
Decentralized Learning with Multi-Headed Distillation

Andrey Zhmoginov Mark Sandler Nolan Miller Gus Kristiansen Max Vladymyrov

Google Research
{azhmogin,sandler,namiller,gusatb,mxv}@google.com

Abstract

Decentralized learning with private data is a cen-
tral problem in machine learning. We propose a novel
distillation-based decentralized learning technique that
allows multiple agents with private non-iid data to
learn from each other, without having to share their
data, weights or weight updates. Our approach is
communication efficient, utilizes an unlabeled public
dataset and uses multiple auxiliary heads for each
client, greatly improving training efficiency in the case
of heterogeneous data. This approach allows individual
models to preserve and enhance performance on their
private tasks while also dramatically improving their
performance on the global aggregated data distribution.
We study the effects of data and model architecture het-
erogeneity and the impact of the underlying communi-
cation graph topology on learning efficiency and show
that our agents can significantly improve their perfor-
mance compared to learning in isolation.

1. Introduction

Supervised training of large models historically re-
lied on access to massive amounts of labeled data. Un-
fortunately, since data collection and labeling are very
time-consuming, curating new high-quality datasets
remains expensive and practitioners are frequently
forced to get by with a limited set of available labeled
datasets. Recently it has been proposed to circumvent
this issue by utilizing the existence of large amounts
of siloed private information. Algorithms capable of
training models on the entire available data without
having a direct access to private information have been
developed with Federated Learning approaches [24]
taking the leading role.

While very effective in large-scale distributed en-
vironments, more canonical techniques based on fed-
erated averaging, have several noticeable drawbacks.
First, gradient aggregation requires individual models
to have fully compatible weight spaces and thus iden-

Client 1 Client 2 Client 3

"Public" Dataset

Distillation
on "Public" DS

Distillation
on "Public" DS

Figure 1. Conceptual diagram of a distillation in a dis-
tributed system. Clients use a public dataset to distill
knowledge from other clients, each having their primary
private dataset. Individual clients may have different ar-
chitectures and different objective functions.

tical architectures. While this condition may not be
difficult to satisfy for sufficiently small models trained
across devices with compatible hardware limitations,
this restriction may be disadvantageous in a more gen-
eral setting, where some participant hardware can be
significantly more powerful than the others. Secondly,
federated averaging methods are generally trained in a
centralized fashion. Among other things, this prohibits
the use of complex distributed communication patterns
and implies that different groups of clients cannot gen-
erally be trained in isolation from each other for pro-
longed periods of time.

Another branch of learning methods suitable for dis-
tributed model training on private data are those based
on distillation [3,6,15]. Instead of synchronizing the in-
ner states of the models, such methods use outputs or
intermediate representations of the models to exchange
the information. The source of data for computing ex-
changed model predictions is generally assumed to be
provided in the form of publicly available datasets [12]
that do not have to be annotated since the source of
annotation can come from other models in the ensem-
ble (see Figure 1). One interesting interpretation of
model distillation is to view it as a way of using queries

1

ar
X

iv
:2

21
1.

15
77

4v
1

 [
cs

.L
G

]
 2

8
N

ov
 2

02
2

from the public dataset to indirectly gather information
about the weights of the network (see Appendix A).
Unlike canonical federated-based techniques, where the
entire model state update is communicated, distillation
only reveals activations on specific samples, thus poten-
tially reducing the amount of communicated bits of in-
formation. By the data processing inequality, such re-
duction, also translates into additional insulation of the
private data used to train the model from adversaries.
However, it is worth noting that there exists multiple
secure aggregation protocols including SecAgg [5] that
provide data privacy guarantees for different Federated
Learning techniques.

The family of approaches based on distillation is less
restrictive than canonical federated-based approaches
with respect to the communication pattern, support-
ing fully distributed knowledge exchange. It also per-
mits different models to have entirely different archi-
tectures as long as their outputs or representations are
compatible with each other. It even allows different
models to use various data modalities and be optimiz-
ing different objectives, for example mixing supervised
and self-supervised tasks within the same domain. Fi-
nally, notice that the distillation approaches can and
frequently are used in conjunction with weight aggre-
gation [21, 30, 31, 37], where some of the participating
clients may in fact be entire ensemble of models with
identical architectures continuously synchronized using
federated aggregation (see Figure 8 in Supplementary).

Our contributions. In this paper, we propose and
empirically study a novel distillation-based technique
that we call Multi-Headed Distillation (MHD) for dis-
tributed learning on a large-scale ImageNet [9] dataset.
Our approach is based on two ideas: (a) inspired
by self-distillation [2, 10, 38] we utilize multiple model
heads distilling to each other (see Figure 2) and (b)
during training we simultaneously distill client model
predictions and intermediate network embeddings to
those of a target model. These techniques allow in-
dividual clients to effectively absorb more knowledge
from other participants, achieving a much higher accu-
racy on a set of all available client tasks compared with
the naive distillation method.

In our experiments, we explore several key proper-
ties of the proposed model including those that are
specific to decentralized distillation-based techniques.
First, we analyse the effects of data heterogeneity,
studying two scenarios in which individual client tasks
are either identical or very dissimilar. We then inves-
tigate the effects of working with nontrivial commu-
nication graphs and using heterogeneous model archi-
tectures. Studying complex communication patterns,

we discover that even if two clients in the ensemble
cannot communicate directly, they can still learn from
each other via a chain of interconnected clients. This
“transitive” property relies in large part on utilization
of multiple auxiliary heads in our method. We also
conduct experiments with multi-client systems consist-
ing of both ResNet-18 and ResNet-34 models [14] and
demonstrate that: (a) smaller models benefit from hav-
ing large models in the ensemble, (b) large models
learning from a collection of small models can reach
higher accuracies than those achievable with small
models only.

2. Related Work

Personalized Federated Learning. While many
early canonical Federated Learning approaches trained
a single global model for all clients [24], it has been
quickly realized that non-IID nature of private data in
real systems may pose a problem and requires person-
alized approaches [20]. Since then many Personalized
Federated Learning approaches have been developed,
many covered in the surveys [18,33].

Federated Distillation. Emergence of Federated
Distillation was motivated by the need to perform
learning across ensembles of heterogeneous models1,
reducing communication costs and improving perfor-
mance on non-IID data. Existing distillation-based
approaches can be categorized based on the system
setup and the types of the messages passed between
participants. A number of approaches including [8,
12, 21, 23, 30, 31, 37, 40] combine aggregation of weight
updates with model distillation. They are typically
centralized and frequently involve client-side distilla-
tion, which may restrict the size of the aggregated
model. A different body of work is concentrated
on centralized systems, where only model predictions
are communicated between the clients and the server
[11, 13, 16, 19, 26, 29, 32, 39]. Another related family of
approaches is based on communicating embedding pro-
totypes [34], or using embeddings for distillation di-
rectly [1, 26]. In this paper, we concentrate on a more
general decentralized setup, where there is not single
central authority and all clients exchange knowledge
via distillation [4].

3. Model

3.1. Setup

We consider a system of K clients C =
{C1, . . . , CK}. Each client Ci is assumed to possess

1note that multiple existing approaches like [28,35] allow us-
ing FedAvg for training heterogeneous model ensembles

2

their own private dataset Di while training a private
model Mi that solves a corresponding task Ti. In the
following, we assume that all tasks Ti are supervised.

While using their local dataset Di to train the pri-
vate model, each client can also communicate with
other clients to learn from them. At each global train-
ing step t, we define a local directed graph Gt that de-
termines the pattern of this communication. While the
set of nodes of Gt is fixed to be the set of all clients, the
set of edges Et with the corresponding incidence func-
tion can be dynamic and change every training step.

The local datasets Di are not directly exchanged be-
tween the clients, instead the information exchange oc-
curs via a shared public source of unlabeled data D∗.
We assume that at training step t, each client Ci can
perform inference on a set of public samples and re-
quest the results of a similar computation on the same
samples from other clients that are incident to it by
directed edges of Gt. In other words, each client Ci is
optimizing a local objective Li defined as:

Li(t) = Li,CE +
∑
α

Ex∼D∗Lαdist(ψαi (x),Φαt,i), (1)

where Li,CE ≡ E(x,y)∼Di
LCE(x, y) and LCE is a cross-

entropy loss optimized locally by each client on their
private data Di, Lαdist is a collection of different dis-
tillation losses enumerated by α that use some local
computation result ψαi and a remote results Φαt,i(x) ≡
{φαj (x)|j ∈ et(i)} computed on the same sample and
et(i) is a set of clients connected to i via a set of out-
going edges (from Gt).

Notice that in contrast with Federated Learning,
here we do not require different models Mi to have
compatible architectures, but instead optimize local
and remote sample representations ψi(x) and φj(x) to
be compatible. In the next section, we discuss several
potential choices of the distillation losses.

In this paper, we are interested in evaluating the
impact that the communication and cross-learning be-
tween the clients has on (a) how well these models can
be suited for their original private tasks and (b) how
much of the knowledge gets shared and distributed to
the other tasks over time. Notice that if each client
has a sufficiently simple model and enough training
data (making the model underfit), the communication
between individual models is not expected to improve
their private task performance, but can only enhance
their learned representations making them more suit-
able for adapting to other client’s tasks. However, if
the private training data is scarce (making the model
overfit), the model communication could improve gen-
eralization and ultimately improve client performance
on their private tasks.

3.2. Distillation Losses

Embedding distillation. We utilize the embedding
regularization loss [1, 26] in our experiments. If ξi(x)
is an intermediate embedding produced for a sample x
coming from the shared public dataset by the model
Mi, then we can choose ψemb

i (x) ≡ ξi(x), φemb
j (x) ≡

ξj(x) and define Lemb
dist

(
ψemb
i (x),Φemb

t,i (x)
)

as

νemb

∑
j∈et(i)

ρ
(
‖ψemb

i (x)− φemb
j (x)‖

)
, (2)

or simply νemb

∑
j∈et(i) ρ (‖ξi(x)− ξj(x)‖), where νemb

is the weighting constant and ρ(x) ∈ C∞ is some
monotonically growing function. The choice of this
distillation loss forces compatibility between sample
embeddings across the ensemble. In practice, we no-
ticed that the embedding norms of different models fre-
quently diverge during training, and to adapt to that
we use normalized embeddings preserving regulariza-
tion consistency across the entire duration of training:
ψnorm
i (x) ≡ ξi(x)/‖ξi(x)‖.

Prediction distillation. Ability to predict on
classes that are rarely present in private data can be
improved by utilizing prediction vector as an additional
distillation target. However, since Mi is tasked with
fitting ground truth on a particular dataset Di, distill-
ing this prediction to labels relevant for another client
may be damaging for the model performance on Ti. In-
stead, we choose to add another single prediction head
to Mi that is distilled from all existing tasks thus (a)
not polluting the main prediction head of the model
Mi, but (b) at the same time forcing the intermediate
representation ξi(x) to contain information relevant for
solving all existing tasks {Tj |j ∈ 1, . . . ,K}.

Let hi(ξi(x)) be the main head of the model Mi

used for computing LCE and haux
i (ξi(x)) be the auxil-

iary head. Then, the näıve prediction distillation loss
takes the following form:

Laux
dist[h

aux,h] ≡ −νaux
∑

j∈et(i)

hj loghaux
i (x), (3)

where νaux is the auxiliary loss weight. Here all the
distillation targets from et(i) are essentially treated the
same irrespective of their confidence in their prediction.
One way of integrating the knowledge of the distillation
target quality is to use some confidence metric for their
prediction on x. For example, we could consider the
following modification of the loss (3):

−νaux
∑

j∈et(i)∪{i}

Q [Λ(hj);H[h]]× hj loghaux
i (x), (4)

3

Main Aux 1 Aux 2 Main Aux 1 Aux 2

Client 1 Client 2

Figure 2. A pattern used for distilling multiple auxiliary
heads. Here multiple auxiliary heads of “Client 1” are dis-
tilled from other auxiliary heads of the same model and
from auxiliary heads of other clients (here “Client 2”). Aux-
iliary head Aux 1 is distilled from the main heads, auxiliary
head Aux 2 is distilled from auxiliary heads Aux 1 and so
on.

where Λ(h(x)) is the confidence of the classifier pre-
diction, Q is some function of the client confidence
and H[h] ≡ {Λ(hj)|j ∈ et(i) ∪ {i}} is the informa-
tion about confidence of all possible distillation targets
including the ith client itself. We considered perhaps
the simplest choice for Λ defining it as arg maxk hk(x).
This measure of the model confidence that we end up
using in our method is, of course, not reliable (see
Appendix A) and using a separate per-client density
model ρi(x) for detecting in-distribution and out-of-
distribution samples could potentially improve model
performance (for an alternative approach see [22]). For
Q, we only considered perhaps the most obvious choice
of Q[Λ(hj)] = 1 if jth client has the largest confidence
from H and 0 otherwise, effectively selecting the most
confident client and using it as the distillation target
(see Appendix A for a detailed discussion).

Self-distillation with multiple auxiliary heads.
Self-distillation is a well-known technique that im-
proves model performance by repeatedly using the pre-
vious iteration of the model as the distillation target
for itself [2, 10, 25, 38]. The most direct application
of this technique to training an ensemble of models is
to perform multiple cycles of self-distillation across all
available networks. Here, however, we propose a differ-
ent approach, where we modify a conventional training
procedure by equipping each classifier with a collection
of multiple auxiliary heads {haux,1, . . . ,haux,m}. These
auxiliary heads distill from each other by optimizing
the following loss:

Laux
dist[h

aux,1,h] +

m∑
k=2

Laux
dist[h

aux,k,haux,k−1], (5)

where Laux
dist[h

(a),h(b)] is defined according to Eq. (4).

In other words, haux,1 distills from h and haux,k dis-
tills from haux,k−1 for all 1 < k ≤ m. This approach

illustrated in Figure 2 is one of the core contributions
of our paper.

Communication efficiency. In terms of communi-
cation efficiency, this approach could suffer from in-
effective communication when the distillation targets
are frequently a poor source of knowledge for a partic-
ular sample class. This problem would ideally require
client awareness of the label distribution on each client
that it communicates with. However, since in practice,
prediction distillation (embedding distillation is more
costly) only requires a transmission of several highest-
confidence predictions for each sample, each step with
batch size of 512 would require a communication of
only a few thousand floating point numbers (assuming
that shared public set images could be uniquely iden-
tified with a small hash). At the same time, a single
back-and-forth round of FedAvg communication of a
ResNet-34 model would require more than 100 million
floating-point parameters, which would be equivalent
to around 50k prediction distillation steps.

3.3. Dataset

In this work, we study distributed learning in sys-
tems with varying degrees of data heterogeneity: from
those where the distribution of data is the same across
all clients, to more extreme cases where each client spe-
cializes on it’s own unique task. We simulate these
scenarios using an underlying labeled dataset D. Let
S be the set of all samples from D. Some fraction of
samples γpub (typically around 10%) is treated as a set
of unlabeled public samples. The remaining samples
are treated as the source of private data and are dis-
tributed without repetition across all of K clients as
discussed below.

Label assignment. Each client Ci is assigned a sub-
set `i of all labels, which are treated as primary labels
for Ci. Remaining labels from D not belonging to `i
are treated as secondary labels for Ci. For each label l,
we take all available samples and randomly distribute
them across all clients. The probability of assigning a
sample with label l to a client Ci is chosen to be 1 + s
times higher for clients that have l as their primary la-
bel. We call the parameter s dataset skewness. As a
result, in the iid case with s = 0 all samples are equally
likely to be assigned to any one of the clients. However,
in the non-iid case in the limit of s → ∞, all samples
for label l are only distributed across clients for which
l is primary.

We considered two choices for selecting the primary
label sets for the clients. One choice (we refer to as
even) is to subdivide the set of all labels in such a

4

way that each label has exactly m corresponding pri-
mary clients. Another choice (we refer to as random)
is to randomly assign each client Ci a random fixed-
size subset of all labels. This choice creates a variation
in the number of primary clients for different labels,
making it a less idealized and more realistic setup even
in the limit of s → ∞. For example, for ImageNet
with 1000 classes, if it is subdivided between 8 clients
each receiving 250 random labels: (a) around 100 la-
bels will be distributed evenly across all clients (no pri-
mary clients), (b) around 270 labels will have a single
primary client, (c) around 310 labels will have two pri-
mary clients, (d) around 210 labels will have three pri-
mary clients and (e) around 110 remaining labels will
have 4 or more primary clients.

4. Experiments

4.1. Experimental Framework

In most of our experiments, we used ImageNet
dataset with samples distributed across multiple clients
as discussed in Section 3.3. The public dataset used for
distillation was chosen by selecting γpub = 10% of all
available training samples and the remaining 90% were
distributed across clients as private labeled data. We
used both random and even label distribution strate-
gies and considered two cases of s = 0 and s = 100
corresponding to homogeneous and heterogeneous task
distributions correspondingly. In most of our experi-
ments, unless indicated otherwise, we used ResNet-34
models as individual clients, trained 8 clients and each
was assigned 250 primary labels at random. The mod-
els were typically trained for 60 000 or 120 000 steps
with SGD with momentum, batch size of 512, cosine
learning rate decay and the initial learning rate of 0.1
and momentum 0.9.

Our experimental platform was based on distilla-
tion losses outlined in Section 3.2. However, being re-
stricted by computational efficiency needed to run nu-
merous experiments, we made several implementation
choices that deviated from the general formulation of
Section 3.2. Most importantly, individual clients do
not directly exchange their predictions on the public
dataset, but instead each client Ci keeps a rolling pool
Pi of NP model checkpoints. In most of our experi-
ments, NP was chosen to be equal to the total num-
ber of clients in the system. Every step, each client
Ci picks a ∆ random checkpoints from Pi and uses
them for performing a distillation step on a new batch.
Each pool Pi is updated every SP steps, when a new
checkpoint for one of the other clients is added into
the pool (replacing another random checkpoint). In
most of our experiments, we used a single distillation

(a) IID (s = 0), Private Acc. (b) IID (s = 0), Shared Acc.

(c) non-IID (s = 100), Private
Acc.

(d) Non-IID (s = 100), Shared
Acc.

Figure 3. Comparison of private (on the client’s dataset)
and shared accuracies (on a uniform class distribution) for
models trained on datasets with iid and non-iid distribu-
tions (see Sec. 3.3) (a) with s = 0 and (b) s = 100. Both
the main head (solid) and the auxiliary head accuracies
(dashed) are shown. Four values of νaux are shown: 0.0
(blue), 1.0 (orange), 3.0 (green), 10.0 (red). The accuracies
are seen to peak for νaux = 3 and νemb = 3 for s = 0 and
νemb = 1 for s = 100.

client on every step, i.e., ∆ = 1 and et(i) defined in
Sec. 3.1 contains a single element every step t. How-
ever, a separate exploration of the parameter ∆ was
also performed. Also, since in most of our experiments
we used SP = 200, infrequent pool updates would typ-
ically introduce a time lag causing the model to distill
knowledge from somewhat outdated checkpoints.

4.2. Embedding and Multi-Headed Distillation

In this section we start exploring distillation tech-
nique in the simplest scenario with identical model ar-
chitectures and a complete graph connectivity, where
each model can distill knowledge from any other exist-
ing client.

4.2.1 Evaluating Basic Distillation Ap-
proaches

Consider a set of models with identical ResNet-based
architectures learning on their private subsets of Im-
ageNet and distilling the knowledge from each other
assuming a complete connectivity of the communica-
tion graph. Here we compare the efficiency of knowl-
edge transfer for different distillation approaches: (a)
distilling sample embeddings preceding the final log-

5

its layer (embedding distillation) and (b) distilling ac-
tual model predictions (prediction distillation) (see
Sec. 3.2). Specifically, we consider two extreme cases
of an iid (s = 0) and non-iid (s = 100) distributed
ImageNet datasets and study the final performance of
individual agents while varying the strengths of the em-
bedding and the prediction distillation losses, νemb and
νaux correspondingly.

In our experiments, we study the performance of
primary and auxiliary model heads on two data dis-
tributions: (a) private dataset defining the primary
problem that the client is tasked with and (b) shared
dataset reflecting the uniform label distribution aver-
aged across all clients. Any technique improving the
private dataset accuracy βpriv can be viewed as success-
ful at learning from other clients and translating the ac-
quired knowledge into better performance on their own
task. On the other hand, a technique improving the
shared dataset accuracy βsh is successful at learning a
more robust representation that can be easily adapted
to solving other possible tasks (seen by other clients).
Both of these potential capabilities can be viewed as
positive outcomes of cross-client communication and
learning, but their utility may be application specific.

Figure 3 summarizes our empirical results (see Ap-
pendix B for raw numbers) showing the measurements
of the average private accuracy βpriv, that is the ac-
curacy of each client on their respective dataset Di,
and the averaged shared accuracy βsh measured on a
dataset with a uniform label distribution identical to
that of the original ImageNet. While βpriv measures
how well a particular client performs on their own task,
βsh is a reflection of the world knowledge (some may
be irrelevant for the private task) that the client learns
from other participants.

Figure 3 contains several interesting findings: (a)
while both regularization techniques are useful for im-
proving model performance, there is a threshold be-
yond which they start deteriorating both accuracies;
(b) taken alone prediction distillation seems to have
a stronger positive effect than the embedding distilla-
tion, while embedding distillation is more effective in
the s = 0 case; (c) however, the best results are ob-
tained by combining both distillation techniques. Fur-
thermore, we see that the distillation techniques gener-
ally improve both βpriv and βsh simultaneously. Notice
that the positive effect of νaux suggests that training
a separate auxiliary head has an effect on the model
embedding that leads to an improved performance on
the main head trained with the client’s private dataset
alone. Another interesting observation is that for uni-
form datasets with a small s, the auxiliary head ends
up having better performance on both the private and

Main Aux 1 Aux 2 Aux 3 Aux 4

56

57

58

59

60

A
cc

ur
ac

y

1 head
2 heads
3 heads
4 heads

(a) IID (s = 0)

Main Aux 1 Aux 2 Aux 3 Aux 4

30

40

50

60

70

A
cc

ur
ac

y

1 head
2 heads
3 heads
4 heads

(b) non-IID (s = 100)

Figure 4. Private (dot-dashed) and shared (solid) dataset
accuracies of main and auxiliary heads in ensembles trained
with different numbers of auxiliary heads: 1 aux head
(blue), 2 heads (orange), 3 heads (green) and 4 heads (red).
For the IID case the private and shared performance match.

shared tasks (identical for s = 0). At the same time, in
a non-iid dataset with s = 100, auxiliary head performs
much better on the shared dataset, but lags behind on
the private task since it is not trained on it directly.

4.2.2 Improving Distillation Efficiency

While Figure 3 shows a clear evidence that distillation
techniques can be useful for distributed learning even
in the case of heterogeneous client data, there is a room
for further improvement.

Ignoring poor distillation targets. In some cases,
agents can be distilling knowledge about particular cat-
egories from agents that themselves do not possess ac-
curate information. It is even possible that the agent’s
auxiliary head is already “more knowledgeable” about
the class than the main head of another agent that it
is trying to distill from. As a result, the performance
of the auxiliary head may degrade. One approach that
we study here is to skip distillation on a sample if the
auxiliary head confidence is already higher than that of
the head it is trying to distill from. In our experiments,
we observed that that this simple idea had virtually no
effect for s = 0, but allowed us to improve the per-
formance of the auxiliary head for heterogeneous data
distributions with s = 100. Specifically, for 8 clients
and s = 100, this technique improved auxiliary head
βsh from 44.7% to 46.5%, while having virtually no ef-
fect on the private dataset accuracy βpriv of the main
model head, which stayed at 72.2%. While effective
for single auxiliary head, this technique did not im-
prove results in multiple auxiliary heads scenario (see
Appendix B) that we will discuss next.

6

s = 0 Accuracy s = 100 Accuracy

Separate 46.3% Separate 25.1%

MHD (Ours) 59.9% MHD (Ours) 54.5%
MHD+ (Ours) 68.6% MHD+ (Ours) 63.4%

FA, u = 200 70.5% FA, u = 200 68.0%
FA, u = 1000 69.1% FA, u = 1000 65.7%

Supervised 68.9% – –

Table 1. Comparison of the shared accuracies βsh for
our technique and two “upper-bound” baselines trained
for 60k steps on 90% of ImageNet: (a) supervised and (b)
trained with Federated Averaging (FA) performed every u
steps. MHD+ experiments were conducted with 180k steps
and used the entire ImageNet as a public dataset (regime
of plentiful public data). Separate corresponds to shared
dataset performance for clients trained independently on
their own private data. FA accuracy being higher than the
supervised could be explained by a much larger number of
samples being effectively processed during training (×8).

Multiple auxiliary heads. Here we empirically
study the multi-head approach inspired by self-
distillation and described in detail in Section 3.2.
Guided by earlier results from Section 4.2.1, we choose
νemb = 1 and νaux = 3. We then train an ensemble of 8
models, each with 250 primary labels and two choices
of dataset skew: s = 0 and s = 100. For each choice of
parameters, we independently trained models with 1 to
4 auxiliary heads and then measured the performance
of the main and every auxiliary head on the client’s
private dataset and a shared test set with a uniform
label distribution. The results of our experiments are
presented in Figure 4 (see Appendix B for raw num-
bers). For a uniform data distribution, i.e., s = 0,
we see that distilling multiple auxiliary heads has a
positive impact on all model heads for up to 3 auxil-
iary heads, after which performance starts to degrade.
Among the heads themselves, the peak performance is
seen to be attained by the 2nd auxiliary head. However,
we hypothesize that with the increase of the number of
training steps, the final head will end up having the
highest accuracy.

In the case of a non-iid distribution with s = 100,
we observed that increasing the number of auxiliary
heads has a very profound positive affect on the shared
dataset performance βsh of the final auxiliary head.
However, it is the main head that achieves the highest
private dataset accuracy βpriv. All consecutive auxil-
iary heads appear to loose their private dataset per-
formance βpriv by specializing on capturing the overall
data distribution.

Dependence on the number of distillation tar-
gets ∆. We studied the effect of using multiple distil-
lation targets ∆ at every training step by considering a
typical 8-client setup with s = 100, 4 auxiliary heads,
νemb = 1 and νaux = 3. While increasing ∆ from 1 to 3
had virtually no effect on the main head private accu-
racy βpriv, the shared dataset accuracy βsh for the last
auxiliary head improved from 54.5% to 56.1% and then
to 56.4% as we increased ∆ from 1 to 3. At ∆ = 4, βsh
appeared to saturate and fell to 56.2% (within the sta-
tistical error of about 0.2%). Overall, earlier auxiliary
heads appeared to be affected by ∆ more strongly.

Choice of the confidence measure. The choice
of the confidence Λ(h(x)) is central to the distillation
technique. We compared our current choice based on
selecting the most confident head, with a random se-
lection of the distillation target. In our experiments
with 8 clients each with 250 random primary labels,
νemb = 1, νaux = 3, s = 0 and 3 auxiliary heads,
we observed that randomizing confidence caused the
main head βpriv degradation from 56% to 55.2% and
the last auxiliary head βsh went down from 59.5% to
58.4%. The degradation of model performance is more
significant in the case of heterogeneous client data. In
experiments with s = 100 and 4 auxiliary heads, we
observed the main head βpriv degraded from 72.1% to
71.3% and the last auxiliary head βsh decreased from
54.5% to 49%.

Dependence on the technique efficiency on the
public dataset size. The efficiency of model distilla-
tion depends on the amount of data used for performing
this distillation, in our case, on the size of the public
dataset. In our experiments outlined in Appendix B.2,
increasing the size of the public dataset while fixing the
amount of private training data has a positive impact
on the final model performance.

In practice, since unlabeled data is more abundant,
one can expect that the public dataset size will be com-
parable or even larger than the total amount of labeled
data available to clients. Being constrained by the Im-
ageNet size and attempting to keep the amount of pri-
vate training data unaffected, we simulate the abun-
dance of public data by reusing the entirety of the Im-
ageNet dataset as an unlabeled public dataset. This, of
course, is not realistic and somewhat biased given that
we reuse the same samples as labeled and unlabeled,
but it allows us to explore the limits of the distributed
training efficiency with distillation.

7

MHD Base MHD FedMD Base FedMD

60.6% 57.0% / 0.6% 56.5% 50.2% / 2.7%

Table 2. Comparison of mean test accuracies (first num-
ber) and their deviations (second number after /) across 10
clients for our method and FedMD as reported in Ref. [19].
Baselines (Base) are obtained by training clients with all
available private data.

4.3. Baseline Comparisons

Before comparing our technique with a similar
distillation-based method, we compared its perfor-
mance with two strong “upper-bound” baselines (see
Table 1): supervised training on all ImageNet and Fe-
dAvg algorithm implemented within our framework. A
large performance gap between shared dataset accura-
cies obtained using our method and the strong base-
lines can be viewed as a price paid for learning via dis-
tillation in a decentralized multi-agent system. At the
same time, we see that increasing the public dataset
size and training for a longer period of time, allowing
the information to propagate across all clients (Our+
results), brings us close to the supervised model perfor-
mance. Notice that like many other distillation-based
techniques [19,39], our method reaches higher accuracy
in the homogeneous data scenario.

We compared our method with FedMD [19] a sim-
ilar, but centralized distillation-based methods. This
comparison was carried out by replicating the dataset
and 10 model architectures from the publicly available
implementation. The dataset is based on CIFAR-100
[17] and makes use of 20 coarse labels, while the public
dataset is chosen to be CIFAR-10. Due to the differ-
ences in the training process, our baseline results with
individual models trained on all private data pooled
together was higher than that reported in [19]. At
the same time, we observed a much smaller gap in
performance between this upper baseline and the re-
sults obtained using our method than the gap reported
in [19] (see Table 2). Interestingly, we also observe a
much smaller performance spread across all 10 mod-
els trained with our technique (deviation of 0.6% com-
pared to 2.7% for FedMD).

4.4. Communication Topology Effects

In order to explore how our approach might scale to
larger systems in which pairwise connections between
all agents are not feasible, we aim to evaluate how the
communication topology affects performance. In par-
ticular we are interested in the question of whether
“transitive distillation” is possible with our approach
– that is whether two agents that are not directly con-

nected to one-another can still learn from each-other
through an intermediary.

To evaluate this and determine how auxiliary heads
play a role in the performance we ran a training sweep
with 4 agents arranged in 3 different topologies (Fig-
ure 5) with 3 auxiliary heads each. In all cases we
trained for 120k steps, with 250 primary labels per
agent with s = 100. We observe (Figure 6) that per-
formance on the shared dataset improves significantly
between island and cycle topology, with the baseline
performance matching closely the cycle performance.
Without transitive distillation we would expect island
and cycle performance to match closely so this provides
strong evidence for transitive distillation. Also note
that this behavior is only present on auxiliary heads
and is more pronounced for later heads.

We further analyze the performance of each agent
on other agents’ private data. Predictably we observe
that island topologies perform well on in-island other
agents, and poorly on agents from outside their is-
land. Cycle topology agents perform best on their di-

Figure 5. Topologies compared to validate transitive distil-
lation.

Figure 6. The performance by topology and distance be-
tween distillation teacher and student. On the shared
dataset the blue horizontal lines indicate the upper bound
per the embedding quality – computed by fine tuning a head
on the frozen model embeddings. Note that island embed-
ding accuracy for “Islands” is still worse than “Cycle”. Best
viewed in color.

8

rect teacher (Cycle-1), but auxiliary heads 2 and 3 per-
form well on the “1-hop” transitive teacher (Cycle-2),
and auxiliary head 3 has markedly improved perfor-
mance on the “2-hop” transitive teacher (Cycle-3). We
take this as strong evidence that auxiliary heads enable
transitive distillation, and that additional heads make
learning across additional degrees of separation more
efficient.

4.5. Learning in Heterogeneous Systems

In Section 4.2, we conducted experiments with ho-
mogeneous ensembles of models. However, in many re-
alistic scenarios of distributed deep learning, client de-
vices may have different hardware-defined limitations
and it may be desirable to train smaller models on some
clients, while allowing other devices to utilize much
larger networks. While model distillation allows one
to achieve this, it is reasonable to ask why would this
even be desirable? What do we expect to gain from
having much larger models in the ensemble? Here we
show two positive effects emerging from having larger
models in an ensemble of smaller clients: (a) informally
speaking, small models benefit from having stronger
teachers and (b) large models can gain complex knowl-
edge by distilling from smaller and simpler models.

Our ImageNet experiments were conducted with 4
clients each assigned 500 primary labels with one client
being a ResNet34 model and the remaining clients be-
ing ResNet18. Primary label assignment was random
across clients and we trained the model for 240k steps.

First, we observed that the presence of a larger
model improved the accuracy of smaller clients suggest-
ing that they benefited from seeing a stronger teacher
holding some of the relevant data. Specifically, we ob-
served that the presence of a ResNet34 model instead
of ResNet18 in the ensemble led to an increase in the
average shared accuracy βsh of ResNet18 models from
66.2% to 66.7%.

Secondly, if small models achieve high performance
on their limited personalized domains, a large model
distilling from such an ensemble can potentially learn
a much more complex picture of the entire dataset than
would otherwise be accessible to any individual small
learner. This observation has already inspired central-
ized distillation-based methods like [13]. In our exper-
iments, we witnessed this by observing that ResNet34
trained in conjunction with 3 ResNet18 clients reached
the shared accuracy βsh of 68.6%, which exceeds the
67.7% accuracy of an ensemble of 4 ResNet18 models
trained with FedAvg or 66.0% if trained with our ap-
proach (both with 200 steps between updates). Notice
that if the ResNet34 model is isolated from ResNet18
models, it only reaches βsh of 39.4%.

5. Discussion and Conclusions

In this paper, we proposed a novel distributed ma-
chine learning technique based on model distillation.
The core idea of our approach lies in using a hierarchy
of multiple auxiliary heads distilling knowledge from
each other and across the ensemble. We show that
this technique is much more effective than naive dis-
tillation and allows us to get close to the supervised
accuracy on a large ImageNet dataset given a large
public dataset and longer training time necessary for
information to spread across the system. We also study
two key capabilities of a distributed distillation-based
learning technique. Specifically, we demonstrate that
in systems where direct communication between the
clients is limited, multiple auxiliary heads allow infor-
mation exchange across clients that are not directly
connected. We also demonstrate two positive effects
of adding larger models into the system of small mod-
els: (a) small models benefit from seeing larger teachers
and that (b) large models learning from a collection of
small models can reach higher accuracies than those
achievable with small models only.

References

[1] Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin
Yao, Xing Fan, and Chenlei Guo. Knowledge distil-
lation from internal representations. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7350–7357. AAAI
Press, 2020. 2, 3

[2] Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou,
Neil D. Lawrence, and Zhenwen Dai. Variational in-
formation distillation for knowledge transfer. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pages 9163–9171. Computer Vision Foundation
/ IEEE, 2019. 2, 4

[3] Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pages 2654–2662,
2014. 1

[4] Ilai Bistritz, Ariana J. Mann, and Nicholas Bam-
bos. Distributed distillation for on-device learning. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-

9

cessing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. 2

[5] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter,
Antonio Marcedone, H. Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth.
Practical secure aggregation for privacy-preserving
machine learning. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceed-
ings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dal-
las, TX, USA, October 30 - November 03, 2017, pages
1175–1191. ACM, 2017. 2

[6] Cristian Bucila, Rich Caruana, and Alexandru
Niculescu-Mizil. Model compression. In Tina Eliassi-
Rad, Lyle H. Ungar, Mark Craven, and Dimitrios
Gunopulos, editors, Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Philadelphia, PA, USA, Au-
gust 20-23, 2006, pages 535–541. ACM, 2006. 1

[7] George Cazenavette, Tongzhou Wang, Antonio Tor-
ralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 10708–10717. IEEE,
2022. 15

[8] Hong-You Chen and Wei-Lun Chao. Fedbe: Making
bayesian model ensemble applicable to federated learn-
ing. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. 2

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee, 2009. 2

[10] Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
Born-again neural networks. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learn-
ing Research, pages 1602–1611. PMLR, 2018. 2, 4

[11] Xuan Gong, Abhishek Sharma, Srikrishna Karanam,
Ziyan Wu, Terrence Chen, David S. Doermann, and
Arun Innanje. Preserving privacy in federated learn-
ing with ensemble cross-domain knowledge distillation.
In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pages 11891–
11899. AAAI Press, 2022. 2

[12] Neel Guha, Ameet Talwalkar, and Virginia Smith.
One-shot federated learning. CoRR, abs/1902.11175,
2019. 1, 2

[13] Chaoyang He, Murali Annavaram, and Salman Aves-
timehr. Group knowledge transfer: Federated learn-
ing of large cnns at the edge. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. 2, 9

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 770–778. IEEE Computer So-
ciety, 2016. 2

[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. 1

[16] Sohei Itahara, Takayuki Nishio, Yusuke Koda,
Masahiro Morikura, and Koji Yamamoto. Distillation-
based semi-supervised federated learning for
communication-efficient collaborative training with
non-iid private data. CoRR, abs/2008.06180, 2020. 2

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009. 8

[18] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant.
Survey of personalization techniques for federated
learning. CoRR, abs/2003.08673, 2020. 2

[19] Daliang Li and Junpu Wang. Fedmd: Heteroge-
nous federated learning via model distillation. CoRR,
abs/1910.03581, 2019. 2, 8

[20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith. Feder-
ated optimization in heterogeneous networks. In Inder-
jit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne
Sze, editors, Proceedings of Machine Learning and Sys-
tems 2020, MLSys 2020, Austin, TX, USA, March 2-4,
2020. mlsys.org, 2020. 2

[21] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Mar-
tin Jaggi. Ensemble distillation for robust model
fusion in federated learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. 2

[22] Jiaxin Ma, Ryo Yonetani, and Zahid Iqbal. Adaptive
distillation for decentralized learning from heteroge-
neous clients. In 25th International Conference on Pat-
tern Recognition, ICPR 2020, Virtual Event / Milan,
Italy, January 10-15, 2021, pages 7486–7492. IEEE,
2020. 4

[23] Disha Makhija, Xing Han, Nhat Ho, and Joydeep
Ghosh. Architecture agnostic federated learning for
neural networks. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and

10

Sivan Sabato, editors, International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 14860–14870.
PMLR, 2022. 2

[24] Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In Aarti Singh and Xiao-
jin (Jerry) Zhu, editors, Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, volume 54 of Proceedings of
Machine Learning Research, pages 1273–1282. PMLR,
2017. 1, 2

[25] Hossein Mobahi, Mehrdad Farajtabar, and Peter L.
Bartlett. Self-distillation amplifies regularization in
hilbert space. In Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. 4

[26] Minh N. H. Nguyen, Huy Q. Le, Shashi Raj Pandey,
and Choong Seon Hong. CDKT-FL: cross-device
knowledge transfer using proxy dataset in federated
learning. CoRR, abs/2204.01542, 2022. 2, 3

[27] Timothy Nguyen, Roman Novak, Lechao Xiao, and
Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. CoRR, abs/2107.13034, 2021.
15

[28] Krishna Pillutla, Kshitiz Malik, Abdelrahman Mo-
hamed, Michael Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personal-
ization. In Kamalika Chaudhuri, Stefanie Jegelka, Le
Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato,
editors, International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine
Learning Research, pages 17716–17758. PMLR, 2022.
2

[29] Felix Sattler, Arturo Marbán, Roman Rischke, and
Wojciech Samek. Communication-efficient federated
distillation. CoRR, abs/2012.00632, 2020. 2

[30] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang,
Gang Huang, Pan Zhou, Fei Wu, and Chao Wu. Fed-
erated mutual learning. CoRR, abs/2006.16765, 2020.
2

[31] Stefán Páll Sturluson, Samuel Trew, Luis Muñoz-
González, Matei Grama, Jonathan Passerat-
Palmbach, Daniel Rueckert, and Amir Alansary.
Fedrad: Federated robust adaptive distillation.
CoRR, abs/2112.01405, 2021. 2

[32] Lichao Sun and Lingjuan Lyu. Federated model dis-
tillation with noise-free differential privacy. In Zhi-
Hua Zhou, editor, Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJ-

CAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 1563–1570. ijcai.org, 2021. 2

[33] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang
Yang. Towards personalized federated learning. CoRR,
abs/2103.00710, 2021. 2

[34] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou,
Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fed-
proto: Federated prototype learning across heteroge-
neous clients. In Thirty-Sixth AAAI Conference on Ar-
tificial Intelligence, AAAI 2022, Thirty-Fourth Con-
ference on Innovative Applications of Artificial In-
telligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022,
pages 8432–8440. AAAI Press, 2022. 2

[35] Tianchun Wan, Wei Cheng, Dongsheng Luo, Wenchao
Yu, Jingchao Ni, Liang Tong, Haifeng Chen, and Xi-
ang Zhang. Personalized federated learning via het-
erogeneous modular networks. CoRR, abs/2210.14830,
2022. 2

[36] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba,
and Alexei A. Efros. Dataset distillation. CoRR,
abs/1811.10959, 2018. 15

[37] Chuhan Wu, Fangzhao Wu, Ruixuan Liu, Lingjuan
Lyu, Yongfeng Huang, and Xing Xie. Fedkd: Com-
munication efficient federated learning via knowledge
distillation. CoRR, abs/2108.13323, 2021. 2

[38] Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan L.
Yuille. Training deep neural networks in generations:
A more tolerant teacher educates better students. In
The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 5628–5635. AAAI Press, 2019. 2, 4

[39] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao
Wang, Wenchao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learn-
ing. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 10092–
10104, 2021. 2, 8

[40] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-
free knowledge distillation for heterogeneous federated
learning. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12878–12889. PMLR, 2021.
2

11

A. Analysis and Discussion of Our
Method

A.1. Analysis of Multi-Headed Distillation

As described in the main text, the multi-headed
distillation involves simultaneous training of multiple
model heads that communicate with each other. Rig-
orous theoretical analysis of this process in the most
general case is very complicated. However, by making
several assumptions, here we find an approximate solu-
tion for the weights of the heads of rank k being given
the weights of the heads of rank k − 1. In our future
work, we hope to study this model for different predic-
tion aggregation techniques and compare conclusions
obtained from this simple model with those obtained
empirically in realistic systems.

Let X be the input space and L = Rd be the logit
space, where d is the number of classes. The logits
f(x) for a model f : X → L are then converted to
label assignment probabilities p(y|x) via softmax, i.e.,
p(y|x) = softmax(f(x)).

Consider a single client hi : X → L distilling infor-
mation from some model head h : X → L. The corre-
sponding distillation loss L[hi;h] admits many possible
choices, but we will assume that

L ≡ Ex∼DD [hi(y|x;ψi) ‖ ph(y|x)]

with D being the shared (proxy) dataset and D be-
ing some divergence (more general f -divergence or KL-
divergence as some examples). The distillation is then
carried out by performing optimization of L, for exam-
ple via gradient descent:

∆ψi = −γ ∂L
∂ψi

.

Notice that the components of ψi corresponding to the
model backbone may receive updates from multiple
heads reusing the same model embedding.

In our system, we assume that there is a set of heads

{h(1)i , h
(2)
i , . . . , h

(n)
i } for each client i. For simplicity, let

us first consider distillation procedure independent of
prediction confidence. In this case, the loss for head k
of the client i may look like:

L(k)
i ≡

N∑
j=1

ρij Γ
[
h
(k)
i

∥∥∥h(k−1)j

]
,

where

Γ
[
h
(k)
i

∥∥∥h(k−1)j

]
≡ Ex∼DD

[
p
(k)
i (y|x)

∥∥∥ p(k−1)j (y|x)
]
,

p
(k)
i (y|x) is a shorter notation for p

h
(k)
i

(y|x) and ρij is

some distribution defining the probability of picking a

Figure 7. Illustration of multi-head distillation as discussed
in Appendix A.1. Large red arrow shows strong distillation
of h

(k)
i to h

(k−1)
i and smaller gray arrows indicate attraction

towards h
(k−1)
j with effective “strength” νij .

particular client for distillation. Again, here we assume
that ρij does not depend on the sample confidence and
is simply fixed.

While we talked about h(k) distilling to h(k−1), we
have not yet discussed the ”main head” h(1). This head
is normally trained locally on the client’s private data.
For simplicity, in the following we thus assume that its

behavior is known, i.e., h
(1)
i is a specified function of

the training step. Furthermore, in the following, we

start analyzing the problem by assuming that all h
(1)
i

already converged and are all generally different due
to some differences in the client’s private data. The
behavior of all other heads is then defined by the losses
outlined above.

Let us first consider the simplest case of ρij = δij .
In other words, each head only distills from the same

client’s ”prior” head. The choice of h
(n)
i = · · · = h

(1)
i

would obviously minimize all losses L(k)
i since all cor-

responding Γ[·] values vanish. But as soon as we intro-
duce a small correction ρij = δij +νij with

∑
j νij = 0,

this trivial solution is no longer optimal. Instead, each
client’s head is now optimizing:

L(k)
i = Γ

[
h
(k)
i

∥∥∥h(k−1)i

]
+

N∑
j=1

νij Γ
[
h
(k)
i

∥∥∥h(k−1)j

]
.

Notice that if Γ was a metric in the h space, we could
interpret this optimization objective geometrically as a
minimization of the head’s distance to its lower-order
state (towards h

(k−1)
i) coupled with a weak (∼ ν) at-

traction towards a number of other heads (h
(k−1)
j). See

Figure 7 for illustration.
Here we have to make yet another simplifying as-

sumption and consider a prescribed model backbone
(and corresponding embedding) that we are not op-
timizing or updating with backpropagated gradients.

12

Doing so, we disentangle individual heads and can
treat their optimization as independent tasks. For suf-

ficiently small νij it will hold that p
(k)
i = p

(k−1)
i +O(ν)

and we can therefore write:

L(k)
i = Ex∼D

{
D
[
p
h
(k−1)
i +κ

(k)
i

∥∥∥ ph(k−1)
i

]
+

+

N∑
j=1

νijD
[
p
h
(k−1)
i +κ

(k)
i

∥∥∥ ph(k−1)
j

]}
,

where h
(k)
i ≡ h(k−1)i + κ

(k)
i and κ

(k)
i ∼ O(ν). Introduc-

ing δ
(k)
i ≡ p(k)i − p

(k−1)
i , we obtain:

L(k)
i = Ex∼D

{
D
[
p
(k−1)
i + δ

(k)
i

∥∥∥ p(k−1)i

]
+

+
∑
j

νij D
[
p
(k−1)
i + δ

(k)
i

∥∥∥ p(k−1)j

]}
.

Noticing that the first term needs to be decomposed
near the global minimum and the second term permits
linear expansion, we obtain:

L(k)
i ≈ Ex∼D

{
D′′
[
p
(k−1)
i

∥∥∥ p(k−1)i

] δ(k)i δ
(k)
i

2
+

+
∑
j

νij D
′
[
p
(k−1)
i

∥∥∥ p(k−1)j

]
δ
(k)
i

}
,

where D′′ and D′ are the derivatives of D with respect

to the first argument. Recalling that δ
(k)
i ∈ Rd we can

rewrite the loss function as:

L(k)
i ≈ Ex∼D

[
δ>Aδ + b>δ

]
,

where δ ≡ δ(k)i for brevity,

A ≡ D′′
[
p
(k−1)
i

∥∥∥ p(k−1)i

]
/2

is effectively a matrix and

b ≡
∑
j

νij D
′
[
p
(k−1)
i

∥∥∥ p(k−1)j

]
∈ Rd

can be thought of as a column vector.
At this point we can connect the probability distri-

bution perturbation δ to the logit perturbation κ ≡
κ
(k)
i using the fact that pm ≡ ehm/Z, where Z ≡∑
k e

hk (we omit this simple calculation here):

p
(k)
i = p

h
(k−1)
i +κ

(k)
i

= p
(k−1)
i + δ =

= p
(k−1)
i + κ ∗ p(k−1)i − (κ · p(k−1)i)p

(k−1)
i ,

where a ∗ b is an element-wise product of two vectors
and therefore:

δ = κ ∗ p(k−1)i − (κ · p(k−1)i)p
(k−1)
i ≡ Cκ, (6)

where C is a matrix constructed from the components

of p
(k−1)
i (x) ∈ Rd. Notice that

∑
m δm = 0, which

agrees with δ being the perturbation of the normalized
probability distribution.

Finally, remember that κ itself is a perturbation of
model logits. Given the sample embedding ξi(x) ∈ Rt,
the sample logits are constructed as Wiξi(x) with Wi

being a d× t matrix. The perturbation κ transforming

W
(k−1)
i ξi into W

(k)
i ξi can thus be characterized by the

logit weight perturbation µ ≡ µ
(k)
i := W

(k)
i −W

(k−1)
i

and we get κ = µξ(x). Combining everything together,
we see that the loss function transforms to:

L(k)
i ≈ Ex∼D

[
ξ(x)>µ>C>ACµξ(x) + b>Cµξ(x)

]
,
(7)

where A, C and b ∼ ν all depend on the sample x via

p
(k−1)
i (x) and ξ is a function of x, while µ is effectively

an unknown sample-independent matrix that we need

to tune with the goal of minimizing L(k)
i . The optimum

can be identified by taking a derivative with respect to
µαβ and setting it to 0:

Ex∼D
[
2(ξ(x)>µ>C>AC)αξβ(x) + (b>C)αξβ(x)

]
= 0.

This is a linear equation on µ ∼ ν that can be solved
in a closed form to give us a logit weight perturbation

µ as a complex nonlinear function of νij and {p(k−1)` }.
Note that since µ is only a small perturbation, we

can introduce W
(k)
i as a function of a continuous pa-

rameter k and approximate dW
(k)
i /dk with a finite dif-

ference W
(k)
i −W

(k−1)
i = µ leaving us with a differential

equation (the approximation is valid in the first order
in ν):

dWi(k)

dk
= G [ν, {W`(k)}]

with G being a linear function with respect to ν, but
very complex nonlinear function with respect to {W`}.
If νij is localized around i = j (which would be the case
for communication patterns with partial connectivity,
like in the case of long chains), this differential equa-
tion resembles a complex nonlinear diffusion equation
defining the spread of information across the clients as
we look at deeper and deeper heads (with the head
rank k essentially playing the role of time).

It is also worth noting here that if ν was not fixed,
but was itself a function of model confidence (while still
remaining small), our conclusions would not change ex-
cept that ν itself would now itself be a complex nonlin-
ear function of {W`(k)} and x. In our future work, we

13

hope to study the effect that this confidence-dependent
aggregation has on head dynamics and the final sta-
tionary state.

Finally, let us look at the stationary state of system
dynamics. Equation (7) suggests that µ = 0 is a local
optimum when b>C = 0, or∑

i,j

νijD
′ [pi‖pj] Cik = 0,

or after noticing that D′[pi‖pj] = pj/pi and recalling
that C is defined by Eq. (6) we obtain for every k:

Ex∼D

∑
i,j

νijpj (δik − pk)

 = 0. (8)

Since
∑
j νij = 0, the trivial solution of this system of

equations is the case of identical models, i.e., p1 = · · · =
pn, but since generally the models might have different
embeddings and cannot be made identical, the solution
of Eq. (8) restricts the system stationary state.

A.2. Value of p(y|x) as Classifier Confidence

In our model distillation approach, we need to com-
bine predictions of multiple different model heads. If
all predictions pk(y|x) (by heads {hk}) come with reli-
able error estimates, this information can be taken into
account. For example, if we know that for the true dis-
tribution p(y|x) and every prediction pk(y|x) it holds
that D[pk(y|x)‖p(y|x)] ≤ ek(x) with D being some di-
vergence, the true p(y|x) belongs to the intersection of
“balls”2 Bk ≡ {p′|D[p′‖p] ≤ ek}. We can then choose
any point in this set and compute a prediction error
as a maximum distance from a chosen distribution to
any point in the intersection. Unfortunately, however
such reliable measures of classifier error are not gen-
erally available and even approximating them can be
quite difficult.

Instead we choose a very simple approach based on
estimating classifier confidence and picking the most
confident model, effectively ignoring other predictions.
The confidence measure itself is chosen as a value of the
largest component of the classifier prediction o(x) ≡
softmax(f(x; θ)) with f(x; θ) = Wξ(x; θ) and ξ being
the embedding vector.

Why choose maxk ok. This value has a number of
trivial properties that can actually make it a useful
measure of classifier uncertainty. First is that after
seeing a supervised training sample (x, y), the value
of oy(x) is increased. Second is that if the class pro-
totypes in the embedding space are nearly orthogonal

2note that D is not generally a metric

for different classes, then updates for samples of differ-
ent classes would not “interfere” with each other and
high-confidence predictions would not generally be dis-
rupted by observing unrelated samples with different
labels. For a simple logits layer Wξ(x) trained with
cross-entropy loss, both of these properties trivially
follow from the following expression for ∆ok(x′) after
training on a sample (x, y):

∆ok(x′) = λok(x′)[ξ(x) · ξ(x′)]×

×
∑
i

(δk,i − oi(x′)) (δy,i − oi(x)) .

Drawbacks. But while maxk ok(x) has these useful
properties, it is not guaranteed to be a reliable measure
of classifier confidence for out-of-distribution samples
and the training objective never explicitly optimizes
for that3. A density model ρ(x) would allow detect-
ing such out-of-distribution samples, but could also
reveal information about the client samples in their
private dataset. Combining classification models with
locally-trained density models, or adopting other exist-
ing similar techniques could be a logical extension of
our present work.

A.3. Distillation as Revelation of Some Information
about Model Weights

The canonical version of FedAvg combines the
knowledge of individual clients by periodically aggre-
gating their weight snapshots. Distillation-based tech-
niques are instead based on communicating model
predictions on datasets accessible to all participants.
While these two approaches appear to be different,
communication in distillation-based methods can of
course also be viewed as a way of revealing incomplete
information about model weights.

The amount of revealed information can be defined
as follows. Assuming the knowledge of the prior p(θ) on
the model weights and model predictions (y1, . . . , yn)
on a public dataset D∗ = (x1, . . . , xn), one can com-
pare the difference of entropies for the original p(θ)
and p(θ|y1, . . . , yn) with

p(θ|y1, . . . , yn) =
p(y1, . . . , yn|θ)p(θ)∫
dθ p(y1, . . . , yn|θ)p(θ)

.

While generally intractable, it might be possible to ob-
tain the lower bound on the amount of the revealed in-
formation by training a model that predicts the weights
θ from (y1, . . . , yn).

3Contrast this to the energy-based models, for example, where
the energy update and the MCMC sampling are explicitly con-
tributing to the model “awareness” of what in-distribution sam-
ples are and are not.

14

Deeper understanding of this question can have an
impact on the optimal choice of the public dataset D∗
that would allow us to retrieve the knowledge of in-
terest from a trained model using only a small num-
ber of samples. Ongoing research on dataset distilla-
tion [7, 27,36] is very closely related to this question.

B. Additional Experiments and Experi-
mental Data

B.1. Effect of Distilling to Self and Same-Level
Heads

In Section 4.2.2 we reported that including a head
into the list of its own distillation targets (“self”)
improved the model accuracy, but the gain was still
smaller than that of a model with multiple auxiliary
heads. Here we explore what happens if we use the
head as its own potential distillation target, while also
using a number of auxiliary heads. Furthermore, what
if we modify our method to include distillations to
other heads of the same rank (see Figure 9)?

We conducted a set of experiments with a heteroge-
neous dataset with s = 100, νemb = 1, νaux = 3, four
auxiliary heads and 250 randomized labels per each of 8
clients. The results of experiments using different com-
binations of distillation targets and both ∆ = 1 and
∆ = 2 (choosing two other clients at a time as poten-
tial distillation targets) are presented in Table 3. We
observed that using same-level heads and “self” targets
separately provides noticeable benefit only for earlier
heads. But when used together, these two techniques
result in ∼ 1% accuracy improvement and this im-
provement is realized for the 2nd auxiliary head. Also,
not unexpectedly, using two clients to distill to (∆ = 2)
instead of one, leads to a noticeable 1.5% accuracy im-
provement. Combined together, all these techniques,
in conjunction with using the entire ImageNet as the
public dataset improve the accuracy to 59.4% if trained
for 60k steps, or 65.7% if trained for 180k steps.

B.2. Dependence on the Public Dataset Size

In a separate set of experiments, we trained 8 clients
with 4 auxiliary heads, s = 100, νemb = 1, νaux = 3
and 250 randomly assigned “private” labels and “pri-
vate” samples drawn from 70% of the ImageNet train-
ing data. The remaining 30% of ImageNet samples
were fully or partly used as a public dataset, i.e.,
γpub ≤ 30%. As one would expect, increasing the size
of the “public” dataset while fixing the amount of “pri-
vate” training data has a positive impact on the final
model performance (see Table 4).

Figure 8. Conceptual diagram of a distillation in a dis-
tributed system. Clients use a “public” dataset to distill
knowledge from other clients, each having their primary
private dataset. Individual clients may have different ar-
chitectures and different objective functions. Furthermore,
some of the “clients” may themselves be collections of mod-
els trained using federated learning.

Figure 9. A pattern used for distilling multiple auxiliary
heads with two additional types of distillation targets: (a)
distilling to heads of the same “rank” (dashed), (b) distill-
ing to “self” (dotted). Here distilling to the same “rank”
means, for example, that Aux1 head is distilled to the most
confident of Main heads, or Aux1 heads of adjacent clients.
Distilling to “self” means that the samples on which the
distilled head is already most confident will effectively be
ignored.

C. Additional Tables and Figures

C.1. Raw Experimental Data

Tables 5 and 6 contain raw values used for producing
Figure 3, while Tables 7 and 8 complement Figure 4.

15

Experiment βMain
priv βAux1

sh βAux2
sh βAux3

sh βAux4
sh

Base 70.9% 46.7% 51.8% 53.9% 54.6%
∆ = 2 71.1% 50.9% 55.1% 56.1% 56.0%
SL 70.8% 48.6% 53.6% 54.7% 54.7%
SF 71.3% 48.1% 53.4% 54.9% 54.8%
SL+SF 70.3% 53.0% 55.5% 53.9% 52.4%
All 70.8% 53.5% 55.8% 54.5% 52.9%
All+ 72.7% 56.5% 59.4% 57.9% 56.1%
All+, 180k steps 76.2% 62.3% 65.7% 65.0% 64.0%

Table 3. Experimental results exploring the usage of different distillation heads trained for 60k steps. Here “Base” is the
original experiment with ∆ = 1 and conventional heads as described in Sec. 4.2.2; “SL” adds same-level heads to distillation
targets; “SF” adds the distilled head (“self”) as a potential target; “All” combines same-level and “self” heads and ∆ = 2
(each step distilling to two other clients), “All+” is the same as All, but also uses the entire ImageNet as the public dataset.

Public DS fraction 10% 20% 30% All

main head βpriv 70.1% 71.1% 70.9% 71.9%
last aux head βsh 52.4% 53.9% 54.1% 55.3%

Table 4. The dependence of the main head “private” ac-
curacy βpriv and the “shared” accuracy of the 4th auxiliary
head on the size of the public dataset (fraction of ImageNet
training set). Experiments were conducted for a system of
8 clients with 4 auxiliary heads, s = 100, νemb = 1, νaux = 3
and 250 randomly assigned “private” labels. Private train-
ing samples were drawn from 70% of the ImageNet training
set in all experiments. “All” column shows the accuracy at-
tained by using the entire ImageNet training set as a public
dataset (while still using only 70% of it as private data).

νemb νaux β
(m)
priv β

(m)
sh β

(aux)
priv β

(aux)
sh

0.0 0.0 46.3% 46.3% 0.1% 0.1%
1.0 52.2% 52.0% 56.0% 56.0%
3.0 54.1% 53.5% 57.3% 57.0%
10.0 54.3% 54.1% 57.1% 57.1%

1.0 0.0 48.5% 48.5% 0.1% 0.1%
1.0 53.6% 53.5% 57.3% 57.2%
3.0 55.4% 55.2% 58.6% 58.5%
10.0 54.1% 53.6% 56.9% 56.3%

3.0 0.0 48.3% 48.0% 0.1% 0.1%
1.0 54.3% 54.0% 58.2% 57.6%
3.0 55.7% 55.5% 59.3% 58.8%
10.0 53.3% 53.4% 56.5% 56.3%

Table 5. Results for 8-client experiments with 250 random
classes per client, s = 0 and a varying values of νemb and
νaux.

νemb νaux β
(m)
priv β

(m)
sh β

(aux)
priv β

(aux)
sh

0.0 0.0 68.0% 25.2% 0.1% 0.1%
1.0 70.6% 29.1% 70.5% 42.0%
3.0 70.9% 30.0% 70.1% 43.3%
10.0 68.0% 25.3% 66.0% 39.7%

1.0 0.0 69.0% 26.0% 0.1% 0.1%
1.0 71.8% 29.8% 71.5% 43.0%
3.0 72.0% 29.9% 71.0% 44.1%
10.0 66.8% 23.0% 65.1% 37.5%

3.0 0.0 65.2% 24.9% 0.1% 0.1%
1.0 71.7% 29.7% 72.1% 39.1%
3.0 71.8% 29.7% 71.9% 40.8%
10.0 65.4% 23.1% 63.4% 36.4%

Table 6. Results for 8-client experiments with 250 random
classes per client, s = 100 and a varying values of νemb and
νaux.

Heads 1 2 3 4

β
(m)
priv 56.2% 56.1% 55.8% 55.9%

β
(m)
sh 56.1% 55.8% 55.8% 55.5%

β
(1)
priv 59.6% 59.6% 59.4% 59.4%

β
(1)
sh 59.4% 59.5% 59.6% 59.4%

β
(2)
priv 60.0% 59.7% 59.7%

β
(2)
sh 59.7% 59.9% 59.5%

β
(3)
priv 59.5% 59.1%

β
(3)
sh 59.5% 59.1%

β
(4)
priv 58.7%

β
(4)
sh 58.6%

Table 7. Results for 8-client experiments with 250 random
classes per client, s = 0, νemb = 1, νaux = 3 and a varying
number of auxiliary heads (separate columns).

16

Heads 1 2 3 4

β
(m)
priv 72.5% 71.6% 71.1% 72.5%

β
(m)
sh 30.5% 32.5% 33.1% 32.7%

β
(1)
priv 71.4% 70.6% 70.7% 71.4%

β
(1)
sh 44.7% 46.6% 46.9% 46.4%

β
(2)
priv 68.5% 68.1% 68.7%

β
(2)
sh 51.6% 52.0% 51.6%

β
(3)
priv 66.1% 66.1%

β
(3)
sh 53.8% 53.6%

β
(4)
priv 63.4%

β
(4)
sh 54.5%

Table 8. Results for 8-client experiments with 250 random
classes per client, s = 100, νemb = 1, νaux = 3 and a varying
number of auxiliary heads (separate columns).

17

	1 . Introduction
	2 . Related Work
	3 . Model
	3.1 . Setup
	3.2 . Distillation Losses
	3.3 . Dataset

	4 . Experiments
	4.1 . Experimental Framework
	4.2 . Embedding and Multi-Headed Distillation
	4.2.1 Evaluating Basic Distillation Approaches
	4.2.2 Improving Distillation Efficiency

	4.3 . Baseline Comparisons
	4.4 . Communication Topology Effects
	4.5 . Learning in Heterogeneous Systems

	5 . Discussion and Conclusions
	A . Analysis and Discussion of Our Method
	A.1 . Analysis of Multi-Headed Distillation
	A.2 . Value of p(y|x) as Classifier Confidence
	A.3 . Distillation as Revelation of Some Information about Model Weights

	B . Additional Experiments and Experimental Data
	B.1 . Effect of Distilling to Self and Same-Level Heads
	B.2 . Dependence on the Public Dataset Size

	C . Additional Tables and Figures
	C.1 . Raw Experimental Data

