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Abstract

Backdoor inversion, a central step in many backdoor
defenses, is a reverse-engineering process to recover the
hidden backdoor “trigger” inserted into a machine learn-
ing model. Existing approaches tackle this problem by
searching for a backdoor pattern that is able to flip a set
of clean images into the target class, while the exact size
needed of this support set is rarely investigated. In this
work, we present a new approach for backdoor inversion,
which is able to recover the hidden backdoor with as few
as a single image. Insipired by recent advances in adver-
sarial robustness, our method SmoothInv starts from a sin-
gle clean image, and then performs projected gradient de-
scent towards the target class on a robust smoothed ver-
sion of the original backdoored classifier. We find that
backdoor patterns emerge naturally from such optimization
process. Compared to existing backdoor inversion meth-
ods, SmoothInv introduces minimum optimization variables
and does not require complex regularization schemes. We
perform a comprehensive quantitative and qualitative study
on backdoored classifiers obtained from existing backdoor
attacks. We demonstrate that SmoothInv consistently re-
covers successful backdoors from single images: for back-
doored ImageNet classifiers, our reconstructed backdoors
have close to 100% attack success rates. We also show
that they maintain high fidelity to the underlying true back-
doors. Last, we propose and analyze two countermeasures
to our approach and show that SmoothInv remains robust
in the face of an adaptive attacker. Our code is available at
https://github.com/locuslab/smoothinv .

1. Introduction
Backdoor attack [3, 8, 12], a notable threat model in ma-

chine learning, has attracted increasing research interests in
recent years [2, 4, 6, 11, 14, 27–29, 33, 42–44]. In a standard
backdoor attack, a covert backdoor is injected into the ma-
chine learning model, leading it to generate incorrect out-
puts on inputs containing the distinct backdoor pattern cho-
sen by the attacker. At test time, to defend against backdoor
attacks, it is often desirable to detect if a model contains a
backdoor and then reconstruct the hidden backdoor if one

Figure 1. Single Image Backdoor Inversion: Given a backdoored
classifier (sampled from the TrojAI benchmark [1]), our approach
SmoothInv takes a single clean image (left) as input and is able to
recover the hidden backdoor (right) with high visual similarity to
the original backdoor (middle).

is found to exist. This reverse engineering process, also
known as backdoor inversion, is a fundamental step in many
test-time backdoor defenses [16,17,19,20,30,36,38,41]. A
successful backdoor inversion method should be able to re-
cover a backdoor which satisfies the following two require-
ments. First, the reversed backdoor should be successful,
meaning that it should have a high attack success rate (ASR)
on the backdoored classifier. Second, it should be faithful,
where the reversed backdoor should be close, e.g. in visual
similarity, to the true backdoor.

A prominent backdoor inversion framework, introduced
in [41], adopts an optimization based approach to search
for a universal backdoor pattern. This is achieved by min-
imizing the classification loss of backdoored images with
respect to a potential target label. In addition, a regulariza-
tion term, such as the ℓ1 norm, is used to restrict the size
of the optimized backdoor. While existing works for back-
door inversion [19,38] mostly focus on designing better loss
functions to alleviate the optimization difficulty, these meth-
ods often inherently assume the availability of a set of clean
images, also known as the support set. In many real-world
scenarios, access to a moderate large collection of clean im-
ages may be limited. It is also important to understand how
the number of clean images in the support set could affect
the effectiveness of a backdoor inversion method. Given the
gaps in existing works on this perspective, we are motivated
to address and answer the following question:

Can we perform backdoor inversion with as few clean
images as possible?
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In this work, we show that one single image is enough for
backdoor inversion. On a high level, we view the process
of backdoor attack as encoding backdoored images into the
target class’s data distribution. Our objective is to recon-
struct these encoded backdoored images through a class-
conditional image synthesis process, i.e, generating back-
doored examples from the target class. While the concept
of using image synthesis seems straight-forward, it is not
immediately evident how to do this in practice given a back-
doored classifier. On one side, solely minimizing the clas-
sification loss of the target class tends to generate random
adversarial noise, as shown in prior studies on adversarial
robustness [39]. Conversely, employing generative mod-
els [10, 13] for such synthesis is not viable in this context.
This is because by default they do not see the backdoor dur-
ing their training phase and would not be able to synthesize
the desired backdoored images from the target class.

We propose the SmoothInv method for backdoor inver-
sion, which can reliably synthesize backdoor patterns with
just a single clean image. SmoothInv consists of a two-
part process. First, to induce salient gradients of backdoor
features, we transform a standard non-robust model into a
smoothed variant that is robust to adversarial perturbations,
based on recent advances in adversarial robustness [7, 9].
Then, utilizing the gradients of this robust smoothed clas-
sifier, we perform guided image synthesis to reconstruct
backdoored images which the backdoored classifier inter-
prets as belonging to the target class.

Notably, SmoothInv requires only a single clean image,
from which salient gradients can be obtained reliably. Back-
door inversion with a single image inversion has not been
shown possible with existing methods as they usually re-
quire multiple clean instances for their optimization meth-
ods to give reasonable results. Moreover, our approach has
the added benefit of simplicity: we do not introduce any
custom-designed optimization constraints, which are com-
mon in previous methods. Most importantly, the backdoor
recovered by our approach has remarkable visual resem-
blance to the original backdoor. In Figure 1, we demonstrate
such visual similarity for a backdoored classifier.

We evaluate our method on a collection of backdoored
classifiers from previously published studies, where we ei-
ther download their pretrained models or train a replicate
using the publicly released code. These collected back-
doored classifiers cover a diverse set of backdoor condi-
tions, e.g., patch shape, color, size and location. We mea-
sure the attack success rates (ASR) of reconstructed back-
doors and compare their visual resemblance to the original
backdoors. We show that SmoothInv finds both successful
and faithful backdoors from single images. We also show
how we distinguish the true backdoored class from normal
classes, where our method (correctly) is unable to find an
effective backdoor for the latter. Last, we evaluate attempts
to circumvent our approach and show that SmoothInv is still
robust under this setting.

Figure 2. Backdoors of the backdoored classifiers we consider
in this paper (listed in Table 1). The polygon trigger (leftmost)
is a representative backdoor used in the TrojAI benchmark. The
pixel pattern (9 pixels) and single pixel backdoors used in [2] are
overlaid on a background blue image for better visualization.

2. Background

2.1. Backdoor Attacks

In a typical backdoor attack [2, 3, 14], an attacker injects
malicious crafted samples into the training data. The result
of such manipulation is that models trained on such data are
able to be manipulated at inference time: the attacker can
control the behavior of the model with the injected back-
door. In this work, we consider backdoor attacks on image
classification problems, which has become a common eval-
uation setting for backdoor attacks [2, 14, 40]. Typically,
a backdoor attack generates a classifier which satisfies the
following two requirements:

• Its accuracy on clean images is barely affected.

• It will always predict a certain target class yt as long
as the backdoor is applied to the input image.

The first property is desired so that it is indistinguishable
from clean classifiers by solely comparing their clean accu-
racies. Some variations and extensions of the second prop-
erty have been explored. For example, the backdoor can be
only effective on images from certain classes [15]. It is also
possible to create multiple backdoors in a single backdoored
classifier where each backdoor corresponds to a different
target class [2].

Following [26], we formalize the backdoor as a transfor-
mation function on the image space B : X → X . Given
a clean image x, one can create a backdoored image B(x).
One common and widely studied type of backdoor is patch-
based backdoor [14]: overlaying a small patch pattern p
over input x, i.e. B(x) = x ⊕ p. For such backdoor, the
backdoored classifier will classify any image with the patch
pattern present as the desired target label. However, other
forms of image transformations have also been shown to
be effective backdoors: e.g., reflection [23], image wrap-
ping [26] and Instagram filters [1]. In this work, we con-
sider patch-based backdoor in particular.

2.2. Backdoor Inversion

Given a backdoored classifier fb and a support set S of
clean images, a well-established framework for backdoor
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Figure 3. We propose SmoothInv, a backdoor inversion method that takes in a single image and synthesize backdoor patterns. SmoothInv
consists of two steps: a robustification process and a synthesis process. At the first step, SmoothInv constructs a robust smoothed version
of the backdoored classifier, where noisy samples of the input are either denoised by a diffusion based denoiser first or passed directly into
the backdoored classifier. Next, we synthesize backdoor patterns guided by the robust smoothed classifier, where we minimize the standard
cross entropy loss with respect to the target class, without relying on any additional regularization term.

inversion [41] solves the following optimization problem:

min
m,p

Ex∈S
[
L(fb(ϕ(x)), yt)] +R(m,p) (1)

where ϕ(x) = (1−m)⊙ x+m⊙ p

where variables m and p represent a mask and pertur-
bation vectors respectively, yt denotes the target label, ⊙
is element-wise multiplication, L(·, ·) is the cross-entropy
function and R(·, ·) is a regularization term.

The goal is to find a backdoor that is able to simultane-
ously flip all images in the provided set S of clean images
to the target class while at the same time constraining the
optimization space of the reversed backdoor. As pointed
out by [2], this is essentially finding the smallest universal
adversarial patch [5]. Existing inversion methods differ in
how they formulate the regularization term R and how to
model the backdoor via ϕ(x). For instance, [41] applies a
ℓ1 penalty regularization on the mask variable; [19] uses a
diversity loss and a topological loss to regularize the opti-
mization process; [38] models the backdoor via individual
pixel changes without using a mask.

One challenge of solving Equation 1 is that it introduces
a binary mask variable m, which could make the optimiza-
tion process unstable. In practice, this mask variable is of-
ten relaxed to be continuous and converted back to binary in
the end. Another optimization obstacle is that it is not clear
how to properly set the balancing term between the clas-
sification loss and the regularization loss, without a strong
domain expertise or a careful hyper-parameter search.

2.3. Randomized Smoothing
Our method draws inspiration primarily from a recent

line of work on randomized smoothing [9, 22], which is
able to build robust classifiers without the computationally
heavy adversarial training. Similar notion of using noise
smoothing has been explored before in improving the vi-
sual quality of sensitivity maps [37]. Randomized Smooth-
ing (RS) is a certified defense method against ℓ2-norm
bounded adversarial perturbations. Given any base classi-

fier f : X → Y and input x, RS first constructs a smoothed
classifier g with isotropic Gaussian noise δ ∼ N (0, σ2I):

g(x) := argmaxc Pr
δ∼N (0,σ2I)

(
f(x+ δ) = c

)
(2)

It is shown in [9] that the smoothed classifier g is certifi-
ably robust in a ℓ2-norm radius R, where the noise level σ
controls the accuracy/robustness tradeoff. In this work, we
are not interested in how this certified radius is computed
exactly. However, it is necessary to know that the more ac-
curate the smoothed classifier is at classifying noisy images
x+ δ, the larger the certified radius is (and as a result, more
robust). [9] trained base classifier f under standard gaussian
augmentations and demonstrated non-trivial certified accu-
racy on ImageNet.

Following [9], [34] proposed Denoised Smoothing (DS)
to certify the prediction of any pre-trained classifier, i.e., not
trained with gaussian augmentation. The idea is to prepend
an image denoiser D before the base classifier.

g(x) := argmaxc Pr
δ∼N (0,σ2I)

(
f ◦ D(x+ δ) = c

)
(3)

[34] showed that prepending a custom-trained denoiser at-
tains better certified robustness than simply using the plain
pre-trained classifier. Most recently, [7] proposed Diffusion
Denoised Smoothing (DDS), which used one diffusion step
of a diffusion model as the denoiser in Equation 3. DDS
obtained state-of-the-art certified robustness. The big per-
formance boost over [34] comes from the strong ability of
diffusion models [18] to denoise Gaussian noisy images.

3. SmoothInv
An overview of our approach is given in Figure 3. Given

a backdoored classifier fb : X → Y and a clean image x
(assuming the backdoor is effective for this image), our goal
is to find the backdoor hidden in this clean image.

3.1. Motivation
On a high level, we view backdoor inversion as the prob-

lem of recovering/constructing a special type of images, i.e.
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backdoored images, from the target class. We note that
class-conditional image synthesis from generative model
literature share some similarity to our goal. However, stan-
dard conditional generative models [25] do not see back-
doored images during training, and it is not practical to train
a custom one with classifier guidance from the backdoored
classifier. Our approach is most inspired from another line
of work on class-conditional image generation: the work
of [35,46] on image synthesis with adversarially robust clas-
sifiers. They showed that there were able to perform various
image synthesis task without use of any generative models.
The foundation for the success of their approach is based
on a unique property of robust classifiers, i.e. perceptually-
aligned gradients [21, 39], where salient characteristics of
target class can be revealed via a projected gradient descent
process [24]. Specifically, in this work, we are interested in
how this property can be used for backdoor inversion.

We revisit the definition of backdoored classifiers in Sec-
tion 2.1: always predicting the target class as long as the
backdoor is present in the image. In other words, the back-
doored classifiers have successfully associate the injected
backdoor as a new feature for predicting the target class, in
addition to features from clean data of the target class. We
hypothesize that in the eyes of the backdoored classifers,
those backdoored images are encoded into the data distribu-
tion of the target class. Thus, we can tackle the problem of
backdoor inversion as synthesizing a specific salient char-
acteristics of the target class: the injected backdoor. Note
that [35] is not immediately applicable here as backdoored
classifiers are not adversarially robust by construction [14].
In the next section, we describe how we reliably extract
salient backdoor characteristics from single images.

3.2. Method

Our approach, which we refer to as SmoothInv, first con-
structs a robust version of the backdoored classifier and then
performs guided image synthesis towards a target class yt.
We use a simple yet effective objective to synthesize the
backdoor pattern, where we minimize the standard cross en-
tropy loss with the target class. In Appendix C, we provide
the pseudocode for SmoothInv. Next we describe this ro-
bustification process and our synthesis process in details.

Robustification of Backdoored Classifiers One neces-
sary condition for obtaining perceptually-aligned gradi-
ents is that the classifier itself must be adversarially ro-
bust [21, 35, 39]. As backdoored classifiers are not robust
by construction, we thus propose to use a robustification
process to robustify backdoored classifiers. The goal we
hope to achieve from this robustification process is to in-
duce meaningful and salient gradient signal from the result-
ing robust classifier.

As illustrated in Figure 3, we construct such a robust
classifier with the Randomized Smoothing technique [9],
where we smooth the prediction of the backdoored classi-

fiers under Gaussian noisy samples. Different from empiri-
cal robustness, randomized smoothing provides certified ro-
bustness guarantee, so we can be confident that the result-
ing smoothed classifier is indeed robust. We experimented
with two ways of building robust smoothed classifiers. The
first one is based on the recent proposed Diffusion Denoised
Smoothing method [6]. Specifically, Gaussian noisy images
are first processed by a denoising transformation before be-
ing fed into the classifier. The denoising transformation is a
diffusion based denoiser D.

However, on a second thought, do we really need the re-
sulting smoothed classifier to be robust on the whole data
distribution? Recall that our motivation is to elicit the
salient gradients of backdoor features. We may only need
the smoothed classifier to be robust on the actual back-
doored images. To test this hypothesis, we remove the de-
noiser from the pipeline and construct the smoothed classi-
fier directly from the backdoored classifiers. To summarize,
we try to construct the following smoothed classifier:

g(x) := argmaxc Pr
δ∼N (0,σ2I)

(
f ◦ T (x+ δ) = c

)
(4)

and we initialize the transformation operation T with either
the diffusion model D as a denoiser (“w/ diffusion”) or the
identity function I (“w/o diffusion”).

The smoothed classifier defined in Equation 4 is hard to
evaluate in practice, as making a prediction would require
calculating a probaility measure over a Gaussian distribu-
tion. In the original RS paper [9], obtaining a certificate
for a single image would need evaluating over 10k Monte
Carlo noisy samples on ImageNet. In this work we do not
care about the exact certification bound but rather interested
in the robustness property of smoothed classifiers. Thus
we use a continuous approximation instead, where the soft
smoothed classifier Gb : X → P (Y) is defined by:

Gb(x) :=
1

N

N∑
i=1

Fb ◦ T (x+ δi), δi ∼ N
(
0, σ2I

)
(5)

where Fb is the soft version of the backdoored classifier fb
which outputs a probability distribution over classes (and
where we will later choose N = 40, leading to a tractable
approach). This approximation allows us to obtain gradients
from the smoothed classifier via back-propagation. From
now on, we will refer to Gb as the actual smoothed classifier.

Last, we perform a sanity check on whether the
smoothed classifier Gb remains a valid backdoored classi-
fier after the smoothing procedure. We experimented with
a backdoored classifier on ImageNet (Blind-P in Table 1).
In Figure 4, we show both the clean accuracy and backdoor
ASR for the smoothed classifier Gb (w/ and w/o diffusion),
for varying σ. We can see that the original backdoor re-
mains effective within a reasonable range of noise level for
both choices of T . A complete sanity check for all back-
doored classifiers considered in this paper is in Appendix E.
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Figure 4. Clean accuracy and backdoor accuracy of the smoothed
classifier at various noise levels (we use the ImageNet Blind-P as
the base backdoored classifier).

Guided Synthesis of Backdoor Patterns Starting from
single images, our synthesis procedure is guided by a ro-
bust smoothed classifier, which minimizes a cross entropy
of Gb:

min
p∈∆

− logGb(x+ p)yt
(6)

where the perturbation set is defined by a pre-defined ∆ =
{p | ∥p∥2 ≤ ϵ}. We use a pertubation set to prevent finding
arbitrary large perturbations. After all, we want the synthe-
sized images x + p to recover the backdoored image B(x),
which is close to the input x. As there is a constraint on the
perturbation size, we use projected gradient descent (PGD)
to solve the optimization problem in Equation 6. The per-
turbation variable p is initialized to 0. At each step, we com-
pute the gradient with respect to p and take a gradient step
with ℓ2 normalized gradient. We repeat this process until
convergence, when the loss value becomes stable. Empir-
ically we find that 400 iterations are sufficient for conver-
gence. In Figure 5, we show how the backdoor patterns
appears gradually as the optimization process evolves.

Target Class Identification For each possible class, we
can synthesize a perturbation from Equation 6. Now we
describe how we identify the target class of the backdoor,
without manually inspecting the synthesized images and
checking if there is an abnormal pattern. Previous meth-
ods use the size of reversed trigger to determine if a class
is the target class, i.e., reversed triggers from the true tar-
get class should be much smaller than those from normal
classes. However, it is not a viable strategy in our case since
we are using a fixed perturbation budget ϵ in Equation 6.

Our identification process is based on an intriguing ob-
servation we make on the synthesized perturbation p. For
perturbations p synthesized from the target class, we use it
as an additive backdoor: x′ = x + p and find that it is a
highly effective backdoor evaluated on other clean images.
The same does not hold true for normal classes, where the
synthesized perturbations barely transfer to other clean im-
ages. We empirically show this in Section 4.2. Thus, during
backdoor inversion, SmoothInv identifies a class as a target
class in a backdoored classifier when the synthesized per-
turbation from this class also leads to a high ASR.

Figure 5. Progression of synthesized images throughout the opti-
mization iterations.

4. Empirical Study

4.1. Experimental Setup

Backdoored Classifiers To evaluate the effectiveness of
a backdoor inversion method, it is necessary to show that
this method is able to recover “good” backdoors for back-
doored classifiers. One would first need to obtain some
backdoored classifiers to perform such analysis. In this
work, instead of training custom backdoored classifiers, we
initiate our study by carefully selecting backdoored classi-
fiers from well-established backdoor attacks, which satisfies
the following criteria: 1) it is either published in top con-
ferences/venues, or has become a well-known baseline in
backdoor attacks; 2) it is demonstrated to be effective on vi-
sion recognition benchmarks (e.g. ImageNet) as this is the
closest to the practical setting in the real world compared
to toy datasets; 3) the collection of these backdoor attacks
should cover a wide range of backdoor conditions, e.g., uni-
versal or label-specific, backdoor shape, size and location.
Next, we describe the four backdoored classifiers we con-
sider in this work, and we list the relevant statistics of these
backdoored classifiers in Table 1 and show the correspond-
ing original backdoors in Figure 2.
1. TrojAI Benchmark [15] consists of multiple rounds of
released datasets. For each round, it consists of a mixed set
of backdoored and clean classifiers. A set of clean images
from test set is provided along with each classifier. The
backdoor is placed on foreground objects during training.
A sample backdoored image can be seen in Figure 1 mid-
dle. For our study, we randomly sample a classifier with
polygon backdoor (round 4, id-00000131) and use TrojAI
to reference this model, for comparison purposes with mod-
els from other backdoor attacks. In our case, the polygon
backdoor of this model turns out to be label-specific, mean-
ing that it only cause targeted classification of samples from
certain classes.
2. Hidden Trigger Backdoor Attacks (HTBA) [32] is a
backdoor attack method which has been shown effective
on ImageNet. It uses a square patch (size 30 × 30) as the
backdoor, which is the most common choice of backdoor in
existing backdoor attack literature [6, 14, 40]. They obtain
such square trigger by first drawing a random 4 × 4 ma-
trix of colors and resizing it to the desired patch size. The
patch backdoor is placed randomly over clean inputs. We
use their public released code to train a binary backdoored
classifier replicating their ImageNet result. We find that we
are able to match the ASR reported in [32].
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TrojAI [1]
HTBA [32]

Blind Backdoor [2]
Round4-131 Blind-P Blind-S

Dataset TrojAI ImageNet ImageNet ImageNet
Input Size 2242 2242 2242 2242

Arch VGG-11 AlexNet ResNet-18 ResNet-18
#Classes 38 2 1000 1000

Clean Acc 100.00% 95.00% 69.26% 68.06%
Backdoor Statistics

Patch Polygon Square Pixel Pattern Single Pixel
Location Foreground Random Upper Left Upper Left
#Pixels 1126 900 9 1
ℓ2-avg 47.51 25.09 3.08 1.04
ASR 100.00% 54.00% 99.29% 79.73%

Table 1. Statistics of backdoored classifiers we obtain from previ-
ous backdoor attack methods, including relevant model informa-
tion and detailed backdoor conditions. ℓ2-avg refers to the aver-
age ℓ2 distance between clean and backdoored images with pixel
range [0, 1]. For TrojAI, we randomly sample a backdoored clas-
sifier (round 4 with model id 131) for analysis.

3. Blind Backdoors [2] show that it is possible to backdoor
a standard ImageNet classifier with extremely small patch
backdoors. Specifically, it trains two backdoored classifiers:
Blind-P with a pixel pattern backdoor, and Blind-S with a
single pixel backdoor. The backdoor is placed on a fixed
location in the top left region of clean inputs. Both the pixel
pattern and single pixel backdoors are drastically smaller
than the backdoors used in TrojAI challenge and HTBA. It
is also shown in [2] that they can circumvent many previous
backdoor defense methods, e.g. Neural Cleanse [41]. We
use its public released code to train these two backdoored
classifiers Blind-P and Blind-S. Our Blind-P matches the
reported ASR in [2]. The Blind-S model falls short of the
reported ASR (99%) but is still a fairly high number 79.73%
as an effective backdoor.
Evaluation Protocols and Baselines We first perform a
quantitative evaluation by comparing with the following ex-
isting backdoor inversion approaches: NC [41], TopoTrig-
ger [19] and PixelInv [38]. We also compare with a baseline
PlainAdv where we replace the smoothed classifier Gb in
Equation 6 with the base backdoored classifier instead. For
a fair comparison, we evaluate both SmoothInv and baseline
approaches under the same setting of single image backdoor
inversion. Note that existing backdoor inversion methods
can be easily adapted in this setting by using the single im-
age as the support set S in Equation 1. For each method, we
generate reversed backdoor from single clean images and
report the average ASR over 10 random starting images.
We also perform a qualitative evaluation by visualizing the
synthesized images with the backdoor patterns.

For the diffusion model for image denoising, we use the
pretrained class unconditional 256× 256 diffusion model1.
While this diffusion model is trained on ImageNet, we find
that it is still a good denoiser for images from the TrojAI

1https://github.com/openai/guided-diffusion

TrojAI HTBA
Blind Backdoor

Blind-P Blind-S
True Backdoor 100.00% 54.00% 99.29% 79.73%
PlainAdv 36.00% 54.00% 84.08% 84.89%
NC [41] 12.20% 16.00% 0.00% 0.00%
TopoPrior [19] 28.40% 22.00% 0.00% 4.39%
PixelInv [38] 10.80% 24.00% 30.75% 43.17%
SmoothInv
w/ diffusion 72.00% 83.20% 92.05% 93.90%
w/o diffusion 88.00% 88.20% 99.50% 99.53%

Table 2. Quantitative results of Single Image Backdoor Inversion
on four backdoored classifiers. We report the average ASR of the
reversed backdoor on the original backdoored classifier.

benchmark. The number of noise samples N is chosen to
be 40 (later we find that 10 is enough in most cases). We
use projected gradient descent to optimize our objective in
Equation 6 with a total of 400 steps and step size is chosen
to be 0.5 × ϵ/10. Since we assume we do not know the
exact backdoor (e.g. size information) beforehand, we use
two values of perturbation size ϵ ∈ {5, 10} with the pixel
range within [0, 1]. For each backdoored classifier, we con-
struct smoothed classifiers with four values of noise levels
{0.12, 0.25, 0.50, 1.00} with a total of 8 optimization con-
figurations. For each starting clean image, we report the
synthesized backdoor with the highest ASR. We refer read-
ers to Appendix B for runtime and resource considerations.

4.2. Quantitative Evaluation
We first perform a quantitative evaluation by measuring

the average ASR of the reversed backdoors over random
starting images. For SmoothInv, we use the synthesized per-
turbation p as an additive backdoor. The results on single
image backdoor inversion are shown in Table 2. We com-
pare the effectiveness of the reversed backdoor assuming
the target class is known. We can see that previous backdoor
inversion methods (NC, TopoPrior and PixelInv) all fail to
produce effective backdoors in this setting. Both SmoothInv
w/ diffusion and w/o diffusion find a highly effective back-
door for all cases. SmoothInv also outperforms a simplified
baseline PlainAdv, suggesting that the robustification pro-
cess of constructing a robust smoothed classifier is the key
to the success of our approach.

We find that SmoothInv w/o diffusion outperforms w/ dif-
fusion. We attribute this to an observation from Figure 4,
where the original backdoor are more effective for Smooth-
Inv w/o diffusion than w/ diffusion. Thus the higher the
backdoor ASR is for the smoothed classifier, the more likely
it is to reconstruct a more effective backdoor with Smooth-
Inv. This verifies our hypothesis earlier, where we do not
necessarily need high clean accuracies for the smoothed
classifier, but what is essential is that the backdoor remains
effective after the smoothing procedure.

In Figure 8, we show the ASRs of synthesized perturba-

6
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(a) TrojAI-R4-131 (b) HTBA

Figure 6. SmoothInv on TrojAI and HTBA backdoored classifiers (ϵ = 10), where we show pairs of clean images and synthesized
backdoored images (best viewed when zoomed in).

(a) Blind-P (b) Blind-S

Figure 7. Visualization results on Blind-P and Blind-S models (ϵ = 5). From left to right: clean images, synthesized backdoored images
by SmoothInv, zoomed in version (a 50× 50 region in the top left) of synthesized images.

0 10 20
Perturbation size ε

0.0

0.5

1.0

A
S

R

TrojAI

target class
normal class

0 10 20
Perturbation size ε

0.0

0.5

1.0

A
S

R

Blind-P

target class
normal class

Figure 8. ASR of the SmoothInv synthesized perturbations guided
by target class (blue) and normal class(red).

tions from the target class (blue) versus normal non-targeted
class (red). We can see that within a reasonble range of
perturbation size, the synthesized perturbations are a valid
backdoor only when it is guided from the true backdoored
class (Equation 6). Using this property, we find that we can
successfully identify the target class for the four backdoored
classifiers we consider in this work, where the synthesized
patterns only have high ASRs for the correct target class.
This suggests the possibility of our approach to the applica-
tion of backdoor detection, we leave it as a promising ex-
tension for future work.

4.3. Qualitative Evaluation

For each example, we show the synthesized patterns
with the highest ASRs among SmoothInv w/ diffusion and

SmoothInv w/o diffusion.

TrojAI and HTBA . We first show results for models with
relatively large backdoors. In Figure 6, we show both
pairs of clean/synthesized images for the TrojAI and HTBA
backdoored classifiers. For TrojAI, synthesized images all
contain a concentrated region of green pixels , matching the
original polygon trigger in Figure 2. What’s more, Smooth-
Inv synthesizes all backdoor patterns in the foreground ob-
ject, which is exactly the place where the backdoor is placed
during training. For HTBA, SmoothInv synthesizes patterns
in the forms of small isolated color patches, e.g. red, green
and blue, while these colors are all present in the original
square backdoor in Figure 2. The locations of these pat-
terns vary across images, which could be due to the random
placement of the original backdoor during training.

Blind Backdoor The results for the Blind-P and Blind-S
models from blind backdoor attacks can be found in Fig-
ure 7. The synthesized images are shown in the middle. We
can see that SmoothInv automatically identify the region
to synthesize the backdoored patterns (in this case the top
left corner), which turns out to be the exact place where the
original backdoor is placed. For better comparison with the
original pixel pattern and single pixel backdoors in Figure 2,
we also show the zoomed in version of the 50 × 50 top left
region. Though SmoothInv does not recover the exact orig-
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(a) Blind-P

Figure 9. Synthesized images (ϵ = 5) of Blind-P with di-
verse conditions of starting images. The first two rows use clean
images with non-uniform background in the top left corner, as
compared to the clean image in Figure 7. The last two rows
use artificial inputs: images with pure white/black pixels. ASR
of the four synthesized backdoor perturbations on Blind-P are
82.46/75.09/100.00/100.00%.

inal backdoor, the synthesized backdoor patterns have simi-
lar visual properties to the original one, e.g., a stark contrast
of white pixels and neighboring pixels. Moreover, we use
these synthesized perturbations directly as additive back-
doors and find that they achieve high ASRs of 99.87% and
98.35% on the Blind-P and Blind-S models respectively.

Diverse Initial Conditions One reason for the good syn-
thesis results in Figure 7 could be that the clean image al-
ready has a smooth background in the region of interest,
i.e., top left corner, which could make the synthesis process
easier. We investigate how SmoothInv is affected by the ini-
tialization of starting images. Note that for TrojAI result in
Figure 6, we already show one example with rainy effects
and darker background where SmoothInv still synthesizes
faithful backdoor patterns. Here we analyze the Blind-P
model. We select two images from ImageNet testset with
non-uniform color regions (high variance in pixel values)
in the top-left corner as starting images. We also use two
artificial inputs: images with pure white/black pixels. We
show the results of SmoothInv on these images in Figure 9.
We can see that with various conditions of starting images,
our approach consistently synthesizes backdoor patterns in
the top left region, while the synthesized perturbations itself
achieve high ASRs as well.

Additional visualization results are provided in Ap-

Figure 10. Results of SmoothInv w/o diffusion on the back-
doored classifier Blind-G with a gaussian backdoor (leftmost).
We show two pairs of clean and synthesized backdoored images
(ϵ = 10). The two synthesized backdoor perturbations have an
ASR of 88.78% and 86.31% respectively.

pendix D, where we include a direct comparison between
SmoothInv w/ diffusion and w/o diffusion in Figure 13.

4.4. Mitigation of Adaptive Attacks

So far our experiments have focused on backdoor in-
version on backdoored classifiers obtained from previous
backdoor attacks. However, given our proposed method,
someone could design new backdoor attacks to bypass our
method, i.e. making it hard to extract effective backdoors
with SmoothInv. The core step of SmoothInv is convert-
ing a standard backdoored classifier to a robust smoothed
classifier, from which we can obtain perceptually-aligned
gradients to reveal backdoor patterns. An adaptive at-
tacker would try to circumvent SmoothInv by targeting the
smoothing procedure: making the original backdoor inef-
fective for the smoothed classifier. Here we propose two
adaptive attack attempts and show that SmoothInv is still
robust in those challenging settings.

Gaussian Backdoor One can target the SmoothInv proce-
dure by designing a backdoor which is hardly effective on
the backdoored classifier after going through the smooth-
ing process, i.e., T (B(x) + δ). One immediate choice is to
use a backdoor with pure Gaussian noise: a gaussian back-
door Bg . With such backdoor, the backdoor information can
be obfuscated after the process T (Bg(x) + δ) as δ is also
gaussian noise. We construct a gaussian backdoor of size
10×10, sampled from N (0, I) (see Figure 10 left). We use
blind backdoor [2] to obtain a backdoored ImageNet clas-
sifier with this gaussian backdoor, which we call Blind-G.
We are able to achieve an ASR of 100.00%.

On first inspection, we find that this simple gaussian
backdoor does invade the smoothing procedure of Smooth-
Inv w/ diffusion: the gaussian backdoor has an ASR of zero
even for smoothed classifier constructed with noise level
σ = 0.12. We attribute this to the use of diffusion de-
noiser D, where the Blind-G model becomes insensitive to
the diffusion denoised backdoored images D(Bg(x) + δ).
However, we find that the gaussian backdoor still remains
highly effective for smoothed classifiers (SmoothInv w/ dif-
fusion) constructed purely from the Blind-G model (Equa-
tion 2), despite a high drop of clean accuracy. We then apply
SmoothInv w/o diffusion to the Blind-G model and achieve
an average ASR of 64.84%/91.24% (ϵ = 10/20) for re-
versed backdoors from single images. We visualize some
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Base Classifier Smoothed (σ = 0.25)
Clean Acc Backdoor ASR Backdoor ASR

Blind-P 69.26% 99.29% 94.90%
Blind-P* 67.60% 92.60% 59.60%
Blind-S 68.06% 79.73% 59.20%
Blind-S* 66.60% 45.80% 31.40%

Table 3. Effect of training-time intervention on backdoor attacks.

synthesized backdoor patterns in Figure 10. We can see
that a dense colorful pattern emerges in the top left region
via our SmoothInv process.

Training-Time Intervention One could also make the
backdoor ineffective for the smoothed classifier by modify-
ing the training procedure. For SmoothInv, the backdoored
classifier sees the processed images T (x + δ) instead of
the original image x. An adaptive attacker can intention-
ally make the backdoored classifier misclassify backdoored
images B(x) while classifying T (B(x) + δ) correctly. To
investigate if this is possible, we design a new training ob-
jective below: (we consider SmoothInv w/o diffusion due to
resource limitations.)

α0L(x, y) + α1L(B(x), yt) + α2L(T (B(x) + δ), y) (7)

We use the pixel pattern and single pixel backdoors in Fig-
ure 2 and train classifiers with the new objective: Blind-
P*/S* (α0, α1, α2 are automatically adjusted following [2]).
We summarize the clean and backdoor accuracy of these
models in Table 3. We can see that the base classifiers
Blind-P*/S* have lower backdoor ASR compared to Blind-
P/S, suggesting that correctly classifying T (B(x) + δ) af-
fects the effectiveness of backdoor attacks in a negative way.
We also study how training-time intervention affects the ef-
fectiveness of SmoothInv on Blind-P* (attack considered
successful). We find that we are still able to synthesize
effective backdoor perturbations with an average ASR of
88.81% over 10 random starting images.

5. Conclusion and Discussion
In this paper, we have presented a method for backdoor

inversion using a single clean image from the underlying
data distribution. Unlike previous optimization-based ap-
proaches, our method exploits recent advances in adversar-
ial robustness to create a smoothed version of a classifier,
and then modify the image to extract the backdoor via this
robust smoothed classifier. We show that SmoothInv is able
to recover backdoor perturbations that are both highly suc-
cessful and extremely visually similar to the true underly-
ing backdoor. Going forward, the work suggests that many
current approaches to producing backdoored classifiers can
easily be “reverse engineered” to recover the underlying
backdoor, which can provide a powerful mechanism to an-
alyze the security of existing classifiers.

One major limitation of SmoothInv is that it does not
generalize to more advanced backdoors. In this work,

we consider patch-based backdoor in particular. However,
other forms of backdoor are shown possible by previous
work, e.g. image wrapping [26], adaptive imperceptible
perturbation [45] and instagram filters [15]. Our method
does not apply to those backdoors and we believe the likely
reason is that ℓ2 based perturbations are only suitable for
reversing patch-based backdoors. For advanced backdoors,
we suspect that one would need to design the perturbation
space of SmoothInv more carefully. For instance, we can
model instagram filters with a per-pixel position-dependent
transformation implemented by a neural network [19]. It
would be interesting future work to extend our approach
beyond patch based backdoors.
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Figure 11. An image with a 16× 16 backdoor used in [6].

A. CLIP Backdoor [6]
CLIP Backdoor [6] demonstrated a backdoor attack on

a multimodal contrastive model CLIP [31]. It uses a patch
backdoor: a 16×16 grid of black and white pixels. We train
a backdoored CLIP following the steps described in [6]. We
visualize a sample backdoored image in Figure 11. The
backdoored CLIP model we trained has a backdoor ASR of
99.99%. We then cast this CLIP model as a standard image
classifier in a zero-shot manner and apply SmoothInv w/o
diffusion only (due to limited computation resources). We
test this on 10 random clean images from ImageNet testset
and the average ASRs of the reversed backdoors are 73.16%
for (ϵ = 5) and 93.51% for (ϵ = 10). We show the reversed
backdoored images in Figure 12. We can see that some pat-
terns with high color contrast appear in the top-left part.

Figure 12. SmoothInv on a backdoored CLIP model.

B. Runtime and Resource Considerations

The major time bottleneck of our approach SmoothInv
comes from back-propagating through the smoothed clas-
sifier Gb. SmoothInv w/o diffusion is generally fast as dif-
fusion model is not involved. Here we mainly study the
resource consumption of SmoothInv w/ diffusion. First we
would like to clarify that for SmoothInv w/ diffusion, we
are not using the full standard reverse diffusion process but
the one-shot denoising approach proposed in [7], where we
apply only one diffusion step to obtain an estimate of the
denoised image. All our experiments were run on four RTX
A6000 GPU machines with 48685MiB GPU memory each.
In Table 4, we report the time to synthesize an image us-
ing SmoothInv with various number of noise vectors N .
We compare with the baseline “Standard” where we back-
propagate through the standard base classifier (ResNet-18).
We can see that the time spent scales linearly with the
number of noisy vectors. In our experiments, we find that
N = 10 noise vectors are usually enough for a stable syn-
thesis result. In this case, SmoothInv takes roughly around
5 mins to synthesize one backdoored image in one GPU. It
would be interesting future work to investigate methods to
speedup our synthesis process when a diffusion denoiser is
used.
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Standard N = 1 N = 5 N = 10 N = 20 N = 40

#GPUs 1 1 1 1 2 4
Time/sec 9.00 103.04 344.61 339.82 691.79 1014.72

Table 4. Time (in seconds) and resource taken to synthesize an
image (400 PGD iterations) for SmoothInv w/ diffusion. We report
the results with different number of noisy samples N . “Standard”
corresponds to the PlainAdv baseline.

Algorithm 1 SmoothInv (PyTorch-style)

# model: the backdoored classifier
# diffusion: class-unconditional diffusion model
# x_orig: a single clean image from victim class
# y_t: target class
# delta: perturbation vector δ to be optimized
# sigma: noise level σ for RS procedure [7,9]
# n: number of Monte Carlo noise samples
# eps, alpha, steps: PGD hyper-parameters

def backdoor_inversion(f, diffusion, x_orig, y_t)
:

for _ in range(steps):
x = x_orig + delta
x_n = x.repeat(n,1,1,1)
x_noise = x_n + torch.randn_like(x_n) *

sigma # add isotropic Gaussian noise

x_denoised = diffusion.denoise(x_noise) #
optional

y_prob = model(x_denoised)
y_est = y_prob.mean(dim=0) # estimated

output of the smoothed classifier

loss = criterion(y_est, y_t)
loss.backward()

delta += alpha * l2_normalize(delta.grad)
delta = project(delta, eps)
delta.grad.zero()

return x_orig + delta

C. Pseudo-code
We provide a PyTorch-style pseudo-code for our ap-

proach SmoothInv in Algorithm 1, where we apply pro-
jected gradient descent [24] to synthesize backdoored pat-
terns given a single image. We use a pre-trained diffusion
model to build a robust smoothed classifier, following [7].

D. Additional Visualization Results
In Figure 16, we show some backdoored images with

the true backdoors listed in Table 2. Notice that for Blind-P
and Blind-S, the backdoors are placed in the top left region
of the images (the injected backdoor may be hard to identify
unless zooming in the specific part).

We provide a comparison of SmoothInv w/ diffusion and
w/o diffusion in Figure 13. We can see that for TrojAI,
SmoothInv w/o diffusion tends to generate more regions of
interest on the background while the synthesized patterns

appear more often in the foreground for SmoothInv w/ dif-
fusion. For HTBA, SmoothInv w/o diffusion tends to have
vague artifacts while the backdoor patterns are more distinc-
tive for SmoothInv w/ diffusion. This suggests that while
SmoothInv w/o diffusion may generate more effective back-
doors, but using a diffusion denoiser may lead to better vi-
sualization results.

We include more visualization results (ϵ = 10) on the
Blind-P and Blind-S models in Figure 14 and Figure 15,
where we show the synthesized images under various noise
level σ ∈ {0.25, 0.50, 1.00}. We find no distinction be-
tween w/ diffusion and w/o diffusion visually so here we
show the results of SmoothInv w/o diffusion for these two
models. We can see that in general, smoothed classifiers
constructed with larger noise levels tend to give better visu-
alization results.

E. Sanity Check
Following the initial sanity check result in Figure 4, we

report the results on all four backdoored classifiers in Ta-
ble 5. We show both the clean accuracy and backdoor ASR
of the smoothed classifiers w/ and w/o diffusion. We can
see that using a diffusion denoiser can significantly improve
the clean accuracy of the resulting smoothed classifiers for
all four backdoored classifiers. For backdoor ASR, we can
see that the backdoor remains effective for smoothed clas-
sifiers both w/ and w/o diffusion for some values of noise
level σ. Note that for TrojAI, the results should have large
variance as only five clean images are provided by the data
publisher.
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(a) TrojAI-R4-131 (b) HTBA

Figure 13. Comparison of SmoothInv w/ diffusion and w/o diffusion (ϵ = 10).
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Figure 14. Additional results on the Blind-P model.
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Figure 15. Additional results on the Blind-S model.
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Figure 16. Backdoored images, from top to bottom: polygon/TrojAI, square/HTBA, pattern backdoor/Blind-P and single pixel/Blind-S.
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Model Diffusion 0.00 0.12 0.25 0.50 1.00

TrojAI
✗ 100.00% 100.00% 80.00% 20.00% 0.00%
✓ 100.00% 100.00% 100.00% 100.00% 100.00%

HTBA
✗ 95.00% 2.00% 0.00% 0.00% 0.00%
✓ 95.00% 90.00% 92.00% 98.00% 96.00%

Blind-P
✗ 69.26% 33.40% 2.80% 0.00% 0.00%
✓ 69.26% 66.10% 63.10% 57.70% 47.10%

Blind-S
✗ 68.06% 29.90% 2.30% 0.10% 0.10%
✓ 68.06% 65.60% 62.30% 56.70% 47.80%

(a) Clean Accuracy

Model Diffusion 0.00 0.12 0.25 0.50 1.00

TrojAI
✗ 100.00% 100.00% 40.00% 40.00% 20.00%
✓ 100.00% 100.00% 100.00% 60.00% 40.00%

HTBA
✗ 54.00% 70.00% 100.00% 100.00% 100.00%
✓ 54.00% 64.00% 58.00% 64.00% 48.00%

Blind-P
✗ 99.29% 99.80% 94.90% 40.10% 4.70%
✓ 99.29% 99.40% 87.70% 1.70% 0.10%

Blind-S
✗ 79.73% 89.60% 88.40 % 81.70% 97.00%
✓ 79.73% 59.20% 21.50% 4.00% 0.00%

(b) Backdoor ASR

Table 5. Clean accuracy and backdoor ASR of the smoothed classifiers (w/ and w/o diffusion) with various values of σ: 0.12, 0.25, 0.50
and 1.00. The σ = 0 column corresponds to the results of the base backdoored classifier. The results on TrojAI are computed on a limited
number of 5 available clean images so they should have high variances.

17


