knowledge for a specific
image classification task.

3. Preliminaries
In this section, we first define the task we solve, i.e.,

learning an image classification model when the training set
of real images is replaced by an image generator, and training
proceeds using only synthetically generated images. We then
briefly describe Stable Diffusion [73], i.e., the text-to-image
generation model we use in this paper.
Task formulation. Our goal is to learn an image classifica-
tion model given a set of class names C and a text-to-image
generator G. This task is a variant of image classification
where the fixed-size image training set is replaced by an
image generator. The model we aim to learn consists of
an encoder z = fθ(x) that maps an image x into a vec-
tor representation z ∈ Rd, and a classifier y = q(z) that
outputs a distribution y over the N classes ci ∈ C, where
i = {1, .., N}. We follow the common supervised learning
setting [48, 74] and, unless otherwise stated, learn the en-
coder parameters θ together with the classifier q for the task.
This model (encoder and classifier) is evaluated on the initial
classification task, by applying it to real images (Sec. 5.1
and Sec. 5.2). We also evaluate the visual encoder in the
context of several transfer learning tasks (Sec.5.3).
Text-to-image with Stable Diffusion. We use the recent
Stable Diffusion model [73] (SD) as text-to-image genera-
tor G. SD is a denoising diffusion model [34] built around
the idea of latent diffusion. The diffusion process is run
on a compressed latent space for efficiency. An image en-
coder/decoder is used to interface the latent diffusion model
with the pixel space. The generation process can be condi-
tioned in many ways, e.g., with text for text-to-image gener-
ation, or an image latent vector for image manipulation.

The text-to-image SD model consists of three main com-

ponents: i) an autoencoder whose visual encoder outputs
a structured latent representation that is fed as input to the
forward diffusion process and whose decoder is then used
to convert the latent vectors back to pixels, ii) a denoising
U-Net that runs the diffusion process, and iii) a text encoder,
i.e., similar to the one used by CLIP [68].

The text-to-image generation process takes a textual
prompt p as input and generates an image x ∈ RW×H×3.
Let g(p) denote the generation function of model G. Image
x is then given by x = g(p). In practice, the prompt p is first
encoded via the text encoder and the text embedding is used
as a conditioning vector for the latent diffusion process that
runs for a number of steps. The latent representation is then
provided to the decoder, which outputs the image x.

There are two important parameters that control the
quality and speed of text-conditioned diffusion; the number
of diffusion steps and the coefficient that weights the
textual conditioning vector. The former is linearly related
to extraction time, while the latter provides an excellent way
of controlling the visual diversity of generated images. The
default values are 50 steps and guidance scale equal to 7.5.
Link to distillation. Since the generator is a model that in-
ternally encodes visual information, the image classification
model we learn is essentially derived from G. Under this
formulation, and as discussed in Sec. 2, one can also see
this task as text-guided, image-free knowledge distillation.
Here we distill knowledge from a model of a very different
nature, i.e., a text-to-image generation model, to a purely
visual encoder, for solving a specific task.

4. Generating synthetic ImageNet clones

For our study, we create clones of the ImageNet [18]
dataset by synthesizing images depicting the classes it con-
tains. We refer to all synthetic datasets of ImageNet classes
that are created using Stable Diffusion as ImageNet-SD.
Sec. 4.1 describes different ways of creating ImageNet-SD
datasets starting from simply using the class name as the
prompt. We then present generic, class-agnostic ways for
tackling issues that arise with respect to semantics and di-
versity in Secs. 4.2 and 4.3, respectively. We present a few
sample qualitative results in Fig. 2, with a more extensive
set in the supplementary material.

4.1. Generating datasets using class names

In the absence of a training set of real images, we use the
generator G presented in the previous section to synthesize
images for each class in the set C. To do so, we need to
provide the generator with at least one prompt per class.
When used as an input, this class-conditioned prompt pc
triggers the generation of a synthetic image xc = g(pc)
from class c. The simplest prompt one could think of is the
class name i.e., pc = “c”. Although CLIP [68] uses pc = “a



papillon (n02086910) lorikeet (n01820546) pirate, pirate ship (n03947888)

(a) Real images from ImageNet-1K

(b) Synthetic images with prompt pc = “c”

(c) Synthetic images with prompt pc = “c, hc”

(d) Synthetic images with prompt pc = “c, dc”

(e) Synthetic images with prompt pc = “c, dc” and guidance scale parameter equal to 2.0

(f) Synthetic images with prompt pc = “c, hc inside b”

Figure 2. Qualitative results. (a) Real ImageNet images. (b)-(g) Synthetic ImageNet-SD images generated with different prompts. Despite
high photo-realistic quality, some issues are noticeable for (b) such as i) semantic errors e.g., for the class “papillon”, ii) lack of diversity,
and iii) distribution shifts e.g., towards cartoons for the “pirate” class. Such issues are addressed with more expressive prompts in (c)-(g).

photo of a c” for their zero-shot experiments, using only the
class name gives better results in our case.

Each class in ImageNet is associated with one or more
synsets, i.e., entities, in the WordNet [59] graph. We use the
synset lemmas corresponding to each class as class-name
prompt “c”, comma-separated if more than one. Fig. 2b
shows random examples of images generated with such
prompts. At first glance, one can appreciate the ability of the
generator to create photo-realistic images given only a class
name. In Sec. 5, we show that one can already obtain surpris-
ingly good image classification results by simply training a
model with this synthetic dataset.

Upon close inspection of the generated images, however,
some issues become apparent: a) semantic errors: Images
generated for some classes may capture the wrong semantics
(e.g., see the “papillon” class in Fig. 2b), b) lack of diversity:
Generated images tend to look alike (an issue more apparent
in the supplementary material, and c) visual domain issues:
some classes tend to shift away from natural images towards
sketches or art (e.g., the “pirate ship” class in Fig. 2b). We
discuss and address these issues in the following.

4.2. Addressing issues with semantics and domain

As mentioned earlier, by comparing the (real) images
from ImageNet with the synthetic ones generated using only
synset names as prompts, we observe that for some classes
their semantics do not match. This is due to polysemy, i.e.,
multiple semantic meanings or physical instantiations of the
class names we used as prompt. We show one such case
in the left-most column of Fig. 2b: the “papillon” images
correspond to butterfly for our generated dataset, while the
ImageNet synset contains images of the dog breed of the
same name (see Fig. 2a).

To reduce this semantic ambiguity, we leverage once
again the fact that class names correspond to WordNet [59]
synsets. We augment the prompt for class name c with two
additional elements provided by WordNet: a) The hypernyms
hc of the synset as defined by the WordNet graph, i.e., the
class name(s) of the parent node(s) of this class in the graph;
and b) the definition dc of the synset, i.e., a sentence-length
description of the semantics of each synset. In both cases,
we append this information to the prompt, which becomes



pc = “c, hc” and pc = “c, dc” for hypernyms and definition,
respectively.

Qualitatively, we observed that issues regarding the se-
mantics of the most problematic classes are fixed, and so are,
to some extent, issues related to visual domain mismatch.
These are also visible in Figs. 2c and 2d: appending the hy-
pernym (hc = “toy spaniel”) or the description (dc = “small
slender toy spaniel with erect ears and a black-spotted brown
to white coat”) of the class “papillon” in the prompt produces
images with the dog breed as the main subject. Appending
the hypernym (hc = “ship”) or the description (dc = “a
ship that is manned by pirates”) of the class “pirate ship” re-
sults in more natural-looking images rather than illustrations,
reducing the domain shift.

4.3. Increasing the diversity of generated images

Generating images using more expressive prompts, e.g.,
by appending class hypernym or definition, not only reduces
semantic errors, but also increases the visual diversity of the
output images. This is visible, for example, in the “lorikeet”
and “pirate ship” classes in Figs. 2c and 2d when compared
to Fig. 2b: the pose and viewpoints are slighly more diverse.
However, images still tend to display the class instance cen-
tered and in a prominent position. The real ImageNet images
feature significantly more diversity, several different settings
and backgrounds, and, in several cases, multiple instances
of the same class (e.g., see Fig. 2a).

Although class-specific prompt engineering is an appeal-
ing option, in this study we chose to remain generic, and to
increase diversity in class-agnostic ways.
Reducing reliance on the textual prompt. The text-
conditioned generation process of Stable Diffusion uses
classifier-free diffusion guidance [35] which jointly trains
both the conditional and unconditional diffusion models, and
combines their estimates, resulting in a trade-off between
sample quality and diversity. This trade-off is controlled
by the guidance scale parameter, that has in practice been
shown to produce high-quality images in the range of 6-9
(the default value is 7.5). Although visually detailed (see
Figs. 2b to 2d), the resulting images lack diversity. We there-
fore experiment with reducing the guidance scale. Despite
a small degradation in the visual quality of the generated
images, setting the scale to 2.0 results in more diverse sets
of images as shown in Fig. 2e.
Diversifying the background. We assume that class c
can be seen “inside” a scene or background. To remain
class-agnostic, we use all the scene classes from the Places
dataset [102] as background for every class. We generate
images for every possible combination of a class c and a
scene b ∈ B from the set B of 365 scenes in Places. We
found that “c inside b” generally produces the best-looking
results among a few prepositions we tried. However, we
found that semantic and domain errors that arise from gen-

(a) Training a model on synthetic images.

(b) Testing the frozen model on real images.

Figure 3. Overview of our experimental protocol. During train-
ing, the model has access to synthetic images generated by the
Stable Diffusion model, provided with a set of prompts per class.
During evaluation, real images are classified by the frozen model.

erating only using class name remained after specifying a
background. We therefore build on top of the second sim-
plest, but more semantically correct prompt variant, and use
pc = “c, hc inside b” to generate images in diverse scenes
and backgrounds. Although we do not consider this in our
study, selecting backgrounds tailored for each class, e.g., by
matching class names to scenes using features from a text
encoder, seems like a promising future direction.
Label noise and visual realism. Quite a few generated im-
ages, especially those with low guidance scale parameters
or with random backgrounds (e.g., see Figs. 2e and 2f) are
not realistic, for example, the right-most image in the first
column of Fig. 2e. When the prompt mentions a background,
some images miss the foreground object completely (e.g.,
see the bottom row in the middle column of Fig. 2f) or con-
tain impossible combinations of objects and scenes. Yet, we
see such noisy or unrealistic synthetic images as a way of
adding stochasticity during the training process, similar to
what strong non-realistic data augmentation achieves [25,98].
In fact, it was recently shown [25] that diverse data augmen-
tations, even when inconsistent with the data distribution,
can be valuable (even more than additional training data) for
out-of-distribution scenarios. Our experimental validation
corroborates this claim.

5. Experiments
In this section we analyze the performance of image

classification models learned using the different synthetic
datasets constructed as described in Sec. 4. Due to the
size of ImageNet-1K (roughly 1.3 million images), we per-
form most of our study on the smaller ImageNet-100 [85]
dataset. This allows us to run multiple flavours of each
synthetic dataset and to measure the impact of several de-
sign choices. Because ImageNet-100 is a randomly cho-
sen subset of ImageNet-1K, spanning over 100 classes and



126,689 images, it preserves some important characteristics
of ImageNet-1K such as its fine-grained nature.

We denote synthetic datasets for the two ImageNet sub-
sets as ImageNet-100-SD (IN100-SD) and ImageNet-1K-
SD (IN1K-SD), respectively.
Experimental protocol. We follow the protocol illustrated
in Fig. 3. The generator G is the Stable Diffusion [73]
v1.4 model,1 trained on the LAION2B-en dataset [79]
and fine-tuned on a smaller subset filtered by an aesthetics
classifier. During training, the generator is used to synthesize
images for each class, which are then used for training
the parameters of the encoder and the classifier. Unless
otherwise stated, we create datasets of the exact same
size as their real-image counterparts, i.e., we generate the
exact same number of images for every class as in the
corresponding real dataset, maintaining any class imbalance.

We evaluate all the models on real images. When eval-
uating their performance over the ImageNet classes, we use
both the encoder and the classifier learned during training
to predict labels of real images for the 5 ImageNet datasets
(Secs. 5.1 and 5.2). For transfer learning (Sec. 5.3), we use
the pretrained encoder as a feature extractor, and learn a
separate linear classifier on each of the 15 transfer datasets.

All our experiments use ResNet50 [28] as the encoder
fθ. Unless otherwise stated, we use 50 diffusion steps. We
provide ablations for the diffusion steps and guidance scale
as well as more implementation details in the supplementary
material. We use multi-crop data augmentation [10], as it
results in large performance gains for the models trained on
ImageNet-SD (see supplementary for more details). Indeed,
strong transformations have been shown to improve domain
generalization [89], and to reduce the sim-to-real gap.

5.1. Results on ImageNet datasets

Evaluating different prompts on ImageNet-100. Tab. 1
compares the performance of models trained using variants
of ImageNet-100-SD created with the different prompts pre-
sented in Sec. 4, for two different guidance scale values: 7.5
and 2. From the results for ImageNet-val and ImageNet-v2
(four left-most columns), we make the following observa-
tions: (a) Simply using the class name as a prompt and the
default guidance scale (row 2), one can synthesize images
and learn a visual encoder from scratch that already achieves
more than 70% Top-5 accuracy (43% Top-1 accuracy) on
ImageNet-100, a challenging 100-way classification task
with many fine-grained classes. (b) Adding the hypernym
or the definition from WordNet as part of the prompt (rows
3, 4) addresses some of the semantic and domain issues and
translates into performance gains. (c) Generating objects
on diverse backgrounds (row 5), even in a simple and class-
agnostic way, gives the best results for the default guidance
scale, reaching over 50% Top-1 and 76% Top-5 accuracy on

1https://huggingface.co/CompVis/stable-diffusion-v1-4

ImageNet-100. (d) Using a lower guidance scale value (2)
leads to more diverse image sets (as discussed in Sec. 4.3)
and translates into the best overall performance on ImageNet-
100. (e) The exact formulation of the prompt has less impact
when lowering the guidance scale; all the four prompt vari-
ants lead to similar performance as we see from rows 6-9.
Scaling the number of synthetic images. Unlike real
datasets that are capped in the number of images they con-
tain, ImageNet-SD has theoretically no size upper bound as
one can generate images on demand. We therefore generated
datasets which are 10×, 20× and 50× larger than ImageNet-
100, using prompt pc = “c, dc” (the best variant in Tab. 1,
row 8) for the classes of ImageNet-100. From the last three
rows of the top section in Tab. 1, we see that this brings
gains of up to 8.5% in Top-1 accuracy on ImageNet-100,
with our best model reaching 73.3% Top-1 (and 91.7% Top-
5) accuracy. The gains are even more prominent for transfer
learning, as we discuss in Sec. 5.3.
Results on ImageNet-1K. In the bottom part of Tab. 1 we
report results on the very challenging 1000-way classifica-
tion task of ImageNet-1K (IN-Val) that contains many fine-
grained categories of mushrooms, birds and dogs [37]. We
see that the model trained on our synthetic ImageNet-1K-SD
dataset using the prompt composed of the class name and de-
scription (pc = “c, dc”) and using guidance scale 2 reaches
42.9% Top-1 and 70.3% Top-5 accuracy on the ImageNet-
1K validation set. Although significantly lower than the
results achieved by a model trained on the 1.3 million real
images of ImageNet, we see that the synthetic dataset is
able to at least partially capture the subtle clues needed to
differentiate fine-grained classes. Similar observations can
be made on ImageNet-v2 [71] (IN-v2).

5.2. Resilience to domain shifts

We investigate the performance of our models on three
challenging evaluation sets for ImageNet-1K classes:
ImageNet-Sketch [91] (IN-Sketch), ImageNet-R [31]
(IN-R) and ImageNet-A [32] (IN-A). These datasets contain
out-of-distribution images and their goal is to test resilience
to domain shifts and adversarial images. Results are reported
in the right-most columns of Tab. 1.

For ImageNet-100, we see from the top part of the ta-
ble that a number of ImageNet-100-SD models outperform
the model trained on real images for ImageNet-Sketch and
ImageNet-R. The best Imagenet-100-SD model, i.e. the
one trained with 50× images, further rivals the baseline
on ImageNet-A.

When it comes to a much harder classification task like
the 1000 classes of ImageNet-1K, we see from the lower
part of Tab. 1 that the same trend does not really hold. The
ImageNet-1K-SD model trained on synthetic data lags be-
hind in all cases when compared to the two models [64, 95]
that are trained on the ImageNet-1K training set.

https://huggingface.co/CompVis/stable-diffusion-v1-4


Training Dataset Scale Prompt (pc) / Model
IN-Val IN-v2 IN-Sketch IN-R∗ IN-A∗

R. Size Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ImageNet-100 – 1 Baseline 87.4 96.8 82.5 95.1 39.1 58.9 58.4 79.1 25.6 68.7

ImageNet-100-SD

7.5

2 pc = “c” 43.1 70.7 45.4 70.7 29.9 53.5 51.7 75.3 8.8 38.4
3 pc = “c, hc” 46.9 73.4 47.3 73.7 25.9 50.4 46.3 75.3 11.5 42.2
4 pc = “c, dc” 47.9 74.2 49.1 74.9 24.7 49.2 41.2 71.5 12.2 38.5
5 pc = “c, hc inside b” 51.5 76.8 51.2 77.4 27.9 52.5 54.0 81.8 14.1 48.4

2.0

6 pc = “c” 63.5 86.9 62.7 86.7 41.8 67.6 64.2 83.9 13.7 45.1
7 pc = “c, hc” 63.4 87.1 63.5 86.5 39.2 66.7 61.9 85.1 14.9 49.1
8 pc = “c, dc” 64.8 86.9 65.0 87.3 33.8 60.5 51.4 77.5 14.0 48.8
9 pc = “c, hc inside b” 63.1 85.7 62.0 85.0 38.7 65.5 64.0 87.2 21.9 63.1

10×
2.0

10 pc = “c, dc” 72.4 90.8 70.2 90.2 40.0 65.7 55.2 79.0 15.6 53.8
20× 11 pc = “c, dc” 72.4 91.4 71.4 90.7 38.4 63.9 56.9 81.5 17.8 55.0
50× 12 pc = “c, dc” 73.3 91.7 72.3 91.2 42.0 67.0 59.4 82.3 17.1 57.1

ImageNet-1K
– 13 PyTorch [58] 76.1 92.9 71.1 90.4 24.1 41.3 36.2 52.8 0.0 14.4
– 14 RSB-A1 [95] 80.1 94.5 75.6 92.0 29.2 46.5 40.6 55.1 11.1 38.6

ImageNet-1K-SD
7.5 15 pc = “c, dc” 26.2 51.7 26.0 51.4 9.5 22.1 15.9 32.0 2.2 10.1
7.5 16 pc = “c, hc inside b” 30.1 55.6 29.8 55.3 11.9 27.1 23.5 43.1 3.4 13.2
2.0 17 pc = “c, dc” 42.9 70.3 43.0 70.3 16.6 35.1 26.3 45.3 3.6 15.1

Table 1. Results on ImageNet datasets. Top-1 and Top-5 accuracy on several ImageNet datasets, namely IN-Val (the ILSVRC-2012
validation set [74]), IN-v2 [71], IN-Sketch [91], IN-R [31] and IN-A [32]. In all cases, testing is done on real images. For the prompts,
hc (dc) refers to the hypernym (definition) of class c provided by WordNet [59], while b to scene classes from Places 365 [102]. ∗IN-R
and IN-A only cover a subset of the ImageNet-100 classes and we compute the reported metrics only on the common classes. Brick-colored
scores denote performance higher than the models trained on real images. Italics denote results from models trained using real images.

Training Dataset Scale Prompt (pc) / Model Aircraft Cars196 DTD EuroSAT Flowers Pets Food101 SUN397 iNat18 iNat19 Avg.

– – 1 Random Weights 11.9 3.7 17.0 73.1 26.9 11.9 13.3 7.3 0.1 1.3 16.6

ImageNet-100 – 2 Baseline 43.6 41.5 67.9 96.2 85.6 78.7 63.4 51.2 22.8 33.4 58.4

ImageNet-100-SD 2.0 3 pc = “c, dc” (50×) 47.9 44.5 74.0 96.8 89.6 83.7 68.6 57.2 29.5 40.6 63.2

ImageNet-1K
– 4 PyTorch [58] 48.9 49.9 72.1 96.2 89.3 92.3 71.2 60.5 35.5 41.5 65.7
– 5 RSB-A1 [95] 46.8 54.4 73.8 95.8 88.6 93.0 71.3 63.4 34.9 43.2 66.5

ImageNet-1K-SD
7.5 6 pc = “c, dc” 48.7 49.7 71.6 96.5 90.1 81.9 66.4 55.8 28.7 40.6 63.0
7.5 7 pc = “c, hc inside b” 49.6 47.4 72.1 95.9 89.3 87.2 67.7 59.5 30.8 41.4 64.1
2.0 8 pc = “c, dc” 55.3 57.2 75.9 96.7 92.9 88.7 73.1 62.5 35.0 46.3 68.4

Table 2. Top-1 accuracy on ten transfer learning datasets for encoders trained on real and synthetic images. We treat encoders as feature
extractors and train linear classifiers on top for each dataset. Brick-colored scores denote performance higher than the models trained on
real images. We make the remarkable observation that representations from models trained on synthetic data can match the generalization
performance of representations from models trained on millions of real images. Italics denote results from models trained using real images.

5.3. Transfer learning

In previous evaluations, we used pretrained models as
a whole, i.e., encoders together with classifiers, all trained
on synthetic ImageNet datasets, and we directly applied
those to predict the label of the (real) test images on the
training classes. Here, we use a slightly different protocol.
We evaluate the quality of the representations learned by
our encoders alone, by using them as feature extractors and
training linear logistic regression classifiers from scratch on
top as done in transfer learning [46, 78].

We report results on 15 transfer datasets: (a) eight
common small-scale datasets (Aircraft [56], Cars196 [47],
DTD [17], EuroSAT [30], Flowers [60], Pets [63],
Food101 [6], SUN397 [97]), (b) two long-tail datasets
(iNat2018 [86] and iNat2019 [86]), and (c) the five datasets
(“levels”) of the CoG benchmark [78]. We report Top-1
accuracy on the (real) test set of the small-scale and long-
tail datasets in Tab. 2. In Fig. 1 and the supplementary,
we present results on the CoG benchmark. We compare
ImageNet-100-SD and ImageNet-1K-SD visual encoders
obtained with some of our best prompts to baselines trained
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Figure 4. Scaling the number of training images. Average top-1
accuracy on 10 transfer datasets when training on ImageNet-100
using (1/10)-th to 50× images (relative to the real dataset size).

on ImageNet-100 and ImageNet-1K. What we observe is
quite striking: On average, representations learned on purely
synthetic images exhibit generalization performance compa-
rable to representations trained on thousands or millions of
real images. This suggests that synthetic images can be used
to pretrain strong general-purpose visual encoders.

Following this transfer learning protocol, our best model
achieves 70.4% Top-1 accuracy on ImageNet-1K (evaluation
as part of the CoG benchmark, detailed in the supplementary
material), significantly closing the gap to models trained on
real data. This protocol differs from the one presented in
Sec. 5.1 as it uses real images to train a linear classifier on
top of the feature extractor trained only on synthetic images,
hence results are not comparable with Tab. 1.
Scaling the number of synthetic images for transfer.
Fig. 4 reports transfer performance on the 10 datasets
of Tab. 2, when varying the size of the training set. We see
that generating 10× more images allows the ImageNet-100-
SD model to outperform the model trained on real images,
and the gains increase as we generate up to 50×.

6. Discussion
This section takes a step back and considers some of the

implications from the analysis proposed in this paper.
Applicability beyond ImageNet. The process we followed
to create ImageNet-SD requires minimal assumptions and
can be applied to a wider set of classes. To disambiguate
semantics, we only assume access to a short textual descrip-
tion of the class. This is generally easy to acquire even at
a larger scale, e.g., in semi-automatic ways from Wikipedia.
Scaling laws for synthetic data. Conceptually, there is no
reason to restrict our approach to a finite dataset of synthetic
images. We could devise a training process which sees each
image only once [62].

Yet, despite this scaling potential, the quality of the result-
ing classifier is bounded by the expressivity of the generator
and the concepts it can reliably reproduce. No matter how
intriguing the promise of an “infinite dataset” via data gen-
eration might be, practical applications are bound by costs

linked to computation and storage, as well as the moderation
of the content fueling this generator. The latter has strong
implications we discuss next.
Data and model bias. Because of its pioneering role as a
source of images to train generic models, and all it has done
to advance the computer vision field, ImageNet and some of
its bias has been under heavy scrutiny [19, 52]. Its synthetic
counterparts have no reason to be immune to bias.

The main advantage of training with synthetic dataset
is also its biggest flaw. Instead of manually curating and
annotating a dataset, this process is outsourced to a text-to-
image generator, whose training data is not always known.
Our study is based on the text-to-image generator of Stable
Diffusion (SD). SD is trained on LAION-2B [79], a dataset
scraped from the internet and filtered in an automatic way
using CLIP [68]. LAION has been shown to contain prob-
lematic content [5] and SD models to memorize at least part
of the training set [9,80]. Algorithmic bias is not only due to
bias in the data [36], yet biased datasets lead to biased models
and predictions [1, 75, 82]. Frameworks such as [38] could
be considered to increase transparency and accountability.

On top of the bias in the data, the architecture itself con-
straints the generated images, and as such, propagates and
potentially amplifies [4] existing bias. A major one that we
have discussed earlier is the lack of diversity. An obvious
corollary is the fact that stereotypes are reinforced. The
options we have explored mitigate this issue to some lim-
ited extent, in that it improves classification results, but this
issue is far from being solved. Finally, there are many soci-
etal implications of using such models to generate synthetic
datasets for training computer vision models, and a more
thorough and multi-disciplinary discussion is required.

7. Conclusions
In this paper, we study to which extent ImageNet, ar-

guably the most popular computer vision dataset, can be
replaced by a dataset synthesized by a text-to-image gen-
erator. Through an extensive study, we find that one can
learn models that exhibit surprisingly good performance
on fine-grained classification tasks like ImageNet-100 and
ImageNet-1K without any class-specific prompting. How-
ever, the most important result of this study is the finding
that models trained on synthetic data exhibit exceptional gen-
eralization capability that rivals with models learned with
real images. We see this study as merely a first glimpse of
what is now possible with the latest large models in terms
of visual representation learning. We envision that similar
approaches could be used to fine-tune or adapt models, using
those synthetic datasets side-by-side with real ones.

Acknowledgements. This work was supported in part by
MIAI@Grenoble Alpes (ANR-19-P3IA-0003), and the ANR
grant AVENUE (ANR-18-CE23-0011).



References
[1] Osman Aka, Ken Burke, Alex Bauerle, Christina Greer, and

Margaret Mitchell. Measuring model biases in the absence
of ground truth. In AAAI/ACM Conference on AI, Ethics,
and Society, 2021. 8

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proc. ICKDDM,
2019. 12

[3] Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu
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A. Implementation details

In all experiments the encoder fθ is a ResNet50 [28] en-
coder, trained for 100 epochs (unless otherwise stated) with
mixed precision in PyTorch [64] using 4 GPUs where batch
norm layers are synchronized. We use an SGD optimizer
with 0.9 momentum, a batch size of 256 and a learning
rate linearly increased during the first 10% of the iterations
and then decayed with a cosine schedule. Unless other-
wise stated, we use the data augmentation pipeline from
DINO [10] with 1 global and 8 local crops (Mg = 1 and Ml

= 8). For Stable Diffusion we use 50 diffusion steps and a
guidance scale factor of 7.5 for all experiments. We generate
RGB images of size 512× 384.

B. Evaluation protocol

We evaluate our models in two ways. For the differ-
ent ImageNet test sets, i.e., datasets with images from the
training classes (ImageNet-Val/v2/R/A/Sketch), we use the
pretrained models as well as the classifiers we learn dur-
ing pretraining with synthetic images. For the classification
tasks on novel classes, i.e., on the 10 small transfer datasets
considered in Tab. 2 of the main paper plus the ImageNet-
CoG benchmark in Appendix C.2, we freeze the pretrained
encoder and train from scratch a new set of linear classifiers
for each transfer task. The list of all datasets we use is given
in Tab. 3.

For transfer learning evaluations, we follow the linear
classification protocols from [46, 78]. More precisely, for
each of the transfer datasets, we first extract image repre-
sentations (features) from the pretrained encoders and then
train linear logistic regression classifiers using these features.
For the larger transfer datasets, i.e., iNaturalist 2018 [86]
and iNaturalist 2019 [86] datasets and the CoG levels, we
train linear classifiers in PyTorch [64] using SGD, follow-
ing [78]. For the remaining 8 smaller transfer datasets, we
follow [46] and train classifiers using L-BFGS implemented
in Scikit-learn [65]. In all cases, we resize the images with
bicubic interpolation so that their shortest side is 224 pix-
els, and then take a central crop of 224 × 224 pixels. We
tune hyper-parameters (learning rate and weight decay for
the SGD optimizer, and regularization coefficient for the
L-BFGS optimizer) using Optuna [2] over at least 25 trials.
Code for evaluations can be found here2.

C. Extended experimental results

C.1. Impact of data augmentation

We conducted some basic experiments to evaluate the im-
pact of different data augmentation strategies when learning
from synthetic datasets. In Tab. 4, we report the performance

2https://github.com/naver/trex/tree/master/transfer

https://github.com/naver/trex/tree/master/transfer


Dataset # Classes
# Train
samples

# Val
samples

# Test
samples

Val
provided

Test
provided

ImageNet test sets (training classes)
ImageNet-Val [74] (IN-Val) 1000 – – 50000 – ✓
ImageNet-v2 [71] (IN-v2) 1000 – – 3× 10000 – ✓
ImageNet-Sketch [91] (IN-Sketch) 1000 – – 50889 – ✓
ImageNet-R [31] (IN-R) 200 – – 30000 – ✓
ImageNet-A [32] (IN-A) 200 – – 7500 – ✓

Transfer tasks (novel classes)
Aircraft [56] 100 3334 3333 3333 ✓ ✓
Cars196 [47] 196 5700 2444 8041 – ✓
DTD [17] 47 1880 1880 1880 ✓ ✓
EuroSAT [30] 10 13500 5400 8100 – –
Flowers [60] 102 1020 1020 6149 ✓ ✓
Pets [63] 37 2570 1110 3669 – ✓
Food101 [6] 101 68175 7575 25250 – ✓
Pets [63] 397 15880 3970 19850 – ✓
iNaturalist 2018 [86] 8142 437513 – 24426 – ✓
iNaturalist 2019 [86] 1010 265213 – 3030 – ✓
CoG L1 [78] 1000 895359 223445 50000 – ✓
CoG L2 [78] 1000 892974 222814 50000 – ✓
CoG L3 [78] 1000 876495 218708 50000 – ✓
CoG L4 [78] 1000 886013 221115 50000 – ✓
CoG L5 [78] 1000 873630 218024 50000 – ✓

Table 3. Datasets we use for evaluating our models.

of models trained on the simplest variant of ImageNet-100-
SD, i.e., using the class name as the prompt, utilizing either
PyTorch [58, 64] or DINO [10] augmentations. Although
the gains for the real images are relatively small (less than
one percent), the gains for ImageNet-100-SD are over 14%.
We believe this shows two things: i) Synthetic images can
benefit from the same augmentations as real images, and ii)
these transformations are good for domain generalization.
Indeed, strong transformations have been shown to improve
domain generalization [89], and consequently can reduce the
sim-to-real gap.

Training Dataset PyTorch [64] DINO (+ Multi-crop)

ImageNet-100 (real) 86.6 87.4 (↑ 0.80)
ImageNet-100-SD (synthetic) 28.4 43.1 (↑ 14.6)

Table 4. Impact of data-augmentation for models trained on real
and synthetic datasets. Performance is measured on the validation
set of ImageNet-100, i.e. on real images.

C.2. Results on the ImageNet-CoG [78] benchmark

We also evaluated our best ImageNet-SD model on the
ImageNet-CoG benchmark introduced in [78] to measure
concept generalization. This benchmark consists of evalua-
tions on the set of training classes of ImageNet-1K (IN1K)
and five “concept generalization levels”, i.e., five IN1K-size

Training Dataset Prompt (pc) / Model IN1K L1 L2 L3 L4 L5

ImageNet-1K
PyTorch [58] 75.8 67.8 63.1 58.9 58.2 52.0
RSB-A1 [95] 79.8 69.9 65.0 60.9 59.3 52.8
DINO [10] 74.8 71.1 67.2 63.2 62.6 57.6

ImageNet-1K-SD pc = “c, dc” 70.4 65.7 61.8 58.5 58.0 52.4

Table 5. Top-1 accuracy on the ImageNet-CoG benchmark [78]
We report performance for the best ImageNet-1K-SD model
from Tab 2. of the main paper (with guidance scale equal to 2).

datasets of 1000 concepts each. These 5 concept general-
ization levels contain concepts from the full ImageNet-19K
dataset which do not appear in IN1K. Moreover, they are
ordered, i.e., each containing concepts that are semantically
further and further from the IN1K ones.

We follow the evaluation protocol presented in Ap-
pendix B and report Top-1 accuracy obtained on the test
sets of these datasets in Tab. 5. We compare the performance
of the best ImageNet-1K-SD model (from Tab. 2 of the main
paper) to strong baselines trained on ImageNet-1K like the
supervised RSB-A1 [95] and self-supervised DINO [10]
models. We observe that on L5, which is the most challeng-
ing level, the performance of the representations learned on
synthetic images is comparable to that of learned on real im-
ages. As we move towards L1, we see that the gap between
these two models increases in favor of RSB-A1. Finally, af-
ter training classifiers (only) using the real images of IN1K,
our model reaches 70.4% accuracy, significantly closing the



gap to even the most optimized models trained on real data
like RSB-A1.

C.3. Analysis of the learned features

In this section, we analyze and contrast the representa-
tions obtained with models we trained using synthetic im-
ages to representations from models trained on real images.
For this analysis, we used ImageNet-SD models for images
that were generated using the default prompt guidance scale
of Stable Diffusion, i.e., 7.5. We perform our analysis for
ImageNet-100 and using four metrics: i) Sparsity, ii) intra-
class distance, iii) feature redundancy and iv) coding length.
Note that we use the terms “representations” and “features”
interchangeably.

We compare four different models trained on either real
or synthetic data for the 100 classes of ImageNet-100: One
model trained on real images, ImageNet-100-Real, two mod-
els trained on synthetic image sets of the same size obtained
by using two different prompts: pc = “c” and pc = “c, hc in-
side b”, and the ImageNet-100-SD-10x model, trained using
ten times more images.

We perform these analyses on all the datasets listed
in Tab. 3, except for the 5 ImageNet-CoG levels. For the sake
of this study, we split them into three groups: i) ImageNet-
100-Val/v2, ii) ImageNet-100-Sketch/A/R and iii) the 10
transfer datasets (long-tail and small-scale). For each pre-
trained model and dataset, we extract features for either only
the images in the test set (for the ImageNet test sets), or for
all images (for the small transfer datasets). We then com-
pute each of the four metrics separately on each dataset, and
average them over all datasets in the same group. Before
computing metrics, we ℓ2-normalize features.

Result analysis for each of the four metrics follows.
Sparsity. Inspired by [45], we compute feature sparsity
ratio, i.e., the percentage of feature dimensions close to
zero with a threshold of 10−5. We report sparsity ratios
in Fig. 5a. We see that the sparsity ratio for the models
trained on synthetic images increases as the “diversity” of
a synthetic dataset increases, i.e., we see gradual increase
in sparsity scores from pc = “c” and pc = “c, hc inside b”
to ImageNet-100-SD-10x. This observation aligns with
their performance as well, i.e., in the main paper we show
that ImageNet-100-SD-10x performs best in general while
pc = “c” performs worst. More interestingly, we see that
ImageNet-100-Real, the model trained on real images,
learns the most sparse representations.
Intra-class distance. In the main paper, we present simple
ways to increase the diversity of synthetic images. Now we
check if these efforts increase the variance of samples in the
representation space. To do that, we compute the average
ℓ2-distance between samples from the same class (i.e.,
intra-class distance). We see in Fig. 5b that models trained
with more diverse images indeed learn representations with

higher intra-class variance.
Feature redundancy. Following [92], we compute feature
redundancy, i.e., average pairwise Pearson correlation
among dimensions. From Fig. 5c we see that the redundancy
of features learned on real images increase more rapidly
than the ones learned on synthetic images, as we move from
ImageNet-100-Val/v2 towards out-of-domain or transfer
datasets.
Coding length. To further investigate our observation
on feature redundancy, we follow [100] and compute the
average coding length per sample on each dataset (see
Fig. 5d). We see that models trained on ImageNet-100-Real
and ImageNet-100-SD-10x are comparable.

C.4. Impact of guidance scale and diffusion steps

In Fig. 6 we analyse the impact of the guidance scale and
diffusion step hyper-parameters of Stable Diffusion [73]. As
we discuss in the main paper, a lower guidance scale leads
to more visual diversity and that is reflected of performance.
Values of 1 to 3 all seem like a good choice. When it comes
to the number of diffusion steps, values like 25 and (the
default) 50 seem like a safe choice, with 25 being slightly
worse, but requiring half the time to extract. Interestingly,
using more steps seems to slightly hurt performance on the
training classes. It is worth noting that transfer learning per-
formance is surprisingly and consistently high for even 5 dif-
fusion steps. This corroborates recent finding that training on
complex but possibly semantically meaningless images like
fractals [44] or sinusoidal waves [84] can provide a strong
starting point for visual representations that generalize well.

C.5. Prefixing the prompt with domain identifiers

Handcrafted, dataset-level prompt engineering was used
for the zero-shot experiments in the CLIP [68] paper. For
example they use the prompt template “A photo of a c” as
default for classification tasks. For other fine-grained image
classification datasets they go one step further and append
“a type of {domain}” where {domain}={pet,food,aircraft}
for datasets containing pet, food or aircraft classes.

In the main paper, instead presented automatic ways of
clarifying the domain, i.e., using extra information from
WordNet for each class. In Tab. 6 we present some prelim-
inary results when using generic prompt templates like “a
photo of c” and “an image of c” as input to the Stable Diffu-
sion v1.4 model. We found them to decrease performance
for ImageNet-100.

pc “c” “a photo of c” “an image of c”

Top-1 Acc. 64.8 59.5 58.3

Table 6. Top-1 Accuracy on ImageNet-100 when prepending the
prompt with domain identifiers. Guidance scale is equal to 2.0.
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Figure 5. Feature analyses for models. We perform these analyses on top of features extracted from pretrained encoders f trained on
either real or synthetic data for ImageNet-100 (training data is specified in the legends of the subfigures). For the purpose of this study,
we use synthetic data generated with guidance scale equal to 7.5. Sparsity is measured by the percentage of dimensions close to zero [45].
Intra-class ℓ2-distance is the average pairwise ℓ2-distance between samples from the same class. These two metrics are computed on
ℓ2-normalized features. Feature redundancy [92] is obtained by R = 1

d2

∑
i

∑
j |ρ(X:,i,X:,j)|, where X ∈ N × d is a feature matrix

containing N samples, each encoded into a d-dimensional representation (2048 in our case) and ρ(X:,i,X:,j) is the Pearson correlation
between a pair of feature dimensions i and j. Coding length [100] is measured by R(X, ϵ) = 1

2
log det(Id + d

Nϵ2
X⊤X), where Id is a

d-by-d identity matrix, ϵ2 is the precision parameter set to 0.5.

C.6. Additional scaling plots for synthetic data

In Fig. 7 we report accuracy when training on ImageNet-
100 using (1/10)-th to 50× images, relative to the real
dataset size. Fig. 7a suggests that generating more images
with basic prompts might not be enough, and that a perfor-
mance leap will require advanced prompt engineering. We
consider a study on scaling synthetic datasets is important,
but beyond the scope of this paper. Note that Fig. 7b is also
shown in the main paper and repeated here for completeness.

C.7. Additional spider plots

In Fig. 8 we show spider plots for the models trained on
either real or synthetic data for ImageNet-100 and ImageNet-
1K. In both cases, we show two plots which respectively
report top-1 and top-5 accuracy for the ImageNet datasets,
i.e., ImageNet-Val/v2/R/A/Sketch. For transfer datasets and
similar to the teaser figure in the main paper, we report top-1
accuracy averaged over the transfer datasets in each of the fol-
lowing three groups: (a) eight common small-scale datasets
(Aircraft [56], Cars196 [47], DTD [17], EuroSAT [30], Flow-
ers [60], Pets [63], Food101 [6], SUN397 [97]), (b) two
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Figure 7. Scaling the number of training images. Accuracy when training on ImageNet-100 using (1/10)-th to 50× images (relative to
the real dataset size). Fig. 7b is also shown in the main paper.

long-tail datasets (iNat2018 [86] and iNat2019 [86]), and (c)
the five datasets (“levels”) of the CoG benchmark [78].

D. Extended qualitative results
In this section, we provide additional qualitative results.

First we show random images for all ImageNet-100 classes
from three datasets: ImageNet-100-Val (real images) and
two ImageNet-100-SD datasets generated by the prompts
pc = “c” and pc = “c, hc inside b”. Then we discuss in
more detail several types of issues that we observed in these
synthetic images. Unless otherwise stated, the guidance
scale used is 7.5.
Qualitative results for all ImageNet-100 classes.
In Fig. 13, we show a few random images from each of the
100 classes in ImageNet-100, for three datasets: i) The real
images from ImageNet-100, ii) synthetic images generated
by a simple prompt, which is only composed of the name of
the class, and iii) synthetic images generated with guidance
scale equal to 2.0 and a prompt that enforces thoses classes
to appear in diverse backgrounds to improve the diversity of
generated images. From this exhaustive list, even with a few
images per class, one can observe a number of issues around

the semantics, diversity and domain of those images.
Showcasing domain and diversity issues. We also show
extended results for three classes in order to illustrate is-
sues related to the domain and diversity. Fig. 12 compares
generated images between two fine-grained classes of crabs,
while Fig. 11 shows many images from multiple different
generated datasets for a single dog class. We discuss both
figures in the next subsections.

D.1. Semantic errors

From closely inspecting the generated images we can see
that there exists two classes for which the prompt pc = “c”
produces images of the wrong semantics: For the classes
“papillon” and “wing”, we see the generated images in the
middle column of Fig. 13 to be wrong due to polysemy
associated with the class names. What is more, although not
fully visible from the small set of images we show here, we
saw that semantics are partially wrong for at least the classes
“green mamba”, “walking stick” and “iron”. For “green
mamba”, although the synset refers to the snake species,
there is a car model of the same name appearing in some
of the generated images instead. For “walking stick”, the



ImageNet-Val

CoG Benchmark

Small-scale
Datasets

Long-tail
Datasets

ImageNet-A

ImageNet-Sketch

ImageNet-R

ImageNet-v2

30

50

70

ImageNet-100 (real images)
ImageNet-100-SD (synthetic images)

(a) Top-1 accuracy, training on ImageNet-100.

ImageNet-Val

CoG Benchmark

Small-scale
Datasets

Long-tail
Datasets

ImageNet-A

ImageNet-Sketch

ImageNet-R

ImageNet-v2

30

50

70

ImageNet-100 (real images)
ImageNet-100-SD (synthetic images)

(b) Top-5 accuracy, training on ImageNet-100 (top-1 for transfer tasks).

ImageNet-Val

CoG Benchmark

Small-scale
Datasets

Long-tail
Datasets

ImageNet-A

ImageNet-Sketch

ImageNet-R

ImageNet-v2

10

30

50

70

ImageNet-1K (real images)
ImageNet-1K-SD (synthetic images)

(c) Top-1 accuracy, training on ImageNet-1K.

ImageNet-Val

CoG Benchmark

Small-scale
Datasets

Long-tail
Datasets

ImageNet-A

ImageNet-Sketch

ImageNet-R

ImageNet-v2

30

50

70

ImageNet-1K (real images)
ImageNet-1K-SD (synthetic images)

(d) Top-5 accuracy, training on ImageNet-1K (top-1 for transfer tasks).

Figure 8. Performance card of models trained on either real or synthetic data for 100 classes of ImageNet-100 (Figs. 8a and 8b) and for
all the 1000 classes of ImageNet-1K (Figs. 8c and 8d). In all figures, the blue polygon shows the performance of a model trained on the
real images from ImageNet, and the red polygon depicts the performance of a model trained only on synthetic data, generated with Stable
Diffusion [73] using pc = “c, hc inside b” as the prompt. In Figs. 8a and 8c and in Figs. 8b and 8d we report top-1 and top-5 accuracy over
the ImageNet datasets (i.e., ImageNet-Val/v2/R/A/Sketch), whereas, in all figures we report top-1 accuracy averaged over 8 transfer datasets.
Note that Fig. 8d corresponds to Fig 1 of the main paper.

synset refers to the insect, while a subset of the generated
images also contained walking sticks that are not insects.

As we discuss in the paper, appending the hypernym or
definition of each synset seems to fix polysemy issues in
many cases, including the ones mentioned above. How-
ever, we can see at least two cases where adding the hy-
pernym in the prompt leads to worse results. According
to WordNet [59], the hypernym for “shih-tzu” is “toy dog”
something that results in dog-shaped toys in many of the
generated images (see also Fig. 11). Another example is the
class “boathouse”, where appending the parent class “shed”
leads to sheds that are not inside a body of water.

D.2. NSFW content

Another issue that was not very prominent, but still visi-
ble, even in the case of generic animal and object categories
present in ImageNet-100, was the fact that some of the gen-
erated images contained NSFW (Not Suitable For Work)
content in the form of nudity. The open-source code for Sta-
ble Diffusion comes with a highly selective safety module,
that discards generated images that might contain NSFW
content.3 We disabled this module when generating images
for the ImageNet synsets as we wanted to study the model

3https : / / huggingface . co / CompVis / stable -
diffusion-v1-4?text=Safety

https://huggingface.co/CompVis/stable-diffusion-v1-4?text=Safety
https://huggingface.co/CompVis/stable-diffusion-v1-4?text=Safety


as-is first, and to understand the problem.
We thoroughly inspected all classes of ImageNet-100 and

observed minor NSFW issues with two of the classes: 1)
The basic prompt for the class “sarong” led to a few images
that had partial nudity. This effect was exaggerated when
adding the description of the concept that reads “a loose skirt
consisting of brightly colored fabric wrapped around the
body; worn by both women and men in the South Pacific”.
It seems that words like “body” biases the image generation
process towards more NSFW content. 2) Prompts for the
class “ski mask” in combination with certain backgrounds
from the Places dataset [102] also resulted in nudity. Overall,
we want to emphasize that the Stable Diffusion models we
tested were all highly susceptible to generate such content.

D.3. Misrepresentation of biodiversity

The degree of misrepresentation of biodiversity in the
images generated from Stable Diffusion is very high. We
partially showcase the issue in Fig. 12 where we show many
generated images for two fine-grained classes, i.e., “rock
crab” and “fiddler crab”.

“Rock crab” is defined in WordNet as “crab of eastern
coast of North America”, while the “fiddler crab” as a “bur-
rowing crab of American coastal regions having one claw
much enlarged in the male”. The fact that the male fiddler
crab has one claw much larger is a prominent theme when it
comes to the real ImageNet-100 images shown on the right
side of Fig. 12a.

It does not take an expert ecologist to see that, although
most of the generated images capture the coarser class “crab”,
the visual differences between the two sets of images, e.g.,
in Fig. 12b, are not focusing on the single enlarged claw for
the fiddler crab case. What is more, the exhibited intra-class
visual diversity, i.e., crabs of different shapes and colors,
seems to exceed a single species of crab.

This is just a single example, but from our inspection of
many other fine-grained animal and fungi classes, we could
see that this is not an isolated issue. On the contrary, it
seems prominent across many fine-grained domains. One
exception for the subset of ImageNet classes we delved
into is dog breeds, possibly due to the sheer volume of dog
images on the internet. It is however fair to say that the
generated images highly misrepresent biodiversity.

It is worth noting that, as Luccioni and Rolnick discuss
in their recent paper [52], the ImageNet dataset itself con-
tains a number of issues when it comes to the annotations of
fine-grained classes of wild animals. They found that “many
of the classes are ill-defined or overlapping, and that 12% of
the images are incorrectly labeled, with some classes having
> 90% of images incorrect”. Although we did not conduct
a similar experiment using experts, we expect similar statis-
tics to be much higher for the images generated by Stable
Diffusion.

D.4. Semantic issues arising with backgrounds

A common issue we observe when adding diverse back-
grounds to class images is that a subset of the generated
images do not really contain the object, and merely reflect
the background scene. See for example the images in the
first and last row, on the last column of Fig. 12c, and a few
more spread in that figure, or the background samples for
class “reel” in Fig. 13. This is to be expected given how
a prompt like this is relying on the compositionality of the
Stable Diffusion model.

What is really interesting is that in some cases the re-
sulting images, although not containing an instance from
the class, retains some of the object’s shape or texture in
the background. See for example a pedestal-looking table
in Fig. 12c for class “pedestal”, a pirate themed bedroom for
class “pirate”, green shirts for “green mamba”, or the red-ish
produce stand for “red fox”.

D.5. Issues with diversity

We observe issues with diversity for most of the classes
when only the class name is used as the prompt, e.g., in the
middle set of results in Fig. 13. This is also visible for the
crab classes in Fig. 12b, or the Shih-tzu class in Fig. 10b,
Fig. 11a and Fig. 11b. We see that such issues are partially
solved when lowering the guidance scale and relying less to
the prompt, or using backgrounds (e.g., the right-most set
of images in Fig. 13). We expect more advanced prompt
engineering to further increase diversity.

As expected, increasing diversity correlates with more
semantic errors. We see that such issues appear far more fre-
quently in the most diverse synthetic dataset, i.e., as shown
in the right-most set of images of Fig. 13.

D.6. Non-natural images

Even from the very small random sample of generated
images shown in the figures of this paper, we see that there
is a non-negligible percentage of the generated images that
are non-natural. They can be illustrations, graphics images
or even paintings. This is not necessarily undesirable and it
can lead to models with higher robustness to related domain
changes.

D.7. Varying the stable diffusion parameters

We identify two important parameters for Stable Dif-
fusion, which affect the visual quality of generated im-
ages: The guidance scale and the number of diffusion steps.
In Fig. 9 we show several examples where we vary one of
these two parameters. More specifically, we generate im-
ages for the ImageNet synset n01558993 with class name
“robin, American robin, Turdus migratorius”, for the simplest
case where the prompt is just the class name. We fix the seed
to 1947262 and vary either the guidance scale or the number
of diffusion steps.



Guidance Scale. From Fig. 9a, we see that increasing
the guidance scale coefficient over 10 starts giving hyper-
realistic results. When the scale is under 2, we see that many
details of the class are not really prominent.
Diffusion Steps. From Fig. 9b, we see that, although with
5 steps the generated images still contain a lot of noise,
running 25-50 steps is enough for fully-formed, sharp images
to emerge. Since this is a parameter that linearly impacts
generation time, increasing the number of steps further than
50 seems excessive.
Output Resolution. The resolution that was used during
training of the Stable Diffusion models was (512 × 512).4

We notice that if one deviates from this training resolution,
generated results get worse. We chose to simply switch the
aspect ratio to the one for the average ImageNet image and
keep the long dimension to 512.

4https://github.com/CompVis/stable-diffusion

(a) Varying the guidance scale parameter (steps = 50)

(b) Varying the number of diffusion steps (scale = 7.5)

Figure 9. Qualitative results as we change the guidance scale
parameter and the number of diffusion steps during Stable Dif-
fusion generation. The seed is fixed to 1947262 and the prompt
is “robin, American robin, Turdus migratorius”. Unless otherwise
stated the scale (resp. steps) parameters are set to 7.5 (resp. 50).

https://github.com/CompVis/stable-diffusion


(a) Real images from ImageNet-1K for class “Shih-Tzu”

(b) Synthetic images with prompt pc = “c” for class “Shih-Tzu”

(c) Synthetic images with prompt pc = “c, hc” for class “Shih-Tzu”

Figure 10. Qualitative results for class “Shih-Tzu” to illustrate domain and diversity issues. Guidance scale is equal to 7.5.



(a) (cont.) Synthetic images with prompt pc = “c, dc” for class “Shih-Tzu”

(b) Synthetic images with prompt pc = “c, hc inside b”

Figure 11. (cont.) Qualitative results for class “Shih-Tzu” to illustrate domain and diversity issues.



(a) Real images from ImageNet-1K for classes “Rock crab” (left) and “Fiddler crab” (right)

(b) Synthetic images with prompt pc = “c” for classes “Rock crab” (left) and “Fiddler crab” (right)

(c) Synthetic images with prompt pc = “c, hc inside b” for classes “Rock crab” (left) and “Fiddler crab” (right)

Figure 12. Qualitative results for classes “Rock crab” (left) and “Fiddler crab” (right), to illustrate issues around fine-grained and
domain specific semantics. Guidance scale is equal to 7.5.



Synset real images pc = “c” pc = “c, hc inside b”
guidance scale 7.5 guidance scale 2
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Figure 13. Visualization of the 100 ImageNet-100 classes for the three different datasets: ImageNet-100-Val (real) and two ImageNet-100-
SD datasets created with prompts pc = “c” and pc = “c, hc inside b”.



Synset real images pc = “c” pc = “c, hc inside b”
guidance scale 7.5 guidance scale 2

Saluki

American
Stafford-
shire terrier

Chesapeake
Bay re-
triever

vizsla

kuvasz

komondor

Rottweiler

Doberman

boxer

Great Dane

standard
poodle

Mexican
hairless

coyote

African
hunting dog

red fox

tabby

meerkat

dung beetle

walking
stick

leafhopper

Figure 14. (cont.) Visualization of the 100 ImageNet-100 classes for the three different datasets: ImageNet-100-Val (real) and two
ImageNet-100-SD datasets created with prompts pc = “c” and pc = “c, hc inside b”.



Synset real images pc = “c” pc = “c, hc inside b”
guidance scale 7.5 guidance scale 2
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Figure 15. (cont.) Visualization of the images for the 100 ImageNet-100 classes in the three different datasets: ImageNet-100-Val (real)
and two ImageNet-100-SD datasets created with prompts pc = “c” and pc = “c, hc inside b”.



Synset real images pc = “c” pc = “c, hc inside b”
guidance scale 7.5 guidance scale 2
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Figure 16. (cont.) Visualization of the 100 ImageNet-100 classes for the three different datasets: ImageNet-100-Val (real) and two
ImageNet-100-SD datasets created with prompts pc = “c” and pc = “c, hc inside b”.



Synset real images pc = “c” pc = “c, hc inside b”
guidance scale 7.5 guidance scale 2
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Figure 17. (cont.) Visualization of the 100 ImageNet-100 classes for the three different datasets: ImageNet-100-Val (real) and two
ImageNet-100-SD datasets created with prompts pc = “c” and pc = “c, hc inside b”.


	1 . Introduction
	2 . Related work
	2.1 . Learning with synthetic data
	2.2 . Distillation of datasets and models

	3 . Preliminaries
	4 . Generating synthetic ImageNet clones
	4.1 . Generating datasets using class names
	4.2 . Addressing issues with semantics and domain
	4.3 . Increasing the diversity of generated images

	5 . Experiments
	5.1 . Results on ImageNet datasets
	5.2 . Resilience to domain shifts
	5.3 . Transfer learning

	6 . Discussion
	7 . Conclusions
	A . Implementation details
	B . Evaluation protocol
	C . Extended experimental results
	C.1 . Impact of data augmentation
	C.2 . Results on the ImageNet-CoG sariyildiz2021cog benchmark
	C.3 . Analysis of the learned features
	C.4 . Impact of guidance scale and diffusion steps
	C.5 . Prefixing the prompt with domain identifiers
	C.6 . Additional scaling plots for synthetic data
	C.7 . Additional spider plots

	D . Extended qualitative results
	D.1 . Semantic errors
	D.2 . NSFW content
	D.3 . Misrepresentation of biodiversity
	D.4 . Semantic issues arising with backgrounds
	D.5 . Issues with diversity
	D.6 . Non-natural images
	D.7 . Varying the stable diffusion parameters


